

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12045 Page 1 of 11

No More Zombies!
High-Fidelity Character Autonomy for Virtual Small-Unit Training

Brian S. Stensrud, Ph.D.,

Angela Woods,
Samuel Wintermute, Ph.D.

Soar Technology, Inc.
1942 County Road 419 #1060

Oviedo, FL 32766
stensrud@soartech.com

Eugene Ray Purcel
Marine Corps Warfighting

Laboratory
3255 Meyers Ave.

 Quantico, VA 22134
eugene.pursel@usmc.mil

Gino Fragomeni, Pat Garrity
U.S. Army Research Laboratory

SFC Paul Ray Smith, Simulation &
Training Technology Center

12423 Research Parkway
Orlando, FL 32826

gino.fragomeni@us.army.mil

ABSTRACT

Virtual practice environments can offer situated, realistic learning experiences if properly implemented. ‘Serious
Games’ delivered within these environments offer visually compelling experiences, but often suffer from a lack of
realistic interactions with virtual characters such as teammates, adversaries, and other non-combatants. Artificially
intelligent human behavior models – intelligent agents - provide a variety of features not present in legacy computer-
generated forces (CGF) systems; including goal-directed dynamic decision making, non-determinism, interactivity,
and transparency. Using a cognitive architecture, intelligent agents exhibiting these features can be brought to bear
for virtual training environments to support both kinetic and non-kinetic small-unit training exercises.

In partnership with the U.S. Army Research Lab's SFC Paul Ray Smith, Simulation & Training Technology Center
(STTC), we have developed a suite of intelligent agents for virtual environments that can realistically engage human
players in small-unit training scenarios. The centerpiece of this work is a knowledge-rich OPFOR sniper behavior,
capable of detecting and selecting friendly targets of opportunity, communicating with other insurgent support
entities such as lookouts, and finding the appropriate escape path to avoid detection and capture. In addition to a
sniper entity, we also developed agents to play supporting roles, including autonomous fire team agents and non-
combatant townsfolk. In this paper, we describe in detail the challenges encountered during this effort and how
intelligent agents can be exploited to improve training within systems such as the Dismounted Soldier Training
System (DSTS). In addition, we outline the reusable integration architecture we developed to connect our agents to
EDGE, a massively-multiplayer online virtual environment developed at STTC, and describe the design choices
made to ensure that the architecture can be reused to connect both these agents and other AI technologies with new
virtual environments as they become available.

ABOUT THE AUTHORS

Dr. Brian Stensrud is a lead scientist at Soar Technology specializing in artificial intelligence technology for
training simulations and related applications. On staff since 2003, Brian has been principal investigator/project
manager for over $3M in research contracts, as well as serving in a technical lead role in the development of several
autonomous agent platforms and toolsets. He has been selected for two Army SBIR Achievement Awards, in 2010
and 2012, for work performed by the U.S. Army Aviation, Research, Development and Engineering Center
(AMRDEC). Brian received a Ph.D. in Computer Engineering from the University of Central Florida (2005), and
BS degrees in Mathematics and Electrical Engineering from the University of Florida (2001). He has over 11 years
experience in artificial intelligence, behavior modeling, and simulation.

Mr. Ray Pursel served over 23 years as a Marine in both enlisted and officer roles. His billets ranged from
Aviations Operations Clerk to Helicopter Section Leader to Modeling and Simulations Officer. He earned a B.S. in
Computer Science and Mathematics Minor from the Pennsylvania State University in 1995 and an M.S. in
Modeling, Virtual Environments and Simulation from the Naval Postgraduate School in 2004. Now retired from
active duty, he is serving as a Modeling and Simulations Analyst with the Marine Corps Warfighting Laboratory.

Mr. Gino Fragomeni serves as a Science & Technology Manager for Dismounted Soldier Technologies at U.S.
Army Research Laboratory, Simulation & Training Technology Center (ARL-STTC). He currently works in Ground
Simulation Environments Division conducting R&D in the area of dismounted Soldier training & simulation. His

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12045 Page 2 of 11

current interests include artificial intelligence and immersive environments centric to dismounted training
applications. Gino is also a reservist with the United States Army Special Operations Command-Central
(SOCCENT) with over 28 years of military experience. He earned a Master of Science from the University of
Central Florida (2002) and has specialized training in Systems Engineering and Simulation.

Mr. Pat Garrity is the Chief Engineer for Dismounted Soldier Training Technologies at the Army Research
Laboratory's Simulation and Training Technology Center (ARL STTC). He currently works in the Ground
Simulation Environments Branch conducting research and development in the area of dismounted Soldier training
and simulation where he was the Army's Science and Technology Objective Manager for the Embedded Training for
Dismounted Soldiers Science and Technology Objective. His current interests include Human-In-The-Loop (HITL)
networked simulators, virtual and augmented reality, and immersive dismounted training applications. Garrity
earned his B.S. in Computer Engineering from the University of South Florida in 1985 and his M.S. in Simulation
Systems from the University of Central Florida in 1994.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12045 Page 3 of 11

No More Zombies!
High-Fidelity Character Autonomy for Virtual Small-Unit Training

Brian S. Stensrud, Ph.D.,

Angela Woods,
Samuel Wintermute, Ph.D.

Soar Technology, Inc.
1942 County Road 419 #1060

Oviedo, FL 32766
stensrud@soartech.com

Eugene Ray Purcel
USMC Warfighting

Laboratory
3255 Meyers Ave.

 Quantico, VA 22134
eugene.pursel@usmc.mil

Gino Fragomeni, Pat Garrity
U.S. Army Research Laboratory

SFC Paul Ray Smith, Simulation &
Training Technology Center

12423 Research Parkway
Orlando, FL 32826

gino.fragomeni@us.army.mil

INTRODUCTION

Virtual practice environments can offer situated,
realistic learning experiences if properly implemented.
‘Serious Games’ delivered using modern game engines
and virtual environments offer visually compelling
experiences, but often suffer from a lack of realistic
interactions with virtual Computer-Generated Forces
(CGFs) such as teammates, adversaries, and other non-
combatants. Better technologies must be brought to
bear in these environments so that trainees can practice
the wide variety of skills modern warfare requires, both
kinetic (e.g., firefights) and non-kinetic (e.g., face to
face interaction with locals). The Army is interested in
applying next generation Artificial Intelligence (AI)
techniques to help address these needs. Artificially
intelligent human behavior models – intelligent agents
– can provide a variety of features not present in typical
CGF platforms:

• Goal-based. Not dependent on a pre-specified

script, intelligent agents use real-time situation
awareness and can act in pursuit of domain-specific
goals.

• Non-deterministic. Intelligent agents are
responsive and sensitive to unpredictable changes
and unanticipated events in the environment.

• Dynamic. Intelligent agents are able to pursue,
prioritize and reason about multiple goals or tasks
simultaneously, automatically switching goals
when necessary.

• Interactive. Intelligent agents are able to
communicate information, status and commands
and interact with human operators and also with
other agents in the context of the exercise.

• Transparent. Intelligent agents can explain
complex reasoning behaviors and their motivations
for validation and after-action review purposes.

We describe in this paper an effort to develop and
demonstrate a robust, reusable set of human behavior
models that can be exploited virtual, small-unit training
exercises, as well as a reusable architecture for

integrating such behaviors into virtual training and
practice environments. Using STTC’s EDGE
multiplayer online virtual environment (Dwyer et al,
2011), we developed a set of intelligent agents that can
execute a variety of goal-directed tasks completely
autonomously within a virtual environment. These
agents were developed using an open-source, multi-
feature cognitive architecture (Laird, 2012) that has
been used to develop a wide variety of knowledge-rich
agents for military applications (Jones, 1999; Jones,
2002; Jones, 2004; Stensrud, 2006, Taylor, 2007; Wray,
2009; Taylor, 2011). To integrate these agents within
EDGE, we also developed an environment-neutral API
that uses Program Executive Office for Simulation,
Training and Instrumentation Joint Simulation Bus
software protocol (Dumanoir, 2008). The development
of this API will allow us to quickly port agents into new
virtual environments as they become available. In this
report, we describe the agents developed during the
effort. Additionally, we introduce the architecture used
to integrate the agents into EDGE, and provide a list of
requirements for virtual environments so that they can
properly support them.

A key challenge of this research effort was to identify
the specific requirements and challenges associated
with developing agents and integrating them into virtual
environments. During the effort, we considered the
particular tasks required to develop and integrate these
behaviors; identifying patterns, hard problems and
design challenges that inform future efforts. The key
questions that we considered are as follows:

• What is required to develop an intelligent agent,
• What is required to integrate that agent in a

game/virtual environment, and
• What does the environment require to be able to

support so that it can support that agent?

CONCEPT OF OPERATIONS

As a backdrop for this effort, we first developed a small
unit Concept of Operations (CONOPS) and then

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12045 Page 4 of 11

generated a set of scenario vignettes. Within the
context of this CONOPS, we developed a set of
intelligent agents to play each of the various defined
roles. In this CONOPS, intelligent agents are
responsible for each of the characters in the simulation
– all OPFOR, friendly, and neutral entities. As such,
this CONOPS is not a training scenario but rather a
proof-of-concept exemplar to demonstrate the abilities
of intelligent entities in a representative small-unit
environment that can be translated to virtual training
applications.

Our CONOPS focused on an amateur sniper, holed up
in an insurgent compound, who is planning an ambush
on a dismounted US platoon force (see Figure 1). Our
primary behavior development was in support of this
sniper element. Additionally, the vignettes we
developed included a variety of enemy, friendly and
neutral agents that provide complexity to the
environment. The combination of decisions made by
these agents at run-time result in a variety of different
vignette paths that demonstrate their flexibility. Our
final prototype was fully populated with intelligent
agents – over 50 in all – with no humans-in-the-loop
either as role players or operators.

Figure 1. The sniper agent, waiting for a good shot

In our CONOPS, US Army platoon has just arrived in
the northwest section of a typical middle-eastern town.
After arriving, two of the squadrons provide security
around the vehicles and the north exit of town, while a
third squadron proceeds south on foot towards the town
square to interview a local religious leader. Leaving
behind their vehicles, the squad is vulnerable to small-
arms fire, however the city is in an area largely
considered to have a low probability of enemy contact.

Unbeknownst to the squad, our amateur insurgent has
taken a position within a compound near the religious

leader’s residence. This insurgent is looking
specifically for US Army targets to shoot at and, while
untrained and unlikely to do much damage from a
distance, could be able to take advantage of lapses
made by the squad such as poorly executed movement
tactics or improper cover and concealment techniques.
The squad’s two fire teams traverse along the main road
towards the compound (see Figure 2), unaware of the
imminent threat, with the squad leader attached to one
fire team.

Figure 2. Fire team agents move in line formation

AGENT ROLES

The sniper agent exploits a variety of information to
make decisions about how and when to engage the
squad. First, he has two ‘lookout’ agents that observe
activity in the town and provide timely status
information to the sniper. The first lookout, located
near the town square, collects input on the squad’s
intentions and communicates with the sniper over
walkie-talkie. The second buddy provides information
about the status of the sniper’s possible escape routes.
Based on this information, the sniper chooses a spot to
engage the squad and plans an escape route after taking
his shot. From there, the sniper waits for a high-
probability opportunity to take a shot, based on the
distance and movement techniques of the incoming fire
teams – specifically whether they are properly using
proper cover and concealment.

To support and highlight the dynamic behavior of the
sniper entity and his cohorts, we also developed and
integrated friendly and neutral agents whose decisions
impact the sniper’s strategy. The friendly agents
developed are individual combatants in the squad
tasked with patrolling the area. These agents are able to
traverse an area in proper formation, react appropriately
to contact situations, and engage the sniper target if he
is detected. We have encoded variation into these
agents, such as improper cover and concealment and
security procedures. This variation in turn affects the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12045 Page 5 of 11

decision-making of the sniper agent, including
where/when he will fire and if/how he will escape the
compound after engaging.

Figure 3. Intelligent clutter agents engage in

realistic activity around town

Additionally, we also developed and integrated civilian
agents (see Figure 3 above) that populate the town and
behave in various ways. Neutral civilian agents occupy
the streets of the town, navigating from building to
building to simulate errands and other daily activities.
We have also introduced some civilian agents who are
sympathetic to either the insurgent or coalition cause.
Civilians sympathetic to the enemy, for instance, serve
as lookouts for the sniper agent, and can communicate
to the sniper when escape routes are blocked or safe for
use. Similarly, civilians working together with US
forces can keep an eye out for suspicious activity and
point out escaping insurgents to the squad.

SNIPER AGENT DESIGN

As the focus of our CONOPS, the sniper is the most
sophisticated of the intelligent agents developed during
this effort. We describe here the significant decisions
and parameters considered by the sniper agent, whose
design is depicted in Figure 4. This diagram depicts the
decision-making process of the sniper agent throughout
the course of the scenario. It is NOT simply a linear
algorithm or script through a particular use case. The
sniper agent (as well as the other agents in the
CONOPS) is constantly monitoring the state of the
environment at a rate of over 20 times per second, and
using that situation awareness to determine which goals
or actions to pursue. This persistent situation
awareness allows the agent to pursue, prioritize and
reason about multiple goals or tasks simultaneously,
automatically switching goals when necessary.

The sniper enters the world in the back of a compound
on the east side of town, ostensibly engaged in
conversation with a lookout agent standing nearby
(Figure 5). At some point, a radio message might be
received from a lookout agent, who is walking in the
area of the main square. This message causes the snipe
goal to be invoked. To achieve this goal, the sniper
must first move to a position from which to shoot. He
knows of two good locations in his compound, one with
a view of the main road, and the other with a view of
the back entrance to the elder’s compound. Depending
on whether or not the lookout informed the sniper of the
purpose of the Soldier’s visit, either destination might
be used.

Figure 4. Sniper Agent Decision-Making Diagram

A follow-path goal is created in order to reach the
sniping position. Once this position is reached, the
sniper takes out his weapon and generates a goal to find
a target. In this goal, when a Soldier comes into view,
an action is proposed to shoot at that Soldier. If
multiple Soldiers are present, this provides an
opportunity for the sniper to reason about which makes
a better target—as implemented, there is a preference to
shoot at targets who are already injured.

After selecting a target, there is optionally an action
selected for the sniper to carefully line up the shot.

Sniper

snipe setup

follow-
path face-

direction

ready-
weapon

find-
target

choose-target
line-up-shot

shoot fire-
weapon

decide-not-to-shoot-
again

decide-to-shoot-
again

vision

escape paths escape

radio message
from lookout

hear-lookout

radio message
from lookout2

acknowledge-
additional-

support

stand

radio-lookout

follow-
path

blend-
in

choose-destination

destination-reached

move

yield
sound

("freeze!")
set-

posture

top-state

done-sniping
flag

escape path
status

radio
transmission

radio message
from lookout2

blend-in
destinations

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12045 Page 6 of 11

Ideally, this would allow the sniper to execute a
speed/accuracy tradeoff, having a higher probability of
hitting the target if he takes more time to aim. However,
as the current weapon simulation is not sophisticated,
this simply delays the shot. This action is used when the
sniper is aiming at the back entrance, since he knows
that the Soldiers are waiting there, and won’t quickly
pass out of view. The sniper next takes the shot. Once
the shot is executed, the sniper decides whether or not
to shoot again. This choice depends on an aggression
parameter; a more aggressive sniper will take more
shots even as his probability of successful escape may
go down.

Figure 5. The sniper and lookout agents await
information about the squad near the east exit

Once the sniper has decided not to shoot again, a goal
to escape is invoked. The sniper maintains
representations of two potential means of escape:
quickly walking to a hideout on the other side of the
town, via the back exit of his compound, or casually
walking into the crowd of civilians near the front
entrance of his compound. Communications from the
lookout agents will cause the sniper to weigh the value
of these options differently. The lookout near the back
of the compound might sight the goat herder nearby,
who is known to be friendly with the Soldiers, and alert
the sniper. The lookout near the town square may also
learn that an additional squad of Soldiers (Squad C) is
moving near the crowd, and radio the sniper.

If both of these communications occur before the sniper
takes a shot, the goal to snipe will retract, and he will
stand down and remain in the compound. Otherwise,
the information is used to achieve the escape goal. The
back entrance is preferred over the front if neither (or
both) of the lookouts has provided information. Before
escaping, the sniper first radios the lookout in the
compound, letting him know which route he is taking;
the lookout will leave via the same route. The follow-

path goal is again used to execute the escape
movement.

If the front escape was used, a new goal is invoked once
the sniper gets to the crowd. The sniper attempts to
blend in with the crowd, wandering aimlessly between
several waypoints in the courtyards and road. This is
interrupted, though, if a Soldier finds and arrests the
sniper (by yelling “freeze!” nearby). The sniper
complies with the order, stopping and lying prone on
the ground.

Detailed design descriptions for the squad, lookout and
neutral crowd behaviors have been omitted for this
paper.

A GENERIC AGENT INTEGRATION
ARCHITECTURE FOR VIRTUAL

ENVIRONMENTS

Integrating complex, realistic agents into a game
architecture successfully requires an integration
strategy that addresses the specialized needs that agents
impose on a game environment. However, creating a
functional agent is not the only goal. One of the
primary advantages that agent behaviors hold over
scripting is that they are not brittle. Agents can adapt
and function in dynamic environments. Scripted
behavior can seem very realistic, but as soon as any of
the parameters of the environment change, the script is
rendered obsolete. Agent behaviors, in contrast, can
successfully reason over changing parameters in the
game environment and select reasonable behavior to
exhibit in each situation. One of the primary goals of
the agent integration effort was to design the integration
framework to take advantage of the agents’ ability to
reason successfully over dynamic activity within the
game world.

In addition, particular attention was given to re-
usability. Not only is it useful for agents to be
developed in a way that allows the same agent to
function in multiple scenarios in the same game engine,
but also the agent can (ideally) be developed and
integrated in a way that allows the game engine itself to
be changed to a different game engine in the future.
Doing so allows agent behaviors to be developed and
composed into re-usable libraries, which can be
deployed in multiple scenarios and in multiple game
engines.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12045 Page 7 of 11

After selecting the EDGE platform as the game engine,
the next important decision was determining how
tightly to couple the intelligent agents to the game
environment. If the agents are tightly coupled to the
environment, they can leverage every nuance of the
particular game environment. However, doing so
reduces the ability to re-use the integration effort, and
in some cases the agent behavior in the event the game
engine must be changed. Since game engine vendors
are fiercely competitive, and new engines routinely
emerge, designing the integration architecture to allow
the game engine to be changed was given a high
priority. By leveraging existing software protocols – in
this case PEO STRI’s JBUS - we were able to develop
a game-neutral architecture that provides loose coupling
between intelligent agent technologies and a game
environment, which results in maximum reuse of those
agents if and when the game environment changes.

The concept of tightly- versus loosely coupled agent
integration with a game engine is illustrated in Figure 6.
In the figure, Option A depicts a direct, tight connection
to the game engine. In the event that the game engine
must be changed, minimal re-use would be possible
because the integration code is all very specific to the
particular game engine for which it was written.
Instead, we selected Option B, using JBUS. JBUS
provides an interpretation layer between the game
engine and an external component such as an intelligent
agent. JBUS provides a messaging protocol for
communication between software components. STTC’s
EDGE developers have developed a set of game engine
neutral messages that can be sent over the JBUS pipe.
They have also authored the JBUS Plugin to translate
the game-engine neutral messages to/from terms
specific to the game engine. As the figure shows, this
greatly enhances re-usability. By writing the intelligent
agents to communicate with JBUS, they are fully re-
usable, shielded when the game engine is changed.
Only the JBUS Plugin needs to be updated when the
game engine is changed.

After selecting the basic integration strategy, a detailed
design was developed that met our needs. STTC’s
EDGE developers were consulted, and advised us on
refinements to our design that ensured that it was
aligned with their long-term architectural vision for the
EDGE and JBUS platform. The resulting design is
shown in Figure 7.

Figure 7. Agent Integration Architecture

The agents are interfaced to the game engine through
JBUS. To use JBUS for communication, an agent
plugin was developed whose responsibilities are:

• Converting agent commands for the game into

JBUS messages.
• Converting JBUS messages from the game into

agent knowledge.

Figure 6. Reusability of intelligent agents in virtual environments is

heavily dependent on a loosely coupled integration architecture

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12045 Page 8 of 11

The location of the Agent Plugin in the architecture was
designed so that the same strategy could be used for
integrating other types of AI, such as other cognitive
architectures or even sub-symbolic techniques such as
Bayesian or neural networks. While only a particular
type of agent was integrated in this effort, similar
plugin techniques could be used if other types of
behavioral or cognitive models are desired.

After an assessment of the existing capabilities of the
EDGE Plugin and set of available messages, it was
determined that a few augmentations would be
required. The existing capability set was targeted at
replicating the type of communication that is typical
over HLA (High Level Architecture) or DIS
(Distributed Interactive Simulation), such as pushing
out platform updates for entity state. While this is
useful, it is not sufficient for enabling an agent to
produce realistic behavior. Most agents require the
ability to issue complex commands to the game
environment as well as extract additional information
from the game. Augmenting the existing
communication system to accommodate agent needs
required changes in three places:

• Adding new types of JBUS messages.
• Augmenting the EDGE Plugin to process the new

JBUS messages.
• Augmenting the game engine code that translates

the new message types into engine-specific terms.

Special consideration was given to developing the new
set of messages such that the messages would be game
engine neutral. For example, queries such as “Is Object
A Visible to Object B?” are game engine neutral.
Exactly how the game engine decides visibility,
whether it is by ray-casting or some other technique is
not important. What is important is that it can answer
the question. Similarly, commands such as “Move
Object A to Point B” should be carried out in a sensible
way such that Object A avoids colliding with obstacles
on its way to Point B. But again, the specific path
planning technique (such as A*) that the game engine
uses to carry out the command is not specified in the
game engine neutral message.

Another key consideration in a multiplayer, distributed
game is balancing the computing load across the
machines that are dispersed across the network and
designing a scalable solution. Figure 7 shows the
network boundaries in our approach. In a typical
client/server game, individual trainees sit at a computer
and interact with a game client, while a game server
hosts the game simulation. This is true of the
integration architecture we have chosen. However,
utilizing JBUS offers us the opportunity of introducing

a second and third network boundary - one that
separates JBUS from the game server, and another that
separates other back-end processing applications (such
as agents) that use JBUS for communication.

The ability to easily introduce these additional network
boundaries is a key advantage of selecting JBUS.
Agents are computationally expensive, relative to other
types of lightweight behaviors. The game clients that
the trainees interact with are already computationally
expensive due to rendering high quality graphics. We
do not want to add the cost of agent computation to the
clients. The game server can be either a single machine,
or a cluster of machines. While adding the agents to
these machines is feasible, integrating them into a
specific game engine’s server architecture is a poor
choice because it is tightly coupled, and is not a re-
usable approach. Using a protocol to enable the agents
to reside on their own hardware that is separate from
both the game server and the game client is ideal. It is
loosely coupled, so a change of game engine will not
impact the design. And it is scalable. As the number of
agents increases, additional machines can be added to
the cluster running the Agent plugin. Our current
demonstration shows that approximately 50 agents can
be run on a single machine. Since additional machines
for agent processing can be added, scaling up the
number of agents is not dependent on the computational
power required for agent reasoning.

GAME ENGINE REQUIREMENTS

Modern game engines have made great advances in the
area of 3D visuals. While good graphics are an integral
part of an immersive training experience, they are not
the whole solution. In addition to good graphics, non-
player characters must display realistic behavior. Using
intelligent agents is a way to meet this need. Game
engines are just starting to consider the needs of
intelligent agents, and to achieve realistic intelligent
agent behavior inside a game environment; the game
environment has to meet a minimum set of
requirements. What is needed for really good AI? What
requirements must the game engine meet to provide a
sufficient set of capabilities to allow the intelligent
agent to do its work effectively? This effort has placed
focus on identifying the capabilities a game engine
must have to allow realistic, intelligent agents to be
inserted into the game environment.

While many game engines have a robust set of
capabilities, most have limited their programming APIs
to providing simple status information or issuing basic
commands. However, to create an intelligent agent that
is inserted into a game environment, a much broader set

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12045 Page 9 of 11

of controls is necessary. Not only is more robust status
information required, but also an adequate set of hooks
that an agent can use to control elements in the world at
a much finer granularity than legacy models or simple
behavior scripts.

We identified the following requirements as necessary
to provide an effective environment for intelligent agent
to provide value:

• Source code access
• Scalable infrastructure
• Control of realistic character avatars
• Character attribute access
• Robust ray-casting (visibility) system
• Robust navigation mesh & path planning system
• Robust collision detection system
• Support for weaponry, projectiles and damage
• Sophisticated character/object interaction
• Realistic vehicles capable of movement and

character interaction
• Physics support
• Real world terrain correlation
• Extensible level editor
• Extensible game UI (including key bindings)
• Robust performance analysis and debugging tools
• Flexible camera controls
• Weather and time representation

SUMMARY AND LESSONS LEARNED

During this effort, we successfully developed a set of
intelligent agents capable of autonomously performing
various small-unit tasks and behaviors within a game
environment. These agents include a sniper, a set of
spies/lookouts, neutral townsfolk, and a dismounted US
Army platoon. Each agent interacts dynamically within
STTC’s EDGE multiplayer online virtual environment.
They have predefined goals that influence their decision
making, but react to real-time stimuli in the
environment and maintain constant situation awareness
in the world. Each agent is flexible to support a variety
of different conditions and parameters, meaning that it
can behave properly within a multitude of different
situations without having to be re-encoded, re-scripted,
or otherwise controlled by a human-in-the-loop. As a
result, these agents can be integrated into virtual
training environments, such as the Dismounted Soldier
Training System (DSTS), where they can serve as

replacements for live role players in a variety of
different small-unit training scenarios.

While developing and integrating these agents, we also
discovered and compiled a reusable agent integration
architecture and API, as well as set of requirements that
future decision makers will be able to refer to, when
choosing a game engine for their virtual training
system, that their system will be able to support robust,
integrated behavior models. This architecture, which
connects to PEO STRI’s JBUS network translator
interface, allows for intelligent agents built using a
variety of methodologies to interact with a game
engine/virtual environment without having to touch the
specifics of that environment. Using this architecture,
agents can be re-integrated into new virtual
environments, without having to make any changes to
or re-implementations of their behaviors provided the
new environment supports JBUS and the interactions
defined in its API.

Lessons Learned: What went right?

1. EDGE. Selecting the EDGE platform as the game
development environment for this effort had many
benefits. It satisfied most of the necessary game engine
requirements, allowing a rich toolset to use for
prototyping. In addition, the existing scenario provided
a large number of art assets that we leveraged with only
minimal modification. Re-use of the stock EDGE
scenario allowed us to bypass art asset creation and
focus most of our effort on the key development
aspects: creating sophisticated intelligent agents, and
developing a re-usable integration framework for
connecting them to game environments.

2. JBUS. Selecting JBUS as our network
communication protocol was an overwhelmingly
positive experience. Many integration frameworks are
cumbersome and difficult to use, and it was unclear in
the beginning if JBUS would provide enough benefit to
be worth the effort to configure it. However, with only
a small level of effort we were able to configure JBUS
for use and get a working prototype in place. JBUS was
powerful enough to be the single communication
channel, allowing all of our messaging between the
agents and game environment to be uniform. In
addition, by using it to transport game neutral
messages, it has facilitated creation of a re-usable
integration layer, which will enable plugging in
different game engines in the future without needing to
change the agents.

3. Rapid-Prototyping Message Framework.
Development of a re-usable, game engine neutral API
was a core focus of the development effort. The final

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12045 Page 10 of 11

API is the result of analysis of experimental designs
and refinements over the course of the project. Since
the API was expected to evolve over the course of the
project, a strategy for prototype development while it
solidified was necessary. To address this challenge, we
created a rapid prototyping API. The API contains
multi-purpose, powerful messages that could be
overloaded for a variety of needs. The prototype
messages facilitated rapid prototyping, and shielded
prototype development from constant API changes.

4. Reusable, Loosely Coupled Intelligent Agents.
Using a client/server architecture for intelligent agent
development is ideal. Intelligent agents can be
computationally expensive, which is prohibitive if they
are required to run on the end user’s client hardware.
We addressed this problem by using JBUS to provide
communication between the intelligent agents and the
game environment. The intelligent agents can run on
separate hardware outside of the main game loop,
communicating over the network with the game client.
This solution is highly scalable; adding more agents to
the environment can easily be accomplished by adding
additional computing power or adding machines to the
training infrastructure. Additionally, this architecture
allows agents to be reused in other training
environments, even those using different game engines.

Note that keeping the intelligent agents loosely coupled
necessarily means that the integration architecture, as
described, contains a client-side plugin that is tightly
coupled to the game engine source code. Otherwise,
the agents will not have the appropriate functions
available to operate avatars at an acceptable level of
granularity. Examples of this point are provided below.

Lessons Learned: What went wrong?

1. Access to Source Code. The game engine the
EDGE platform currently uses does not include the
source code or a complete algorithm description for its
path planning code. As the agent development
proceeded, we required complex path planning abilities
to be able give agent’s realistic movement such as
moving in the wedge formation. Unfortunately the
game engine’s path planning sometimes returns
unexpected and confusing results. For example, some
points are reported by the path planning system to be
“unreachable” although there do not seem to be any
obvious obstacles. Obviously, this problem is
magnified in environments with nontrivial terrain.
Clearly there are some low level details regarding the
interaction of the navigation mesh and the path-
planning algorithm that are in play. However, without
access to the source code, gaining a better
understanding of the issue is not possible. Luckily we

were able to use the ray-casting API to work around
some of the worst cases. However, for future game
engine selection, better results will be possible if source
code access to the path planning code is available.

2. Low-level Access To Character Animations and
Postures. The game engine currently used for EDGE
does not provide the ability for game characters to
move their upper body independently from their lower
body. While the visualization does not impact the
authoring of the intelligent agent driving the avatar, it
does impact the realism of the overall effect. For
example, a squad member using proper movement
techniques should be guarding their assigned sector. To
do this realistically, they need to be able to walk in one
direction while looking or aiming their weapon in
another direction. We have authored the squad agents
to do this. However, since the game engine does not
support independent motion, the visualization shows up
as a character turning unexpectedly (see Figure 8).

Figure 8. Fire team agents have to fully turn around

to scan behind them due to the lack of low-level
animation control

For example, if a squad member should be moving
north, but guarding the rear of the squad to the south,
the desired effect is for the lower body to face north and
for the upper body and head to turn to periodically to
look behind the Soldier. However, the rendering seen in
the game engine is the whole Soldier avatar spinning
around 180 degrees, and then back when a head turn or
upper body turn would be correct.

While the agent behavior is appropriate, the fidelity of
the visual rendering is low enough that to an
uninformed audience, the behavior will sometimes look
‘buggy’. The way to resolve this issue is to select a
game engine that allows turning the head and upper
body independently from the lower body.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12045 Page 11 of 11

FUTURE RESEARCH

In the coming months, we anticipate extending the
small-unit behaviors developed on this effort, adding
additional features to further demonstrate the utility of
intelligent agents for virtual small unit training. These
features include, but are not limited to:

1. Agent behavior authoring. This feature will allow
for a non-programmer scenario designer to tweak the
behaviors of the agents, setting specific parameters such
as points of interest and tuning any agent biases (such
as aggressiveness and rifle skill) by extending and using
the game engine’s existing level authoring tool – and
without having to edit any code.

2. Human-in-the-loop support. Our current prototype
runs as a series of vignettes with the human out of the
loop, allowing us to demonstrate the features of the
agents in a controlled setting. We anticipate converting
this into a more interactive environment, where a
human trainee can execute one of the roles in the
CONOPS (initially the squad leader). This will require
additional agent support, as we will need to integrate
mechanisms by which the squad leader can interact
with his team and other agents, e.g. through speech
recognition and synthesis.

3. Trainee monitoring and dynamic scenario
tailoring. In addition to developing intelligent agents
that drive entity behaviors of physical, we have also
developed ‘behind-the-scenes’ agents that can detect
actions in a simulated environment and react by cueing
responses in that environment – either by directing
other characters or modifying the environment itself
(e.g., spawning more characters to increase clutter in
the marketplace, causing an IED explosion). Acting as
somewhat of a scenario battle-master, these agents can
monitor the trainee’s behavior, responding by tailoring
the environment when the trainee requires in-game
guidance or feedback.

ACKNOWLEDGEMENTS

The work described in this paper was funded jointly by
the Marine Corps Warfighting Laboratory and the U.S.
Army Research Lab's SFC Paul Ray Smith, Simulation
& Training Technology Center (STTC), under contract
#W91CRB-11-C-0100.

REFERENCES

Dwyer, T., Griffith, T. and Maxwell, D. (2011), Rapid
Simulation Development Using a Game Engine –
Enhanced Dynamic Geo-Social Environment
(EDGE), Proceedings of the Interservice/Industry
Training, Simulation and Education Conference
(I/ITSEC), Orlando, FL. 2011.

Laird, J.E.: The Soar Cognitive Architecture, 2012,
MIT Press.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J.,
Kenny, P., & Koss, F. V. (1999, Spring 1999).
Automated Intelligent Pilots for Combat Flight
Simulation. AI Magazine, 15.

Jones, R., Laird, J., Nuxoll, A., & Wray, R. (2002).
Intelligent opponents for virtual reality trainers.
Paper presented at the Proceedings of the
Interservice/Industry Training, Simulation and
Education Conference (I/ITSEC), Orlando, FL.

Jones, R. M., Wallace, A. J., & Wessling, J. (2004). An
Intelligent Synthetic Wingman for Army Rotary
Wing Aircraft. Paper presented at the IITSEC,
Orlando, FL.

Stensrud, B., Taylor, G., & Crossman, J. (2006). IF-
Soar: A Virtual, Speech-Enabled Agent for Indirect
Fire Training. Paper presented at the 25th Army
Science Conference, Orlando, FL.

Taylor, G., Stensrud, B., Eitelman, S., Durham, C., &
Harger, E. (2007). Toward Automating Airspace
Management. Paper presented at the
Computational Intelligence for Security and
Defense Applications (CISDA), Honolulu, HI.

Stensrud, B., Taylor, G., Schricker, B., Montefusco, J.,
& Maddox, J. (2008). An Intelligent User Interface
for Enchancing Computer Generated Forces. Paper
presented at the Simulation Interoperability
Workshop, Orlando, FL.

Wray, R., Lane, H.C., Stensrud, B., Core, M., Hamel,
L. and Forbell, E. (2009), “Pedagogical Experience
Manipulation for Cultural Learning,” Proceedings
of the 2nd Workshop on Culturally Aware Tutoring
Systems, Brighton, UK, July 6-7, 2009.

Taylor, G., Stensrud, B., Maddox, J., & Aycock, H.
(2011). Formative Evaluation of an IUI for
Supervisory Control of CGFs. Paper presented at
the Behavior Representation in Modeling and
Simulation (BRIMS), Sundance, UT.

Dumanoir, P., Clinger, B. and Rivera, J. (2008),
Evolving Standards in US Army Live Simulations,
Proceedings of the 2008 Simulation
Interoperability Workshop, Orlando, FL.

