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Abstract

For a human, episodic memory is a memory of past experiences that one gains over a lifetime. While episodic memory appears critical
to human function, researchers have done little to explore the potential benefits for an artificially intelligent agent. In this research, we
have added a task-independent, episodic memory to a cognitive architecture. To frame the research, we propose that episodic memory
supports a set of cognitive capabilities that improve an agent’s ability to sense its environment, reason, and learn. We demonstrate that
episodic memory enables agents created with our architecture to employ these cognitive capabilities.
� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

One advantage that humans have over current Artificial
Intelligence (AI) systems is a personal history of specific
events that they can draw upon to improve their decision
making and learning. This episodic memory was first
described in depth by Tulving (1983, 2002). Tulving’s focus
was phenomenological and in particular distinguished epi-
sodic memory from semantic memory. Episodic memory
provides humans with the ability to remember where they
have been, what they have sensed, and what actions they
have taken in various situations. This knowledge of the past
is invaluable for acting in the present. Episodic memory
supports a wide range of cognitive capabilities from keeping
track of the world outside immediate perception, to allow-
ing retrospective learning on previously encountered situa-
tions. Certainly, there is evidence that human cognition is
severely crippled by the loss of episodic memory and the dif-
ficulties that amnesiacs face have been documented (Tul-
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ving, 2002) and were dramatically portrayed in the movie
Memento (Nolan, 2000).

As in any learning system embedded in a performance
system, episodic memory involves: the capturing and
encoding of experience in an internal format; storing that
experience in a knowledge base for future use; retrieving
knowledge in the future when given an appropriate cue.
In addition to supporting these fundamental operations,
there are additional functional requirements that Tulving
(1983) identified that distinguish episodic memory from
other memory and learning mechanisms:

� Automatic: The system creates new memories automati-
cally without the agent deciding to do so. The underly-
ing assumptions are that: (a) deliberately deciding
which situations to remember can interfere with task-
based reasoning and (b) it is unlikely that the agent
can effectively determine which experiences will be rele-
vant to future decisions.
� Autonoetic: A retrieved memory is distinguished from

current sensing, so that an agent does not confuse a
retrieved memory with the current situation.
� Temporally indexed: Because an episodic memory

describes a particular, unique moment in time, some tem-
poral information is a part of any episodic memory and
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can also be part of an episodic memory cue. This need not
be an exact time but it should convey a sense of the relative
time of the episode with respect to other episodes.

This paper presents our progress toward creating a gen-
eral purpose episodic memory within a cognitive architec-
ture that supports the creation of general AI agents, that is
agents that use large bodies of knowledge, continually learn
from experiences in their environment, pursue multiple
diverse tasks, and exist for extended periods of time.
Although there has been sporadic research on episodic mem-
ory within AI in the past, there has not been research on task-
independent episodic memories that support a wide variety
of cognitive capabilities within a cognitive architecture.

Thus, our research involves determining the require-
ments for an episodic memory; designing, implementing,
and integrating an episodic memory system within a cogni-
tive architecture; and exploring the capabilities supported
by such an integration. The emphasis of our research has
been to create a computational system with the most
important features of episodic memory so that we can
develop and evaluate not just an episodic memory module,
but an integration of that module within a cognitive archi-
tecture in which we can build agents. This paper describes
our progress to date on this work. While we have made
considerable progress, our episodic memory architecture
is far from complete. For example, it does not include
memory consolidation, forgetting, interference, priming,
generalization across episodes or specific models of time.
Our architecture does support effective encoding, storage
and retrieval and we have used it to create agents for a vari-
ety of tasks. Our research suggests that episodic memory
enhances the performance of AI agents and may be a
“missing link” in current cognitive architectures, enabling
a gamut of cognitive capabilities.

2. Cognitive capabilities

The focus of our research is to investigate whether epi-
sodic memory can support high-level cognitive capabilities
beyond the simple recall of previous events. We define a
cognitive capability as a beneficial ability or pattern of
behavior that can be indirectly observed via the actions
of intelligent agents. We do not claim that episodic mem-
ory is the sole means for achieving these capabilities but
we claim that episodic memory can play an integral role
is realizing these capabilities. Our research has focused
on demonstrating multiple capabilities with a single archi-
tecture in a limited set of tasks set within two distinct envi-
ronments. Our hypothesis is that episodic memory is
integral to supporting the following cognitive capabilities,
and in Section 7, we support this claim with example
implementations.

� Action modeling: If an agent can recall the outcomes of
its past actions, it can use that information to predict
the outcomes of those same actions in the present. By
recalling situations similar to the present from its past,
an agent can use episodic memory to predict the imme-
diate changes in its environment that will result from a
given action.
� Decision-making based on past experiences: A history of

prior successes and failures can be used during planning
to guide decision making. Episodic memory can provide
access to memories of similar situations that can help
direct the agent to its goal and away from failures.
� Retroactive learning: Often, it is not possible to learn

while an event is occurring because the agent lacks the
specific information or resources that it needs to learn.
For example, an agent in a real-time environment may
not have time to apply an iterative learning algorithm
while it is performing a task. Episodic memory allows
previous experiences to be relived or rehearsed once
the resources are available.
� “Boost” other learning mechanisms: An episodic memory

store provides a wealth of data for training other learn-
ing mechanisms potentially allowing the agent to speed
the rate at which it learns in new situations and even
learn how to behave in situations it has never encoun-
tered before.
� Virtual sensing: In general, an agent’s sensing is limited

to the current situation: what is available directly from
perception. Memory of recent events or situations can
greatly expand an agent’s ability to interact with the
world outside. Episodic memory expands an agent’s
sensing by providing memories of areas beyond its
immediate perceptions.

There are potentially many more cognitive capabilities
that episodic memory enables, such as prospective memory
(Kliegel, McDaniel, & Einstein, 2007) where an agent deci-
des to perform future activity, such as stopping at the store
on the way home from work, and then uses episodic mem-
ory to recall that plan at an appropriate time in the future.
One of our goals for future research is to investigate more
of the capabilities that may be possible through the addi-
tion of episodic memory to a cognitive architecture.
3. Related work

Within Artificial Intelligence, episodic memory research
is closely related to case-based reasoning (CBR) (Kolodner,
1993; Schank, 1999). In a typical CBR system, each case
describes a problem that the agent faced and a specific solu-
tion to that problem. When a new situation arises, the
agent retrieves a stored case and adapts its solution to
the new situation. Cases are usually described by a fixed
number of task dependent fields, which are designed by a
human, making them task dependent. Nonetheless,
research in CBR highlights some important research that
is equally relevant to episodic memory. In particular,
Goodman (1993) describes using a CBR system’s case
library to predict future events. This prediction is analo-



Table 1
Summary of episodic memory research.

Action
modeling

Decision making based on past
experiences

Retroactive
learning

“Boost” other learning
mechanisms

Virtual
sensing

Goodman (1993) x
Vere and Bickmore (1990) x
Ho, Dautenhahn, and

Nehaniv (2003)
x

Tecuci and Porter (2007) x
Ram and Santamarı́a (1997) x
Nuxoll and Laird (this

research)
x x x x x

Fig. 1. The soar cognitive architecture.
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gous the cognitive capability we call “learning from past
successes and failures.”

Vere and Bickmore (1990) implemented a limited epi-
sodic memory of events for their Basic Agent. Because of
its peripheral nature to the goals of their research, the effec-
tiveness, efficiency and completeness of their agent’s epi-
sodic memory implementation was limited, but it
demonstrated the potential of episodic memory for inte-
grated agents. Vere and Bickmore’s agent was particularly
focused on the cognitive capability we call virtual sensing.

Ho, Dautenhahn, and Nehaniv (2003) developed an
agent that uses a task-specific episodic memory to back-
track to previously seen locations. Their work demon-
strates the cognitive capability we describe as virtual
sensing; however, the episodic memory is specially designed
for the specific tasks of remembering the location of entities
that the agent has encountered.

Most recently, Tecuci and Porter (2007) developed a
generic episodic memory module that they successfully
used for multiple tasks including planning and physics
problem solving. This system bears some similarities to
the one we present here, but it is not embedded in a general
architecture. Tecuci and Porter’s work focused on using
episodic memory to do planning by learning from past suc-
cesses and failures.

In the field of machine learning, instance-based tech-
niques provide a flexible way to learn the best action for
the agent (Atkeson, Moore, & Schaal, 1997; Ram & Santa-
marı́a, 1997; Sheppard & Salzberg, 1997). The instance
database used by these techniques is a simplified, task-spe-
cific form of an episodic memory. Nonetheless, it provides
evidence that giving an agent a personal history can allow
it to demonstrate the cognitive capability we call action
modeling. Table 1 summarizes each of these bodies of
research and the cognitive capabilities they demonstrate.
The goal of our research is to provide a task independent
implementation that supports all of these capabilities, as
shown in the final line in the table.

4. The Soar architecture

Our research does not consider episodic memory in iso-
lation, but instead we explore episodic memory as a com-
ponent of a broader cognitive architecture. Specifically,
our episodic memory module is integrated within the Soar
cognitive architecture (Laird, 2008). Soar is a general cog-
nitive architecture that has been used to model a wide vari-
ety of phenomena (Newell, 1990) as well as to create large
knowledge-intensive AI agents (Jones, Tambe, Laird, &
Rosenbloom, 1993). Soar shares many features in common
with other architectures such as ACT-R (Anderson, 2007),
Icarus (Langley, 2006), Clarion (Sun, 2006), and EPIC
(Kieras & Meyer, 1997), so that although our research on
episodic memory uses Soar, our overall design is relevant
to creating episodic memories in those other architectures.

Fig. 1 depicts a high level view of the Soar architecture
prior to the integration of episodic memory. As described
in Laird (2008), Soar has recently been expanded to include
episodic memory as well as semantic memory, reinforce-
ment learning, and mental imagery; however, the work
described here focuses on the integration of episodic mem-
ory with the components shown in Fig. 1.

Soar has a short-term working memory and long-term
procedural memory. These are depicted in the large
rounded rectangles on the right. Working memory is a
short-term declarative memory that encapsulates the
agent’s current state including external sensing, the results
of internal inferences, selected actions, and active goals.
The working memory consists of identifier–attribute–value
triplets called working memory elements (WMEs). The
value of one WME can be the identifier of another WME
so that these elements are linked together in a graph struc-



A.M. Nuxoll, J.E. Laird / Cognitive Systems Research 17–18 (2012) 34–48 37
ture. Soar’s procedural memory consists of if–then produc-
tion rules. If the conditions of a production are satisfied by
the contents of working memory then that production fires
and performs its actions which consist of creating or
removing elements from working memory. All rules that
match fire in parallel.

Soar has a basic control loop where it proposes, evalu-
ates, selects, and applies actions (in other descriptions of
Soar, these actions are called operators). Proposal rules
create representations in working memory of the actions
that are available in the current situation. Evaluation rules
test for proposed actions and create preferences for select-
ing between them. A fixed decision procedure interprets the
preferences and selects a single action. Once an action is
selected, application rules apply the selected action, either
by making changes to working memory, or initiating exter-
nal actions. Only one action can be selected and applied in
a given cycle, making actions the locus of decision-making.

If the knowledge encoded in rules is insufficient to select
or apply the next action, Soar encounters an impasse. In
response to an impasse, the architecture creates a substate
to resolve the impasse. The same process of selecting and
applying actions is used to resolve the impasse by making
changes to the original, parent state that allow processing
to continue in that state. Once an impasse is resolved in a
particular state, all substates are removed and processing
continues in the original goal. An impasse is also an indica-
tion that the Soar agent needs to learn. If the agent does
not know what to do next, but subsequently discovers an
appropriate action in a subgoal, then it has learned some-
thing. Soar employs a learning mechanism called chunking
that converts the learned knowledge into a new production
that will fire in similar situations in the future, eliminating
the need for an impasse.

The version of Soar used by this research includes work-
ing memory activation1 (Nuxoll, Laird, & James, 2004).
The purpose of activation is to indicate the importance of
a WME to the current processing, and so the activation
level is based on the recency and frequency of creation
and access of the WME element as follows:

� A WME receives an initial, default activation level when
it is created.
� Any time that a WME is tested by a production that

fires, its activation level is increased.
� Any time the agent attempts to add an already existing

WME, the existing WME receives an increase in
activation.
� WME activation decays exponentially over time. The

rate of decay is determined by the frequency and recency
with which it has received activation increases.
1 The work presented in this paper is an extension to Soar 8. Soar 9 now
contains a newer implementation that is optimized for faster execution and
better scaling with large memory but lacks the activation-based biased
retrieval described here (Derbinsky & Laird, 2009).
5. Episodic memory implementation
Fig. 2 depicts the integration of our implementation of
episodic memory with the Soar architecture. (Compare this
diagram to Fig. 1.) The central rounded-rectangle in the
figure contains Soar’s working memory.

Our implementation adds an episodic learning module
that monitors the agent’s behavior. At prescribed times,
the module records a new episodic memory. Each new
memory is effectively a snapshot of working memory taken
at the time of recording. This collection of memories forms
a new episodic memory store (depicted in the upper right of
Fig. 2) that can be queried by the agent.

To illustrate the episodic memory system, we use a sim-
ple simulated environment, called Eaters, that is similar to
Pac-Man. In Eaters, a Soar agent controls an “Eater”,
which moves around a small grid-based map consuming
food. (More details are provided in Section 6.1) Fig. 3
shows an Eater and the portion of a map it can directly
sense.

As shown in Fig. 4, the agent’s sensing is represented in
its working memory as a symbolic graph structure. At the
center of the figure is a node that is the representation of
the agent’s current position, which includes features about
the shape of the agent and its color. This node has addi-
tional relations (north, east, south, west) with other nodes
that represent the cells in the four cardinal directions from
the agent. These nodes have information about their con-
tents as well as relations to all of the nodes they are adja-
cent to. The icons in each of the nodes are not
represented in working memory and are included to make
it easier to draw a correspondence between the nodes and
Fig. 3.

An agent’s information about its current situation is
called its “state”, which is maintained in working memory.
The state of an agent contains its sensory information as
well as additional information (not shown in Fig. 4) about
the agent’s potential actions, its goals, and the results of
any inferences it has made about the situation. The agent’s
state that is the basis for creating an episodic memory, and
the processing associated with episodic memory is decom-
posed into the following major phases:
Fig. 2. Episodic memory implementation architecture.
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� Encoding: how the state is captured and stored as an epi-
sodic memory
� Storage: how an episodic memory is maintained
� Retrieval: how a memory is retrieved.

The following sections describe the steps involved in
each phase and the design decisions we made for that
phase.

5.1. Encoding

Encoding involves capturing a memory to be stored in
episodic memory. For many learning mechanisms, this
stage can involve significant processing to determine the
contents of the memory, possibly performing generaliza-
tion over other long-term memories. However, in our
approach, encoding for episodic memory is a fast, simple
learning mechanism that does not interfere with the ongo-
ing reasoning and problem solving of the agent. There are
Fig. 4. A portion of an agent state as
three basic design decisions that must be addressed in
determining how and when encoding is performed.

5.1.1. Encoding initiation: when is a new episode encoded?

The agent could determine this deliberately, deciding
when to record an episode based on features of the task
or environment, but one of the functional requirements
for episodic memory is that encoding is automatic. In our
implementation, a new memory is encoded each time the
agent takes an action in the world. In our experiments,
alternative implementations, such as recording every pro-
cessing cycle, had little impact on performance except to
change the total number of episodes.

5.1.2. Episode determination: what are the contents of an

episode?

The contents could include perception, motor com-
mands, and information from internal processing. In our
implementation, an episode consists of the agent’s state,
which includes its input (sensing), internal data structures
and output (actions in the world), but currently excludes
episodic memory cues and retrievals. Including these makes
it possible for individual episodes to grow quite large as
subsequent episodes could contain previous memories
which could, in turn, contain a previous episode, and so on.

Working memory elements with activation below a
given threshold are excluded to eliminate elements that
were most likely irrelevant to the current processing.

In our Eaters example, if the agent decides to move west
from its current position, an episode is recorded that con-
represented in working memory.



Fig. 5. An example episodic memory cue.
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tains all of the information depicted in Fig. 3 as well as
other information, including the fact that the agent has
issued a “move west” command.

5.2. Storage

Once an episode has been identified, it must be stored.
Two issues must be addressed in terms of storage.

5.2.1. Episode structure: what is the structure of the episodic

memory store?

Conceptually, episodic memory consists of a sequence of
individual episodes; however, the underlying implementa-
tion is optimized to support efficient and stable storage as
well as efficient episode retrieval. Our approach takes
advantage of the fact that few items in working memory
change from episode to episode so it stores only the
changes between successive episodes (Derbinsky & Laird,
2009).

5.2.2. Episode dynamics: do the episodes in the store change

over time?
Once an episode is stored, it is possible that it could

change over time. For example, episodes could be forgot-
ten to minimize storage and some process could analyze
existing episodes, attempting to detect commonalities and
generalizations. In our implementation, the episodes do
not change over time, though the benefits of this have been
discussed in (Nuxoll, Tecuci, Ho, & Wang, 2010).

5.3. Retrieval

An agent uses episodic memory by retrieving an episode
from long-term memory and then using the contents to
influence decision making. Answers to the three questions
below define the structure of our approach to retrieval.

5.3.1. Retrieval initiation: when is an episode retrieved?
Is retrieval initiated deliberately by the agent or can the

retrieval occur spontaneously? In our implementation,
retrieval is deliberate and is triggered when the agent con-
structs a cue in working memory. Spontaneous retrieval
eliminates the ability of the agent to select a subset of the
state for a cue, which is critical for focusing the retrieval
on specific aspects of the current state. In addition, sponta-
neous retrieval puts a significant computational load on the
system to continuously find an episode that matches the
current state.

5.3.2. Cue determination: how is the memory cue specified?

The cue is a partial description of an episode that is
matched against the stored episodes. In our implementa-
tion, the agent constructs a cue in a reserved area of work-
ing memory. For our implementation, we defined two
reserved areas in working memory, which are delineated
with dashed lines in Fig. 2. These are labeled “Cue” and
“Retrieved” in the figure.
When an agent attempts to retrieve an episode, it creates
a memory cue in the “Cue” area. This cue is typically a rel-
atively small set of features that the agent would like to find
in a previous episode. Fig. 5 depicts an example memory
cue for an agent that is attempting to remember the last
time it saw a red square to the north.

Our implementation also allows the agent to restrict the
retrieval based upon its temporal index. For example, the
agent can retrieve an episode that occurred sometime
before a given time or an agent can retrieve the episode that
occurred immediately following a given episode.

5.3.3. Selection – given a cue, which episode is retrieved?

Conceptually, the cue is compared to all of the stored
episodes, and the one with the best match score is retrieved,
unless the match score is below a threshold, in which case
no episode is retrieved and a failure reported. The actual
implementation takes advantage of many optimizations
to avoid an exhaustive comparison of cue to episodes (Der-
binsky & Laird, 2009). We have evaluated a variety of met-
rics for determining a match score. The most successful
implementation weights two factors: (a) the cardinality of
the match, which is the number elements that the cue and
memory have in common and (b) the activation level of
the working memory elements in the cue that match the
memory (Nuxoll & Laird, 2004).

5.3.4. Retrieval: how is a retrieved episode represented to the

agent?

In our implementation, the episode with the best match
score is reconstructed in the reserved area of working mem-
ory that is labeled “Retrieved” in Fig. 2 in the same format
in which it was in when first encoded. In addition, we add
meta-data about the retrieval: a unique temporal index
indicating when the memory was encoded and information
about the strength of the match between the retrieved
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memory and cue. This allows the agent to determine if the
match was perfect or partial.

As this episodic memory system was built, we used it to
implement a set of cognitive capabilities to explore the
value of a task-independent episodic memory system in a
cognitive architecture. The implementation evolved in par-
allel with the architecture as different design variations
were explored. The remainder of this paper focuses on
the cognitive capabilities and how they were implemented
using episodic memory.

6. Test environments

To explore the efficacy of this system and compare alter-
ative implementations, we created agents, encoded as
knowledge in Soar, to perform specific tasks set in two dif-
ferent environments. Given that task independence is a
goal for our implementation, it was essential to have multi-
ple tasks and, ideally, multiple environments. This section
describes the two environments we used for this research.

6.1. Eaters

The first domain is Eaters and a more complete depic-
tion of it is shown in Fig. 6. An Eater is an agent in a
16 � 16 grid world. Each cell in the grid is either empty
or contains one of three items: a wall, normal food worth
5 points, or bonus food worth 10 points. The Eater is able
to move in each of the four cardinal directions unless there
is a wall in its way. Each time it moves into a cell contain-
ing food, it automatically eats the food and receives the
associated points. When an Eater leaves a cell, the cell
becomes empty. The Eater’s goal is to get the highest score
it can, as fast as it can. The Eater’s sensory input includes
the contents of nearby cells and its current score. Fig. 6
Fig. 6. The Eaters
contains an image of the Eaters playing board on the left
as well as a graphical depiction of the input available to
an Eater on the right.

Although this domain is simple, the perceptual features
are repeated over and over again in varying patterns. This
is, in effect, a hostile environment for an episodic memory
agent because all the agent’s episodic memories are similar
but with small, significant differences. In addition, the sim-
plicity of the environment and relatively fast pace of the
task requires that many episodic memories be recorded,
making it easy to quickly gather performance data.

6.2. TankSoar

TankSoar is a two-dimensional, tile-based implementa-
tion of the computer game genre known as a “first person
shooter.” The agent is a tank moving in a two-dimensional,
tile-based maze. Fig. 7 shows a typical TankSoar map.

A tank can rotate in place to the left or right as well as
move north, south, east or west. A tank that moves in a
direction perpendicular to its bearing is effectively taking
a side-step. A tank can also fire a missile forward that will
damage an enemy tank if it hits it. A tank can also turn on
and off its radar to better sense the world around it at the
expense of energy. The radar’s range can be set by the
agent. A tank also has shields it can turn on to protect it
against missiles, at the expense of energy. The agent can
issue multiple simultaneous commands (e.g., move back-
wards and fire a missile), with the exception that it cannot
move and turn at the same time. Many actions have
parameters, so that there are between 200 and 700 unique
actions available to the agent at any one time.

A tank has three resources. A tank’s energy is used to
power its radar and shields. An energy charger is placed
randomly on the map at the beginning of the game that
environment.



Fig. 7. The TankSoar environment.
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the tank can use to recharge its energy. If a tank’s health

goes to zero, the tank is destroyed and then respawned at
a random location on the map. Being hit with a missile low-
ers a ‘tank’s health. A health charger is placed randomly on
the map at the beginning of the game that the tank can use
to recharge its health. In order to fire, a tank must have
missiles, which randomly spawn on the map during the
game.

Success in the TankSoar domain is based on a score.
Points are awarded for hitting other tanks with missiles
and additional points are awarded if the enemy tank is
destroyed.

TankSoar is more complex than Eaters. It is a dynamic
environment where the tank has multiple actions, multiple
sensors, and multiple opponents. It requires the agent not
only be skilled in tactical combat, but also skilled at
resource management and navigation. As a result, this
environment allows us to test multiple cognitive
capabilities.

7. Cognitive capabilities enabled by episodic memory

Each of the following sections presents an experiment in
which we evaluate whether the inclusion of episodic mem-
ory in a cognitive architecture is sufficient to support the
cognitive capabilities that we outlined earlier. The purpose
of these experiments is to demonstrate that each cognitive
capability can manifest with the aid of episodic memory.
The data we present are not sufficient to prove that epi-
sodic memory supports the cognitive capability in the gen-
eral case, but our implementations of the capabilities use
general task-independent knowledge, so that there are no
pre-existing barriers to general use of the capabilities. We
also do not claim that episodic memory is the sole method
for achieving these capabilities; however, in most cases, effi-
cient access to a memory of prior situations is required, and
episodic memory provides the necessary functionality and
can be used for all of these capabilities. By realizing these
cognitive capabilities with a task independent episodic
memory we lay a foundation for future investigations into
the generality of episodic memory’s support for these cog-
nitive capabilities.

For each cognitive capability, we describe a specific
task where that the use of episodic memory supports
the cognitive capability and in turn improves an agent’s
task performance. For each task, we present and discuss
the results from this investigation, as well as any lessons
learned.

7.1. Action modeling

Action modeling involves having the ability to predict
how the environment will change when a given action is
performed. This is valuable because it allows an agent to
internally simulate alternative actions before committing
to a specific one, so that it is essentially performing a
look-ahead search. An agent can predict changes by using
episodic memory to retrieve a previous experience where
the agent attempted to apply the same action to a similar
situation. To explore this cognitive capability, we created
an Eaters agent that uses the following algorithm, which
is illustrated in Fig. 8:

1. The agent’s current state includes its current sensing and
its current score. The state also contains elements related
to the agent’s reasoning. This state is represented by the
box labeled (A) in the figure.

2. In any given state, the agent can move in at least two
and as many as four different directions: north, south,
east, or west. The agent determines which directions
are available and proposes an action to move in each
available direction. In the figure, the agent creates
actions to move east, north or south. It is blocked by
a wall to the west.

3. To decide which direction to move next, the agent eval-
uates each action using steps 4–7.

4. First, the agent creates an episodic memory cue that
contains the agent’s current state plus the action to be
evaluated (e.g., move north). In other words, the agent
is searching its episodic memory for a memory of taking
the to-be-evaluated action in a similar situation. In the
figure, the box labeled (B) represents the cue the agent
would create to evaluate the action “move north.”

5. Once the cue is created, the episodic memory system
retrieves the episode that best matches this cue, recreat-
ing it in working memory. An example of the retrieved
memory is labeled (C) in the figure. Note that this mem-
ory is not a perfect match but the recalled situation is
similar enough because the agent is moving north to a
cell that has the same content. In other situations, the
memory may differ such that the agent makes a bad
decision.
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6. The agent records the score that it had in that episode
and then requests the memory that occurred next in tem-
poral order. The episodic memory system responds to
this command and retrieves the immediate outcome of
that situation and action. In the figure, this second
retrieval is represented by the box labeled (D).

7. The agent then compares the scores from both memories
and uses the difference between these two scores as a
quantitative evaluation of the movement direction being
considered.

8. Once all available actions have been evaluated in this
manner, the agent selects the action with the highest
evaluation. Ties are resolved randomly.

Aside from the goal of maximizing its score, the only
knowledge given to this agent is an understanding of what
actions it can take in the world (i.e., movement in a cardi-
nal direction). The agent is not aware of the semantic
Fig. 9. Action modelin
meaning of those actions or the relative importance of
the different information that is available from its senses.

Fig. 9 depicts the accuracy of this agent’s action evalua-
tions as it gains more and more episodic memories. This
particular experiment was run five times. The results of
each run were averaged and a mean smoothing with a win-
dows size of ten was applied to achieve the final results that
are shown in the figure.

The x-axis is the number of predictions that the agent
has made so far and, thus, it is a measure of time. The y-
axis indicates the fraction of the last ten predictions that
were correct. For this experiment, a correct evaluation con-
sists of predicting the correct change in score that will
result for a given action. If the agent makes an incorrect
prediction or is unable to make a prediction at all due to
a failed episodic memory retrieval, then the outcome is con-
sidered a failure. The dotted line indicates the performance
of an agent that makes random decisions.
g results (Eaters).
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The agent begins with no episodic memories and so it is
unable to retrieve a relevant memory and initially has a
high failure rate. As the agent acts in the world, it builds
up memories and its ability to model its actions improves
rapidly, approaching perfect behavior. This demonstrates
that episodic memory has the potential for being the basis
for action modeling and is effective as such in Eaters. Addi-
tion examples of using episodic memory in Soar for action
modeling in other domains can be found in Laird, Xu, and
Wintermute (2010) and Xu and Laird (2010).

7.2. Decision-making based on past experiences

Action modeling allows an agent to predict the immedi-
ate outcome of an action. However, in many tasks, know-
ing the long-term outcome of an action is more critical to
success than predicting the next state. In such situations,
the cognitive capability of remembering the long-term suc-
cess or failure that followed a particular action in a partic-
ular situation can lead to better behavior on the part of the
agent. An agent can use its episodic memory to recall
sequences of past states and actions to predict the outcome
of a candidate action in the current state.

The TankSoar environment is well suited for demon-
strating this cognitive capability. The outcome of a partic-
ular action is usually not immediate and often dependent
upon future actions. For example, missiles fired by Tank-
Soar agents take time to travel and their ultimate effect
may be unknown for multiple time steps. As a second
example, the decision to attack with low health and few
missiles will almost certainly lead to disaster but that out-
come may not occur immediately. As a result, success in
the TankSoar domain requires the ability to predict the
long-term success or failure that is likely to result from a
particular action.

7.2.1. Heuristic control agent

As a basis for comparison, we started with an existing
hand-coded agent for the TankSoar domain that is a com-
Fig. 10. An episodic mem
petent player in that domain. This agent uses heuristics to
select between four “modes” of action:

� Attack: Pursue and fire missiles at a visible enemy.
� Chase: Search for an enemy that the agent cannot see

but can detect via other sensors.
� Retreat: This subgoal is selected when the agent detects

a nearby enemy and does not have sufficient resources to
attack.
� Wander: This subgoal is selected when the agent does

not detect a nearby enemy.

7.2.2. An episodic learning TankSoar agent
To demonstrate the target cognitive capability, we cre-

ated an episodic memory agent by further modifying the
control agent. We removed the control agent’s logic for
selecting individual actions in Attack “mode.” We replaced
this logic with productions for selecting actions based upon
episodic memory retrievals. This algorithm has the follow-
ing steps and is illustrated by Fig. 10:

1. The agent first determines which actions are available
based upon its current state. Certain actions may not
be applicable because of the presence of obstacles or a
lack of resources. In the figure, the box labeled (A) rep-
resents the agent’s current state and the arrows emerging
from the figure represent a list of possible actions. The
agent uses episodic memory to evaluate each possible
action as follows:

2. First, the agent creates an episodic memory cue that
contains heuristically selected portions of the agent’s
current state plus the action to be evaluated. In other
words, the agent is trying to retrieve an episode wherein
it took the same action in a similar situation. In the fig-
ure, an example of the memory cue is represented by the
box labeled (B).
ory TankSoar agent.
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3. In the figure, the retrieved episodic retrieval is labeled
(C). This episode is not an exact match to the cue, but
it is the closest match that is available. Therefore, deci-
sions based upon this retrieval may not be optimal.

4. The agent records the score that it had in that episode.
Then, through repeated uses of a “next” command,
the agent retrieves the sequence of subsequent episodes
that occurred. It retrieves up to ten memories stopping
if one of the following two events occurred in the most
recently retrieved episode: (a) one of the two agents is
destroyed or (b) the game ends.

5. The agent uses the overall change in score between the
first and last retrieved episode as a quantitative evalua-
tion of the action being considered. A discount factor
is used such that actions that are more recent receive
more credit for a particular outcome.

6. Once all the actions are evaluated, the agent selects the
action with the highest evaluation. Ties are resolved
randomly.

7.2.3. Results
Fig. 11 shows the episodic memory agent’s performance

against the control agent. The x-axis represents successive
games. The agent retained its episodic memories from game
to game and so had a larger episodic store at each succes-
sive game. The y-axis measures the agent’s margin of vic-
tory: the control agent’s score subtracted from the
episodic memory agent’s score. Thus, a negative margin
of victory indicates a loss. The results depicted here are
the average of ten repetitions of the same experiment.
The error bars in the figure represent the range of 95%
confidence.

As the graph shows, the agent’s initial performance is
poor but, through experience, the agent learns to outper-
form the hand-coded control agent by predicting the
long-term outcome of its actions. By analyzing the agent’s
behavior, we identified three tactics that emerged that had
a significant impact on its performance. First, the agent
learned to dodge short-range enemy missile attacks before
they hit. Second, the agent learned to back away from an
Fig. 11. Subsequent results with learn
enemy while firing its missiles. This delayed the impact of
enemy missiles and opened up future opportunities to sub-
sequently dodge. Finally, the agent learned to move out of
the enemy’s sight when it was in a tactically unfavorable
situation.

All three of these learned behaviors stemmed from the
fact that reliable long-term results occurred when the agent
took the same action in many similar states. In situations
where the outcome of an action was less reliable, the
agent’s behavior was more variable. Given these observa-
tions, we expect that improvements in behavior in other
domains would rely upon consistent experiences in terms
of success and failure.

7.3. Retroactive learning

Retroactive learning is the ability to relive an experience
when more resources are available in order to learn things
from those experiences that could not be learned when they
occurred. For example, an agent might gain new knowl-
edge that would have improved the way it learned in a pre-
vious experience. Alternatively, an agent may not have
time to apply a complex learning algorithm during an expe-
rience but can relive the experience in order to learn from it
when more time is available. An agent with an episodic
memory can review its memories to relive its past for this
purpose.

We demonstrate this cognitive capability in the Eaters
domain using the following high-level algorithm:

1. The agent acts randomly for a fixed period of time gath-
ering episodic memories.

2. After this time, the agent stops and retrieves memories
by constructing cues consisting of the agent in all possi-
ble combinations of neighboring cells.

3. Based upon its retrievals, the agent used Soar’s existing
rule-learning mechanism (Laird, Rosenbloom, & New-
ell, 1986) to create new productions that dictate which
action to take based upon the contents of neighboring
cells.
ing from past success and failure.
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4. After this period of reflection, the agent resumes its
movement through the maze using its new knowledge.

Fig. 12 depicts the performance of this retroactive learn-
ing agent in the Eaters environment during step 4. The y-
axis measures the fraction of the last 10 actions that were
correct while the x-axis represents successive actions in
the world. The data is an average of five runs of the agent.
The dashed line indicates the expected performance of an
agent that selects randomly among available actions.
Before retroactive learning was applied, the agent per-
formed at this level.

This graph indicates that the retroactive Eater was able
to learn near-ideal behavior via retroactive learning. The
situations where the agent’s behavior was imperfect after
retroactive learning were due to encountering novel situa-
tions that had no analog in the episodic store. An agent
with a sufficiently broad experience would have learned
the correct action for each situation. More generally, we
would expect the agent to perform similarly at any task
that has a relatively small number of states and a consistent
result from each action taken in each state.

7.4. Boosting other learning mechanisms

Learning mechanisms can be categorized into “lazy”
and “eager” learners. An eager learner will distill informa-
tion immediately into knowledge that can be used to select
future action. A lazy learner will collect experiences but not
learn from them until they are relevant to selecting an
action in a particular situation. The potential exists for
the knowledge gathered by a lazy learner to become input
for an eager learner. The lazy learner still delays learning
until it is needed, but uses an eager learning mechanism
to learn from its knowledge. Thus, in future situations,
the eagerly learned knowledge can be applied without
delay.

Episodic learning is a form of lazy learning. The epi-
sodes stored in the memory are raw knowledge that is
not used to make decisions until the agent needs them.
When learning takes place using the knowledge in this
episodic store, an eager learner can be applied to
improve the speed at which an agent arrives at future
decisions.

To demonstrate an episodic memory system’s ability to
boost another learning mechanism we combined our imple-
mentation of episodic memory with Soar’s built-in learning
mechanism: chunking (Laird et al., 1986). Chunking allows
a Soar agent to cache deliberate processing and turn it into
reactive processing. As a result, once an agent has made a
decision, it will make the same decision when the same cir-
cumstances arise in the future.

We modified an agent for the Eaters domain to using
chunking to store the results of decisions made with epi-
sodic memory. In other words, these chunks compile the
processing that generated the episodic memory retrievals
so that the agent can skip these retrievals in the future.
Since the episodic memory agent makes many decisions,
chunking eliminates the number of episodic retrievals over
time and, as a result, allows the agent to eat faster.

Fig. 13 depicts a comparison of an episodic memory
agent with chunking and the same agent without the
chunking mechanism. For comparison, the figure also
includes results from an agent that requires only one deci-
sion cycle per action and always takes the correct action. In
this case, we defined a correct action as ideal behavior for a
greedy agent. The y-axis measures each agent’s score while
the x-axis represents successive Soar decision cycles instead
of successive actions as in previous results. This means that
the graph is weighing both the effectiveness of the agent’s
actions and the speed at which the agent makes decisions.
The data shown are an average of five runs of the respective
agents, which provide a statistically significant result.

As the figure depicts, the addition of chunking signifi-
cantly improves the agent’s performance. This improve-
ment in behavior results because both chunking and
episodic memory are present. To be effective in the general
case this technique relies upon decisions based upon the
episodic memory to be correct ones. A more stochastic
environment or a less certain situation can cause the eager
learner to learn incorrect knowledge from the episodic
store.



Fig. 13. Boosting other learning mechanisms results.

Fig. 14. Virtual sensors results.
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7.5. Virtual sensing

When an agent originally senses something, it may be
irrelevant to its current task. Then, at some future point,
that past sensing may become important. An agent with
episodic memory has a record of its past sensing embed-
ded in its recorded episodes. When necessary, the agent
can retrieve these episodes to relive or remember the
sensing.

To demonstrate this cognitive capability in the Tank-
Soar domain, we chose the task of locating the battery
used to recharge the agent’s energy supply. When the
tank’s energy supply runs low, the agent is effectively
blinded since it can no longer use its radar. While an
agent could deliberately construct a map while it has
energy, we wanted to demonstrate that an agent with an
episodic memory could construct a map by relying on
its episodic memory.

Our agent uses the following algorithm:

1. The agent moves forward or backward until it is
blocked.

2. If the agent already has knowledge of a path from this
position to the battery, then it turns to the direction
specified by that path and returns to step 1. For this
agent a “path” is a location (x, y coordinate) combined
with a direction (north, south, east or west). If the agent
does not know of a path to the battery from this loca-
tion, it proceeds to step 3.

3. The agent attempts to retrieve an episodic memory of
seeing the battery from this position. The cue for this
retrieval consists of the agent’s current location and
the perceptual elements that represent seeing the battery
on its radar. If the retrieval is unsuccessful, the agent
proceeds to step 4. If the retrieval is successful, the agent
records a path in this position and moves directly
toward the battery. It then resets to step 1. If the retrie-
val fails, it proceeds to step 4.

4. The agent attempts to retrieve an episodic memory of
being in its current position and seeing another location
for which it has already recorded a path to the battery.
If the retrieval is successful, it creates a new path in
working memory that directs the agent from this posi-
tion toward the origin of the existing path and resets
to step 1.

5. If step 4 fails, the agent moves in a random direction and
resets to step 1.

Over time, an agent using this algorithm constructs a set
of paths that direct it from any position in the maze to the
battery. The learned paths, while effective, are not necessar-
ily optimal.



A.M. Nuxoll, J.E. Laird / Cognitive Systems Research 17–18 (2012) 34–48 47
Fig. 14 depicts the results from this experiment. The y-
axis has a logarithmic scale and measures the number of
moves required to reach the battery. Thus, a lower score
is better in this figure. The x-axis represents subsequent
searches over time. For the first search, the agent has only
a few episodic memories. Over time, the agent learns more
paths and acquires more episodic memories.

As the figure depicts, the time required to find the bat-
tery diminishes as the agent acquires more episodic memo-
ries. Specifically, these data show that the agent is able to
find the target an order of magnitude faster than a random
search. These results demonstrate that it is possible for an
agent to use its episodic memory to virtually sense things in
the environment when it cannot actually see them. The
effectiveness of this approach in the general case relies upon
the agent being able to reconstruct the knowledge it desires
from the given episodes. Decisions about the content of
episodic memories or even the structure of how they are
stored could prevent effective virtual sensing in other
environments.

8. Conclusions and future work

In this paper, we presented a broad picture of the chal-
lenges and benefits of providing an episodic memory to an
intelligent agent. We then cataloged some of the cognitive
capabilities episodic memory might be able to support in
an agent. Next, we described an implementation of a gen-
eral-purpose episodic memory for the Soar architecture.
Finally, we presented the results from using our episodic
memory architecture’s ability to facilitate these cognitive
capabilities. By investigating these capabilities and dem-
onstrating the possibility of supporting them in an artifi-
cially intelligent agent, we have established the
possibility that a single, general memory system can pro-
vide them.

This research presents demonstrations of five cognitive
capabilities: virtual sensing, action modeling, decision-
making based on past experiences, retroactive learning
and boosting other learning mechanisms. In addition to
those cognitive capabilities, we have identified the follow-
ing additional cognitive capabilities that intuitively appear
to require an episodic memory. Given our goal to create a
comprehensive episodic memory, our future work will
focus on demonstrating these additional capabilities with
our system.

� Noticing significant input: One challenge for an agent is
determining which aspects of its current situation are
most important, with changes to the environment being
an important indicator of relevance. Episodic memory
allows an agent to detect changes by comparing the cur-
rent situation to prior memories.
� Detecting repetition: Given the limited memory of most

AI agents, it is difficult for them to detect when they
repeat the same sequence of actions without making
any progress on their current task. Episodic memory
provides the necessary memory to detect when the same
situation is encountered, or the same action is tried
repeatedly.
� Environment modeling: In many domains, the environ-

ment has its own dynamics (e.g., Sunset has been around
6:30 pm lately.). An episodic memory provides a record
of these changes and, thus, allows the agent to predict
them in similar situations in the future.
� Managing long term goals: An agent with multiple goals

must often switch between them because of environmen-
tal demands and opportunities. This requires that the
agent be able to record the progress it has made for a
given goal and restart or recover its progress. Further-
more, a goal must sometimes be suspended for an indef-
inite period of time. An agent can create a prospective
episodic memory (Kliegel et al., 2007), i.e., it can
remember to reinstantiate a suspended goal in response
to a future expected event. To schedule these goals, an
agent needs to recall goals it has suspended and remem-
ber the progress it has made toward each one.
� Sense of identity: An agent with a sense of identity

potentially gains a greater ability to recognize its own
behavior and analyze it compared to the behavior of
other agents. For humans, one’s sense of identity is
rooted in memories of past experiences, which indicates
that episodic memory has an important role to play in
this capability.
� Reanalysis given new knowledge: When a learning agent

receives new knowledge about its environment, infer-
ences and behavior it has learned in the past may no
longer be valid. An episodic memory allows an agent
to review its experiences that relate to the new knowl-
edge and change its behavior accordingly.
� Explaining behavior: The ability to remember what you

did in the past allows you to explain your actions to oth-
ers and allow them to instruct you or you to instruct
them (e.g., Why did you go left instead of right?). An
agent can use its episodic memory to recall the situation
in question as well as the decisions it made in that
situation.

We assess the strengths and weaknesses of our approach
to creating a task independent episodic memory as follows.

Integrating our memory system into a cognitive archi-
tecture means any agent constructed with that architecture
automatically gains the capabilities granted by that epi-
sodic memory. Furthermore, the episodic memory operates
within the restrictions defined by a body of existing
research aimed at creating general intelligence.

By carefully examining the design decisions that were
made in constructing our episodic memory system, we
implicitly define a set of possible, alternative implementa-
tions. This allows us to methodically compare specific
implementations and select the ones that are most effective.
However, this space of possible implementations is by no
means complete. Design decisions that we overlooked will
hide portions of the space from our investigation.
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By defining, in advance, a set of cognitive capabilities
that could be facilitated by an episodic memory, we pro-
vide a metric for measuring the quality of an episodic mem-
ory architecture. These capabilities also provide a clear
direction for future research. However, due to their intro-
spective nature, any set of cognitive capabilities we define
is inherently imperfect and likely incomplete. Furthermore,
the qualitative nature of some of these cognitive capabili-
ties makes them difficult to measure.

Finally, by building a complete episodic memory system
and refining it we move expediently to a system that can be
used for various research tasks. As a result, we rapidly gain
experience and insight about the abilities and limitations of
episodic memory. However, by committing to a single
approach it is more difficult to gain perspective on the best
method for building an episodic memory architecture.
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