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1. Introduction
Many intellectual disciplines contribute to the field of cognitive science:  psychology,

linguistics, anthropology, and artificial intelligence, to name just a few. Cognitive science itself

originated in the desire to integrate expertise in these traditionally separate disciplines in order to

advance our insight into cognitive phenomena — phenomena like problem solving, decision

making, language, memory, and learning. Each discipline has a history of asking certain types of

questions and accepting certain types of answers. And that, according to Allen Newell, a founder

of the field of artificial intelligence, is both an advantage and a problem.

The advantage of having individual disciplines contribute to a study of cognition is that each

provides expertise concerning the questions that have been at the focus of its inquiry. Expertise

comes in two packages:  descriptions of regularities in behavior, and theories that try to explain

those regularities. For example, the field of psycholinguistics has been responsible for

documenting a regularity called the garden path phenomenonwhich contrasts sentences like (a)

that are very easy for people to understand, with sentences like (b), that are so difficult that most

people believe they are ungrammatical (they’re not, but their structure leads people to

misinterpret them):

(a) Without her contributions we failed.
(b) Without her contributions failed to come in.

In addition to providing examples of garden path sentences and experimental evidence

demonstrating that people find them nearly impossible to understand, psycholinguists have also

constructed theories of why they are problematic, (e.g. Gibson, 1990; Pritchett, 1988). Indeed,

psycholinguists are interested in phenomena like these because they help to constrain theories of

how humans understand language; such a theory should predict that people will have problems

on sentences like (b) but not on sentences like (a).

Psychology has also given us descriptions and theories of robust regularities, i.e. behaviors that

all people seem to exhibit. It has contributed regularities about motor behavior (e.g. Fitts’ Law

(Fitts, 1954), which predicts how long it will take a person to move a pointer from one place to a
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target location as a function of the distance to be traveled and the size of the target), about item

recognition (e.g. that the time to decide whether a test item was on a memorized list of items

increases linearly with the length of the list (Sternberg, 1975)), and about verbal learning (e.g.  if

an ordered list of items is memorized by repeated exposure, then the items at the ends of the list

are learned before the items in the middle of the list (Tulving, 1983)), among others. The other

disciplines mentioned above have also described and theorized about regularities in human

cognition. How can the expert contributions of all these fields be a problem?

The problem arises not because of the regularities, but because of the theories.  Each individual

discipline really contributes what Newell calledmicrotheories— small pieces of the big picture

developed without the constraint of having to fit in with all the other pieces. It is true that the

structures and mechanisms that underlie any particular regularity need not underlie every other

regularity. But they must at least be compatible with the structures and mechanisms underlying

those other regularities; after all, the regularities we observe in human cognition are all produced

by a single system, the mind. If we think about cognition as a big picture, then a microtheory is a

way of cutting a portion of that picture into a jigsaw puzzle. Each theory may cut up its own

portion, even a portion that overlaps with another theory’s, in a different way.  So, when each

discipline throws its set of pieces out on the table, how do we know that there is any set of pieces

that will allow us to recover the big picture? The only way, Newell argues, is to go ahead and try

to put the whole picture together, to try to buildunified theories of cognition(UTCs) (Newell,

1990). So, around 1980, Newell and two of his students (the second and third authors of this

chapter) began working on Soar, a candidate UTC.

As we said above, each of the disciplines that contributes to cognitive science has a history of

asking certain types of questions and accepting certain kinds of answers.  This is just another

way of saying disciplines differ as to what constitutes a theory. For some, a theory is a set of

equations, for others it is a computer program, for still others it is a written narrative that makes

reference to some objects and ideas that are new in the context of other objects and ideas that are

generally accepted. Although the form may differ, the purpose a theory serves — to answer

questions — does not.  Like Newell, our backgrounds are in both artificial intelligence and

psychology. For that reason, the form of theory we are particularly interested in is mechanistic,

that is, a theory as an account of underlying mechanisms and structures.  Moreover, because

artificial intelligence has its roots in computer science, we prefer to state our theory both
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narratively and as a working computer program. So, for us at least, working on a unified theory

of cognition means trying to find a set of computationally-realizable mechanisms and structures

that can answer all the questions we might want to ask about cognitive behavior. A key piece of

the puzzle, we believe, lies in the idea of architecture.

2. The idea of architecture
The idea of architecture is not new. In working with computers, we often describe and

compare hardware architectures: the set of choices the manufacturer makes for a particular

computer’s memory size, commands, processor chip, etc. As a trip to any computer store will

demonstrate, many hardware configurations are possible. Differences among hardware

architectures reflect, in part, designs that are intended to be optimal under different assumptions

about the software that architecture will process. Thus, once the many decisions about the

hardware components and how they interact are made, the resulting architecture can be evaluated

(or compared to that of another machine) only by considering how well it processes software. In

other words, asking ‘‘Does machine M run applications A and B efficiently?’’ is a more

appropriate question than ‘‘Does machine M work well?’’

Just as we talk about how a particular hardware architecture processes software applications,

we can also talk about how a particular software application processes a set of high-level tasks

(see Figure 2-1).  That is, we can think of a software application as also having an architecture.

If we want to create documents or organize spreadsheets (two common sets of high-level tasks),

we can choose among word-processing or spreadsheet applications.  As in the hardware

example, there are many possible application programs, with different programs designed to be

optimal under different assumptions about the tasks.  Which particular application architecture

we choose dictates which subtasks will be easy and efficient. If, for example, our set of high-

level tasks is writing the chapters in a calculus book, we are likely to choose a word-processing

program that has functions and commands for formatting mathematical equations. If we are

simply interested in writing letters, those functions are not important.

There are two common threads that underlie these examples of architecture.  The first is the

idea that for any level of a complex system, we can make a distinction between the fixed set of

mechanisms and structures of the architecture itself, and the content those architectural

mechanisms and structures process. So, it is fixed hardware that processes software content at
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Figure 2-1: Levels of processing. The middle level can be viewed as both architecture for the
level above and content for the level below. As an architecture WordPerfectTM offers a fixed set
of methods for composing lots of different documents; as content, it is just one of many word-
processing programs you could run on a Macintosh.

one level, and fixed application mechanisms that process high-level task content at the next.

Another way of viewing this relationship is to note that an architecture by itself does nothing; it

requires content to produce behavior. Because we’ll have occasion to revisit this point

periodically, it’s worth being very clear:

BEHAVIOR = ARCHITECTURE x CONTENT

The second common thread running through the examples is that any particular architecture

reflects assumptions on the part of the designer about characteristics of the content the

architecture will process.  There are, for example, many possible hardware architectures that

process the same software, but machines with parallel processors will execute some software

much more quickly than serial machines. Similarly, many applications will execute the same

high-level task, but some provide single commands that achieve whole subtasks, while others

require the user to construct sequences of commands to gain the same effect.

In general, then, the idea of architecture is useful because it allows us to factor out some

common aspects of the wide array of behaviors that characterize the content. A particular

architecture, that is, a particular fixed set of mechanisms and structures, stands as a theory of

what is common among much of the behavior at the level above it.1 Using this idea, we can

1The view of architecture as a theory of what is common across cognitive behaviors can be interpreted narrowly
or broadly. In a modular architecture, for example, what is common to language might not be what is common to
problem solving; each module would have its own architecture, its own factoring of what is common to the
behaviors of that module. Our own approach, however, is to look for a minimal set of architectural components that
is, as much as possible, common to all cognitive behavior. Thus, we view commonality broadly, both in our research
and in this chapter.
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define acognitive architectureas a theory of the fixed mechanisms and structures that underlie

human cognition.  Factoring out what is common across cognitive behaviors, across the

phenomena explained by microtheories, seems to us to be a significant step toward producing a

unified theory of cognition. Thus, for most of the remainder of this chapter we will concentrate

on this aspect of Soar, i.e. Soar as a cognitive architecture.  As an example of a cognitive

architecture, Soar is one theory of what is common to the wide array of behaviors we think of as

intelligent. It is not the only such theory (see, e.g., Anderson, 1993; Kieras and Meyer 1994), but

it is the one we will explore in detail.

In the sections that follow, we motivate the different structures and mechanisms of the Soar

architecture by exploring its role in one concrete example of intelligent behavior. Because we are

interested in a computationally-realizable theory, our exploration takes the form of constructing a

computational model. To construct a model of behavior in Soar we must first understand what

aspects of the behavior the architecture will support directly (Section 3), and lay the groundwork

for tying the architecture to our sample content (Section 4). Then, piece by piece, we construct

our model, introducing each architectural structure and mechanism in response to questions that

arise from the behavior we are trying to capture (Sections 5 through 9). In Section 10 we step

back and reflect on the architecture as a whole. Although we examine only one architecture and

only one model based on that architecture, our broader goal is to provide both an appreciation for

the power of the idea of cognitive architecture, and the tools to understand other architectures.

Finally, in Section 11, we reflect briefly on where Soar stands as a candidate UTC.

3. What cognitive behaviors have in common
To understand how any computational architecture works, we need to use it to model some

behavior (remember, the architecture alone doesn’t do anything).  What sorts of behavior should

we model with Soar? A cognitive architecture must help produce cognitive behavior. Reading

certainly requires cognitive ability.  So does solving equations, cooking dinner, driving a car,

telling a joke, or playing baseball. In fact, most of our everyday behavior seems to require some

degree of thinking to mediate our perceptions and actions.  Because every architecture is a theory

about what is common to the content it processes, Soar is a theory of what cognitive behaviors

have in common. In particular, the Soar theory posits that cognitive behavior has at least the

following characteristics (Newell, 1990):
1. It is goal-oriented.Despite how it sometimes feels, we don’t stumble through life, acting
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in ways that are unrelated to our desires and intentions. If we want to cook dinner, we go
to an appropriate location, gather ingredients and implements, then chop, stir and season
until we’ve produced the desired result. We may have to learn new actions (braising
rather than frying) or the correct order for our actions (add liquids to solids, not the other
way around), but we do learn rather than simply act randomly.

2. It reflects a rich, complex, detailed environment.Although the ways in which we
perceive and act on the world are limited, the world we perceive and act on is not a
simple one. There are a huge number of objects, qualities of objects, actions, and so on,
any of which may be key to understanding how to achieve our goals. Think about what
features of the environment you respond to when driving some place new, following
directions you’ve been given. Somehow you recognize the real places in all their detail
from the simple descriptions you were given, and respond with gross and fine motor
actions that take you to just the right spot, although you have never been there before.

3. It requires a large amount of knowledge.Try to describe all the things you know about
how to solve equations. Some of them are obvious: get the variable on one side of the
equal sign, move constant terms by addition or subtraction and coefficients by
multiplication or division. But you also need to know how to do the multiplication and
addition, basic number facts, how to read and write numbers and letters, how to hold a
pencil and use an eraser, what to do if your pencil breaks or the room gets dark, etc.

4. It requires the use of symbols and abstractions.Let’s go back to cooking dinner. In
front of you sits a ten-pound turkey, something you have eaten but never cooked before.
How do you know it’s a turkey? You have seen a turkey before but neverthis turkey and
perhaps not even an uncooked one.  Somehow some of the knowledge you have can be
elicited by something other than your perceptions in all their detail. We’ll call that thing a
symbol (or set of symbols). Because we represent the world internally using symbols, we
can create abstractions.  You can’t stopseeingthis turkey, but you canthink about it as
just a turkey. You can even continue to think about it if you decide to leave it in the
kitchen and go out for dinner.

5. It is flexible, and a function of the environment.Driving to school along your usual
route, you see a traffic jam ahead, so you turn the corner in order to go around it. Driving
down a quiet street, a ball bounces in front of the car. While stepping on the brakes, you
glance quickly to the sidewalk in the direction the ball came from, looking for a child
who might run after the ball. As these examples show, human cognition isn’t just a matter
of thinking ahead, it’s also a matter of thinking in step with the world.

6. It requires learning from the environment and experience.We’re not born knowing
how to tell a joke, solve equations, play baseball, or cook dinner. Yet, most of us become
proficient (and some of us expert) at one or more of these activities and thousands of
others. Indeed, perhaps the most remarkable thing about people is how many things they
learn to do given how little they seem to be born knowing how to do.

There are many other properties that underlie our cognitive capabilities (for example, the

quality of self-awareness), and there are other ways to interpret the same behaviors we have

assigned to the categories above.  What does it mean for Soar as an architecture to reflect this

particular view of what is common to cognition? It means that the mechanisms and structures we

put into Soar will make this view easy to implement, and other views more difficult. After we
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have constructed our model within this architecture, it will be easy to describe the model’s

behavior as goal-oriented because the architecture supports that view directly. Any theory

establishes a way of looking at a problem.  If the theory is useful, it allows us to model the

behaviors we want to model in a way that seems easy and natural.

Having identified some common properties of cognitive behavior that Soar must support, we

should be able to motivate the specific structures and mechanisms of the architecture by tying

them back to these properties. Keep in mind our equation:

BEHAVIOR = ARCHITECTURE x CONTENT

It’s clear that if we want to see how the architecture contributes to behavior then we need to

explore the architecture in terms of some particular content. For example, describing how Soar

supports the underlying characteristic of being goal-oriented won’t by itself produce behavior;

we have to be goal-orientedaboutsomething. Let’s consider a simple scenario from baseball2:
Joe Rookie is a hypothetical pitcher with the Pittsburgh Pirates, about to throw the first pitch

of his major league career. He chooses to throw a curve ball. The batter, Sam Pro, hits the ball,
but Joe is able to catch it after it bounces once between home plate and the pitching mound.
Then, he quickly turns and throws the batter out at first base.

Figure 3-1 shows the participants in our scenario in their usual locations and roles, and the path

of the ball from Joe’s pitch to the out at first. Typical rhetoric about baseball players aside, it is

clear that Joe displays many of the characteristics of intelligent behavior in our simple scenario.

In particular, he:
1. Behaves in a goal-oriented manner.Joe’s overriding goal is to win the game. In service

of that goal, Joe adopts a number ofsubgoals— for example, getting the batter out,
striking the batter out with a curve ball, and when that fails, throwing the batter out at
first.

2. Operates in a rich, complex, detailed environment.As Figure 3-1 shows, there are
many relevant aspects of Joe’s environment he must remain aware of throughout the
scenario: the positions and movement of the batter and the other members of his team,
the number of balls and strikes, the sound of the bat striking the ball, the angle his body
makes with the first baseman as he turns to throw, etc.

2This chapter is based on the introductory lecture of a tutorial on Soar given to incoming graduate students at
Carnegie Mellon University in the fall of 1993. The playoffs and approaching World Series were often in the news,
creating a timely backdrop for the example.  For those unfamiliar with baseball, it is a contest between opposing
sides who try to score the most runs within the fixed time frame of nine innings.  To score a run a batter stands at
home plate and tries to hit a ball thrown by the opposing team’s pitcher in such a way that he and his teammates will
advance sequentially around the three bases and back to home plate (see Figure 3-1). There are a number of ways
the team in the field may halt the batter’s progress, resulting in an out.  An inning is over when each side has been
both at bat and in the field for the duration of three outs. For a complete description of the game, see The
Commissioner of Baseball, 1994.
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Figure 3-1: Joe’s curve ball is hit by the batter, caught by Joe on a  single hop and thrown to first
base.

3. Uses a large amount of knowledge.In deciding on his pitch, Joe probably draws on a
wealth of statistics about his own team, his own pitching record, and Sam Pro’s batting
record. We discuss Joe’s knowledge in more detail below.

4. Behaves flexibly as a function of the environment.In choosing his pitch, Joe responds
to his own perceptions of the environment: Is it windy?  Is the batter left- or right-
handed? etc. Although not included in our scenario, he may also have to consider the
catcher’s suggestions.  When the ball is hit, Joe must show flexibility again, changing his
subgoal to respond to the new situation.

5. Uses symbols and abstractions.Since Joe has never played this particular game (or
even in this league) before, he can draw on his previous experience only by abstracting
away from this day and place.

6. Learns from the environment and experience.Learning is the acquisition of
knowledge that can change your future behavior.  If he’s going to stay in the major
leagues, Joe had better learn from this experience, and next time throw Sam a fast ball.

Just as the architecture is a theory about what is common to cognition, the content in any

particular model is a theory about the knowledge the agent has that contributes to the behavior.

For our model of Joe to act like a rookie pitcher, we will have to give it many different kinds of
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knowledge, some concrete examples of which are shown in Table 3-1.

K1: Knowledge of the objects in the game
e.g. baseball, infield, base line, inning, out, ball/strike count

K2: Knowledge of abstract events and particular episodes
e.g. how batters hit, how this guy batted last time he was up

K3: Knowledge of the rules of the game
e.g. number of outs, balk, infield fly

K4: Knowledge of objectives
e.g. get the batter out, throw strikes

K5: Knowledge of actions or methods for attaining objectives
e.g. use a curve ball, throw to first, walk batter

K6: Knowledge of when to choose actions or methods
e.g. if behind in the count, throw a fast ball

K7: Knowledge of the component physical actions
e.g. how to throw a curve ball, catch, run

Table 3-1: A small portion of the knowledge needed to model Joe Rookie.

Neither the architecture nor the content alone produce behavior. Before our model can throw

its first pitch we must find some way to process Joe’s knowledge in Soar. How can we express

the knowledge so that our model of Joe acts in a goal-oriented way?  To answer this question we

introduce the idea of behavior as movement through aproblem spacein the next section.

4. Behavior as movement through problem spaces
Standing on the mound in the hot sun, Joe has a difficult goal to achieve and many ways to

achieve it. To start, he must throw one of the many pitches in his repertoire. Once thrown, any of

these pitches might result in a strike, a ball, a single, double, triple, or a homerun, and so on.

Under some of these conditions Joe will have to pitch again to Sam Pro, under others he will face

a different batter. If he faces a different batter, Sam may be on base or not; each of the variations

in outcome is relevant to which pitch Joe chooses next. We can graphically represent the space

of possible actions for Joe, as he pursues his goal of getting Sam Pro out, as in Figure 4-1. The

text in the picture describes the situations that Joe might be in at different moments in time.  The

arrows represent both mental and physical actions Joe might take to change the situation, like

deciding on a pitch, throwing a pitch, and perceiving the result.

If we try to imagine (and draw)all the choices Joe might have to make during a game, given

all the circumstances under which they might arise, we are quickly overwhelmed.  Of course,

even though Joe is able to make a choice in any of the circumstances described, he makes only
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Figure 4-1: Looking at Joe’s behavior as a space of decisions made over time. From the initial
situation of holding the ball, Joe must decide what pitch to throw. On the basis of the outcome,
he will make his next choice, and so on.

one choice at a time while playing the actual game. In terms of Figure 4-1, Joe will actually

decide on and throw only one first pitch of the game, it will either be hit or not, and so on. Joe

must make his decisions with respect to the situation at the moment — based on that situation,

what is recalled about the past, and what can be anticipated about the future — but does so over

all the moments of his life.  What this means for our model of Joe is that it, too, must be able to

act based on the choices that make sense at the moment, but it must also be able to act under all

the moments that may arise.

Figure 4-1 is an example of viewing behavior as movement through aproblem space(Nilsson,

1971; Newell & Simon, 1972). The idea of problem spaces dates back to the earliest days of

artificial intelligence research and cognitive modeling using computers, and is one of the central

computational constructs in the Soar theory of cognition.  It may be hard to directly see problem

spaces in the brain when focusing on it as a mass of neurons, just as it may be hard to see this

book when using a microscope to examine the atoms out of which it is composed; however, the

theory states that problem spaces are structures at some higher level of organization of the

brain’s neurons, just as this book is a structure at some higher level of organization of a set of

atoms. For the purpose of building a model, the representation in Figure 4-1 is particularly
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useful because it supports two points of view:  a static view of Joe’s life, which we can use to

talk about all the possible actions he might take in a particular situation, and a dynamic view of

Joe’s life, which we can use to talk about the actual path his behavior moves him along.

The abstract form of a problem space is depicted graphically in Figure 4-2. The problem space

itself is represented by a triangle to symbolize the ever-expanding set of possibilities that could

unfold over time.  Some of these possibilities will be represented explicitly, as explained below,

while others are represented only implicitly, by ellipsis (...). The goal is represented by a circle at

the apex of the triangle. Notice how everything in the problem space in Figure 4-1 was pertinent

to Joe’s goal of getting Sam out. One of the fundamental ideas behind problem spaces is that

they partition knowledge in goal-relevant ways.

The situations described in text in Figure 4-1 are represented in the general case bystates

(squares in Figure 4-2). A state is described in terms of a vocabulary of features (in bold face)

and their possible values (in italics). (The value of a feature may itself be a set of features and

values, making possible the representation of a situation as richly interconnected sets of objects,

as we shall see below.) So we might represent the part of the situation in Figure 4-1 described by

the text ‘‘Sam Pro is at bat,’’ by a pair of features and values (e.g.batter name Sam Proand

batter status not out), and these features and values would be part of any state intended to

represent that part of the situation. In our examples so far we have been using features, values,

and states to represent things in the observable situation. But there are always internal, non-

observable aspects of any situation as well (e.g.  Joe’s perceptions, or things Joe may need to

reason about that have no physical correlate, like batting average). The state is a representation

of all the aspects of the situation — internal and external — that the model may need to choose

its next action.

To model a particular behavior, there must be an initial description of the situation, orinitial

state(S0). There must also be a description that corresponds to the desiredgoal stateor states

(shaded squares), i.e. those features and values that indicate that the goal has been achieved. In

Figure 4-2, the goal states are exactly those in which featuref2 has valuev6, regardless of the

other features and their values. Iff2 is batter status andv6 is out, then the goal states in Figure

4-2 would correspond to our informal notion of Joe having achieved his goal of getting Sam Pro

out.
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Figure 4-2: Behavior through time represented as movement through a problem space. The
problem space is represented by a triangle to symbolize the ever-expanding set of possibilities
that could unfold over time. The goal is represented by a circle at the apex of the triangle.
Squares represent states, the features and values that reflect the internal and external situation.
Goal states, states in which features have values that indicate the goal has been achieved, are
shaded. Arrows represent operators that change or transform states. A state transformation may
correspond to internal behavior (conscious or unconscious) or external behavior (actions
observable in the world), or both. The states, features (bold face), and values  (italics) are
identified with arbitrary symbols, e.g. S1,f1 v2, for convenience.

Both internal behavior (conscious or unconscious mental actions) and external behavior

(actions observable in the world) correspond to moving along a path that leads from the initial

state to a goal state viaoperators (arrows). At every point in time, there is a single state

designated as thecurrent statebecause it represents the current situation.  Movement from the

current state to a new state occurs through the application of an operator to the current state; an

operator transforms the current state by changing some of its features and values.  The

application of an operator may cause only one feature value to change (e.g.  S0 to S1) or may

change multiple features and values (e.g. S3 to S30).

In essence, a problem space is defined by a particular set of states and operators, relative to a

goal. Of course, movement through a problem space could be entirely random. To keep

behavior goal-directed, the succession of operators that are applied to the state and the resulting

state transformations must be guided bythe principle of rationality: if an agent has knowledge
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that an operator application will lead to one of its goals then the agent will select that operator.

This may seem like a simple idea, but we will see that it pervades every aspect of the Soar

architecture.

We are now in a position to answer the question posed at the end of the previous section. How

can we express the different kinds of knowledge the model must have so that it acts in a goal-

oriented way?  The answer is: by representing the knowledge in terms of states and operators and

guiding the choice of which operator to apply by the principle of rationality.  Rewriting our

scenario in these terms, we say that Joe has the goal of getting the batter out in the state defined

by the start of the game. Of all the operators available for each state in the space, he should

choose the one that he thinks will transform the current state to a new state closer to the desired

goal state.

Describing the underlying idea of problem spaces puts us on the path to our own goal of

modeling Joe Rookie in Soar. Mapping knowledge into states and operators is the first step

toward tying the content of Joe’s world to the Soar architecture.  Not surprisingly, this first step

raises a new set of questions that we, as model builders, must answer: What knowledge becomes

part of the state and what knowledge becomes part of the operators? How do we avoid having

every operator available in every state? How do we know what an operator application will do?

How do we know when the goal has been achieved?  To answer these questions, the next section

introduces the first of our architectural structures, the goal context.

5. Tying the content to the architecture
Consider Table 3-1 again. The list incorporates many different kinds of knowledge that our

model must include: knowledge about things in the world (K1 and K2) and knowledge about

abstract ideas (K3 and K4), knowledge about physical actions (K7) and knowledge about mental

actions (K5), even knowledge about how to use the other kinds of knowledge (K6).  This content

is expressed in the familiar, everyday terms of thedomainof baseball. But the architecture of

cognition cannot be designed for baseball alone.  Because the architecture must support what is

common across many domains, its mechanisms must process a domain-independent level of

description. In particular, Soar’s architectural mechanisms process the four kinds of objects

introduced in the previous section: goals, problem spaces, states, and operators. A particular

instance of these four kinds of objects is organized into a structure called agoal context, which
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contains four ‘‘slots,’’ one for each of the objects.

Figure 5-1 presents a goal context for Joe Rookie graphically.  It shows that Joe has the goal

(circle) of getting the batter out.  He is trying to achieve that goal using the Pitch problem space

(triangle). At the moment, he is in a state (square) in which the batter, Sam Pro, is not out, and

he has selected the throw-curve operator (arrow) to apply to this state to produce a new state.

Problem space:

Operator: 

Goal: 

Pitch

get-batter-out

throw-curve

batter name
Current state:

not outbatter status
Sam Pro

...
outs

0strikes
0

balls 0

Figure 5-1: A goal context for Joe.

If we look at Table 3-1 and Figure 5-1 together, some simple guidelines for tying domain

content to the goal context emerge.  Roughly speaking, we use knowledge of objectives (K4) for

our goals and knowledge about actions (K5 and K7) to define our operators.  The domain

knowledge of the objects and people in the game (K1) is represented by the features and values

in the state.

Remember that a problem space is simply a set of possible states and operators that may occur

in trying to reach a goal. By organizing the domain knowledge in a Soar model into multiple

problem spaces, we limit the set of operators to be considered in searching for a goal’s desired

state. In other words, the knowledge of objectives also helps to answer the question, ‘‘How do

we avoid having every operator available in every state?’’ Because the model is always in a state

within a problem space, it will be limited to considering the operators available in that problem

space at that state. In the Pitch problem space the operators will be the various kinds of pitches

Joe can throw. So in the context of trying to get the batter out (the goal) by pitching (the problem

space), the model considers only pitch operators.  It does not consider, for example, operators for
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fielding or batting or doing laundry; it behaves in a goal-oriented way. Further limits to which

operators to consider come from content knowledge of when to choose actions or methods.  In

Table 3-1, this sort of knowledge (K6) enables the model to choose a curve ball based on

particular attributes of the state, such as whether Sam Pro is a left- or right-handed batter. (In

Section 7, we will consider what happens when the knowledge available to the model in a

problem space is inadequate to choose a single operator.)

Assume that the model of Joe has chosen to throw a curve ball; how do we know what that (or

any other) operator will do? There are really two answers to this question, each suggested by a

different source of knowledge. On the one hand, what the operator will do may be defined

completely by the execution of the operator in the external world. In our case, imagine our model

of Joe as a baseball-playing robot. If knowledge of physical actions is used (K7), the application

of the throw-curve operator can result in appropriate motor actions by the robot.  Once the motor

actions have been performed (and the results perceived), both the world and the model will be in

new states. On the other hand, what the operator will do may be defined by knowledge of

abstract events or particular episodes (K2).  Imagine that Figure 5-1 is a snapshot of the model’s

processing while it is evaluating what to do next. In this case, the application of the throw-curve

operator should not result in an action in the world.  Instead, the next state should depend on the

model’s knowledge about curve balls in general, or about what happens when Sam Pro is thrown

curve balls. Clearly, the outcome of applying the operator as a mental exercise is a state that may

or may not resemble the state that results from throwing the curve ball in the world. What is

important is not whether the operator application preserves some kind of truth relation between

the external world and its internal simulation.  What is important is that a single structure, the

goal context, allows us to model either behavior — acting or thinking about acting — as a

function of what kind of knowledge is brought to bear.

Imagine now that our model of Joe has thrown the ball, either in the world or in its head. How

do we know if the resulting state has achieved the goal of getting the batter out? In the domain of

baseball, determining that the current state is a desired state relies on knowledge of the rules of

the game (K3).

In this section we have seen how domain content can be tied to an architectural construct, the

goal context. The content-independent specification of goals, problem spaces, states and

operators is key to their usefulness.  If the architecture is going to support what is common
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across domains, its behavior can’t be limited by the structure or content of any one domain.

Although we have demonstrated how different kinds of knowledge map naturally to different

aspects of the goal context, we have left quite a few important details unspecified. In particular:

How should the knowledge in its general form be represented? How should it be represented

within a goal context?  What are the mechanisms for perceiving and acting on the external

world? And most important: What are the architectural processes for using knowledge to create

and change the goal context?

6. Memory, perception, action, and cognition
To make sense of our everyday experience and function in the world, we need to use our

knowledge about objects and actions in pursuit of our current goals. You know many things

about a cup but you use only some of that knowledge when you want a cup of coffee, and some

other part of it when you want a place to put pens and pencils. Moreover, once you have applied

some of that knowledge, a particular cup will be full of coffee or full of pens.  Your ability to

reason about other cups as pencil holders or coffee mugs will not have changed but there will be

something in your current situation that will have taken on a single role — your general

knowledge will have been tied to the particular instance of the cup in front of you.  This

dichotomy between general knowledge and specific applications of that knowledge is captured in

Soar by the existence of two different memory structures.  Knowledge that exists independent of

the current goal context is held in the architecture’s long-term memory(LTM). The situation

described by the particular current occurrence of some portion of that knowledge is held in

Soar’s working memory(WM). To say this a little more intuitively, it is useful to think about

LTM as containing what can be true in general (e.g., cups can hold coffee or pencils), and WM

containing what the model thinks is true in a particular situation (e.g., the cup in front of me

contains coffee).3

As we know from the previous section, behavior can occur only after we tie the content of the

domain to a goal context. We certainly want to put the content of the domain in long-term

memory, where it can be expressed in general terms, independent of any particular situation. The

3Strictly speaking, LTM can also contain particular situations, i.e. episodic memories like ‘‘the pencils in my
coffee cup yesterday.’’ We discuss this type of association in Section 8, although, for the moment, the simpler
characterization given above will suffice.  In addition, WM can also contain features and values that define general
rules (e.g.hint-for-tic-tac-toe take the center square first), though these must be interpreted by associations in LTM
to result in behavior.
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goal context, then, resides in working memory. In fact, the structure of working memory is

exactly the four slots of the goal context that hold the values for the current goal, problem space,

state, and operator, as well as the features and values that make up the content of the state (see

Figure 5-1). Knowledge moves from its general form in LTM to its specific form in WM by a

process calledthe decision cycle. Let’s consider each memory structure and process in turn.

We begin with long-term memory where knowledge is represented as associations. Table 6-1

shows some examples of associations needed for a model of Joe Rookie. The exact format of the

knowledge as it is given to Soar is unimportant; for expository purposes, we write the knowledge

as English-like if-then rules. Such a rule represents an association between a set of conditions,

expressed in terms of features and values and specified by the ‘‘if ’’ part of the rule, and a set of

actions, also described by features and values, in the ‘‘then’’ part.  As in Figure 5-1, when

describing information that is part of the state, we use boldface for features and italics for values.

Since working memory is just the goal context, Figure 5-1 serves as an example. We can use

this figure and Table 6-1 together to make some preliminary observations about the relationship

between LTM and WM.  First, note that the ‘‘if ’’ portion of each LTM association tests either a

perception or elements of the goal context in WM: the goal, problem space, state (and its

substructure of features and values), or operator.  If there is a match between the ‘‘if ’’ part of an

association and elements in WM, we say that the association has beentriggered.This, in turn,

causes the ‘‘then’’ portion to fire by either sending a message to the motor system (a7) or

suggesting changes to the goal context.  Thus, each matching association maps from current goal

context elements to new goal context elements.4 Second, note that there can be dependencies

between the associations.  For example, a2 will not match the current context until a1 has

matched and fired, and a4 will not match until a1 through a3 have matched and fired. These

dependencies are part of the semantics of the domain of baseball — you don’t choose a pitch

until you’ve decided to pitch to the batter and you don’t pitch to a batter if you aren’t the pitcher

on the mound. Soar doesn’t recognize the existence of these dependencies: it simply matches the

‘‘if ’’ portions and performs the ‘‘then’’ portions.  Because all the elements of the associations

are expressed in terms of perceptions, actions, and goal context elements, they are processed by

4We are using the wordmap in its mathematical sense, where it refers to a type of function. A simple function,
such as Y = f(X), specifies a single value of Y for each value of X. In contrast, a mapping function can return many
values. In this sense, the LTM associations in Soar are mapping functions because, given a particular set of WM
features and values, a matching LTM association can return many new features and values to WM.
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(a1) If I perceive I am at the mound

then suggest a goal to get the batter out

(a2) If there is a goal in WM to get the batter out

then suggest achieving it using the Pitch problem space with

an initial state havingballs 0 andstrikes 0

(a3) If using the Pitch problem space

and I perceive a new batter who is left/right handed

then addbatter not outandbatter left/right-handedto the state

(a4) If using the Pitch problem space and thebatter is not out

then suggest the throw-curve operator

(a5) If using the Pitch problem space and thebatter is not out

and thebatter is left-handed

then suggest the throw-fast-ball operator

(a6) If both throw-fast-ball and throw-curve are suggested

then consider throw-curve to be better than throw-fast-ball

(a7) If the throw-curve operator has been selected in the Pitch problem space

then send throw-curve to the motor system and addpitch thrownto the state

(a8) If using the Pitch problem space and thepitch wasthrownand I perceive a hit

then addpitch hit to the state

Table 6-1: Some of the associations in the model’s long-term memory. In the decision cycle,
patterns of percepts and state features and values in WM are matched to the ‘‘if ’’ portion of an
association in LTM, and changes to the WM state and motor actions are produced by the
associated ‘‘then’’ portion.

the architecture in a completely general, domain-independent way. Put slightly differently:  if

you can express a domain’s content in these terms, the architecture can use that content to

produce behavior.

Unlike the cognitive processes it represents, a model begins and ends its processing at arbitrary

points in time.  A human Joe Rookie does not suddenly find himself on the pitching mound with

no context to explain how he got there, but our model of Joe begins with no elements in working

memory. Working memory elements in Soar arise in one of two ways: through simulated
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perception or through associations that fire during the decision cycle.  The goal of getting the

batter out, for example, is established in working memory when association a1 fires because the

Soar model of Joe perceives that it is on the pitching mound. Modeling perception is a complex

topic which we will, for the most part, not address. What is important for our purposes here is

that the architecture provides a straightforward facility (the Perception/Motor Interface) for

introducing elements into working memory from the external environment via perception,

whether that perceptual input comes from a simple simulation program, the output from a video

camera, or feedback from a robot arm. Perception in Soar is an asynchronous process with

respect to cognition.  In other words, perceptual input enters working memory (as additional

feature-value information added to the state) irrespective of the decision cycle, which we will

describe next.

The decision cycle is the processing component that generates behavior out of the content that

resides in the long-term and working memories. The purpose of the decision cycle is to change

the value in one of the four slots of the goal context. Remember the problem space point of view

discussed in Section 4: goal-directed behavior corresponds to movement in a problem space from

the current state to a new state through the application of an operator to the current state.

Concretely, then, the purpose of the decision cycle is most often to change the value in the

operator slot of the goal context. To understand how the decision cycle works, let’s focus on how

the model chooses and throws the curve ball.  Figure 6-1(a) shows the state of working memory

after the decision cycles in which associations a1 and a2 fired, establishing the get-batter-out

goal, the Pitch problem space, and the initial state which contains the substructure for the count

(abbreviated as 0/0 forballs 0 andstrikes 0). The ellipsis in the state represents other working

memory elements resulting from perception.

A decision cycle is a fixed processing mechanism in the Soar architecture that does its work in

two phases:elaborationanddecision. During elaboration, the contents of working memory are

matched against the ‘‘if ’’ parts of the associations in long-term memory. All associations that

can fire do fire, in parallel, resulting in changes to the features and values of the state in addition

to suggestions, orpreferences, for changes in the context slots.  As a result of the working

memory changes, new associations may fire.  Elaboration continues in parallel waves of

association firings until no more associations fire.  Figure 6-1(b) shows the results of the

elaboration phase for our example. First, the appearance of a new batter in a particular
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(b) The elaboration phase of cycle 3
results in state changes  via a3, then
    operator proposals via a4-a6. 

(a) Decision cycles 1& 2: creation of goal,
problem space and initial state via a1&a2.

p2

 Pitch

get-
batter-out

Working 
Memory

0/0

at mound

Perception/Motor Interface

Long-term Memory

a1...a8

throw-
curve

Working 
Memory

0/0
bnl

get-
batter-out

Pitch

new batter

throw-
fast

>... ...

Perception/Motor Interface

Long-term Memory

a1...a8

 (c) The decision phase of cycle 3 resolves the
  preferences for operator proposals and selects 
     the throw-curve as the new value for  the 
                  operator context slot.

Working 
Memory

0/0
bnl

get-
batter-out

Pitch

... throw-
curve

Perception/Motor Interface

Long-term Memory

a1...a8

(d) The elaboration phase of decision 
cycle 4 results in the application of the 
    throw-curve operator via a7 and  
    subsequent state changes via a8.

Working 
Memory

0/0
bnl
hit

Pitch

get-
batter-out

throw curvehit

...
throw-
curve

Perception/Motor Interface

Long-term Memory

a1...a8

Figure 6-1: Selecting and throwing the curve ball. In the first wave of the elaboration phase,
the context in (a) triggers a3, adding information about the batter’s handedness to the  state. This
change then triggers associations a4 and a5 in the second wave, producing proposals for throw-
curve and throw-fast-ball. The operator proposals trigger a6 in the third wave, producing a
preference for throwing the curve ball. No more associations fire so  Soar enters the decision
phase (c). The result of the decision procedure is to select the throw-curve operator for the
operator slot of the goal context. The changes to the state that result from applying this operator
actually occur during the elaboration phase of the next  decision cycle (d).
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orientation to home plate causes association a3 to fire, augmenting the state with information

about the batter’s presence and handedness (bnl in the figure, which is shorthand forbatter not

out and batter left-handed). If we assume Sam Pro is left-handed, then in the next wave of

elaborations, associations a4 and a5 fire in parallel, suggesting both a curve ball and a fast ball as

pitches (dotted arrows). These suggestions cause a6 to fire in the next elaboration, augmenting

working memory with a preference for the curve ball (represented by the greater than sign over

the dotted arrows). Because no more of the associations in LTM fire, the elaboration phase is

complete.

At the end of the elaboration phase, two operators, throw-curve and throw-fast-ball have been

suggested as candidates for the operator slot in the context.  Why are changes to the context slots

phrased as suggestions or preferences?  To make sure all the knowledge available in the current

context is brought to bear before a decision is made. That is, a decision to change a context slot

should not be made until all the associations in LTM that match the current context have been

retrieved. Remember the principle of rationality: the model should use its knowledge to achieve

its goals. The introduction of preferences allows the architecture to collect all the available

evidence for potential changes to the context before actually producing any change. Thus,

quiescence in elaboration, i.e., the absence of any further firings of LTM associations, signals the

start of the decision phase. This is when the preferences added to working memory are evaluated

by a fixed architectural decision procedure.  The decision procedure is applied to the vocabulary

of preferences and context slots, independent of the semantics of the domain. In other words, the

decision procedure isn’t written in terms of throw-curve and throw-fast-ball; it’s written in terms

of operators and preferences among operators.  In our example, there are suggestions for two

operators and a ‘‘better’’ preference, suggested by association a6, that orders their desirability.

So, as shown in Figure 6-1(c) the outcome of the decision procedure is to choose the suggested

operator that is better: throw-curve.  Remember that the result of the decision cycle is the change

of a single context slot — either a new goal, a new problem space, a new state or a new operator

is selected.  So, the outcome of this decision cycle is the addition of the selected operator to the

context.

Of course, selection of the operator isn’t enough.  The operator must be applied to produce the

state transition that completes a move in the problem space. The application of the operator

occurs during the elaboration phase of the next decision cycle, as shown in Figure 6-1(d). The
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throw-curve operator in working memory causes association a7 to fire, producing a motor

command to be sent by the Perception/Motor Interface to the external environment. In turn, Sam

hits the curve ball, an event that is perceived by the model and encoded as an augmentation to

the state via association a8.

Given the limited knowledge we have put into long-term memory, Figure 6-1(d) represents the

end of the behavior we can elicit from the model. Yet the answers to the questions we asked at

the end of Section 5, and the basic outline of further processing, should be clear:

• How should general knowledge be represented?  As associations that map one set of
working memory elements into a new set of working memory elements.  The working
memory elements themselves are just features and values which, with the exception of the
four special slots of the goal context, have no meaning to the architecture.

• How should knowledge be represented within a goal context? As the simple features and
values that are the building blocks of the associations in long-term memory.  The
representations of knowledge in long-term memory and in the goal context are inextricably
linked because the decision cycle is essentially a controlled process for matching elements
in the context to the ‘‘if ’’ patterns in LTM.

• What are the architectural processes for using knowledge in LTM to create and change the
goal context? The decision cycle with its elaboration and decision phases.  The two phases
are necessary for the architecture to produce behavior in accordance with the principle of
rationality. A result, however, is that the representation of knowledge in long-term
memory must be cast in terms of preferences and suggestions. This must occur so that
decisions are postponed until the moment when all knowledge has been elicited by the
current context and can be integrated to produce a change to the context.

• What are the mechanisms for perceiving and acting on the external world?  Perception and
action go through an interface that runs asynchronously to cognition’s decision cycle.
Because percepts add new information to working memory, however, perception must
ultimately produce working memory elements in the same representation as long-term
memory, i.e. from the same vocabulary of features and values.  Similarly, motor actions
may be instigated at any point in the decision cycle, but the trigger for those actions will
be working memory elements.

Considering our questions one at a time leads to answers that are somewhat circular because

the basic structures and processes of the architecture must form a coherent whole. The decision

cycle can only serve as an adequate process for ensuring goal-oriented behavior if long-term

memory has a certain form.  Working memory can only contribute to behavior that is flexible as

a function of the environment if the decision cycle is essentially a domain-independent process

of matching WM elements to the ‘‘if ’’ parts of the LTM associations. Thus, each piece is

motivated at least in part by the existence of the others. Together they serve as a simple, elegant

theory of how the knowledge that Joe has can produce the behavior we see.
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What we have shown in this section is how the model can be made to produce some of Joe’s

behavior by casting content in terms the architecture can manipulate.  The knowledge that we

described in everyday terms in Table 3-1 was redescribed as associations between contexts in

Table 6-1. Once in this form, the main processing components of the architecture could be

applied to the content, with the decision cycle mediating each move through the problem space.

In the example, the knowledge in our domain content led directly to a single change in the goal

context at the end of each decision cycle. But what happens if the decision cycle can’t decide?

7. Detecting a lack of knowledge
Look again at Table 6-1, and consider what would happen if association a6 were not part of

our domain content. At the end of the elaboration cycle in which a3, a4, and a5 fire, two

operators would have been suggested with no preferences to decide between them. The

architecture requires that a single operator be selected, but without a6, the knowledge that could

be elicited from long-term memory by the current context would not be adequate to meet that

constraint. In short, processing would reach animpassebecause of the tie between the two

proposed pitch operators.  Indeed, in Soar, an impasse is an architectural structure that arises

whenever the decision procedure cannot resolve the preferences in working memory to produce a

single change in the context slots. An impasse is what happens when the decision cycle can’t

decide.

Now it might seem that if a6 should be part of our content but isn’t, then its absence simply

represents an inadequacy of the theory or poor design of the model.  The impasse, however,

actually has an important role to play in the architecture.  Recall that Soar supports multiple

problem spaces as a way of partitioning knowledge and limiting the operators to be considered in

searching for a goal’s desired state. So far, we’ve formulated our model with a single problem

space, Pitch, but we have tacitly assumed that other problem spaces will be required to produce

the full range of Joe’s behavior. Clearly, if the current problem space is part of the context used

to elicit knowledge from long-term memory, and there are multiple problem spaces, then a

failure to elicit knowledge may mean only that the relevant knowledge is not associated with the

current context. When an impasse arises, then, the architecture automatically establishes the goal

of eliciting the knowledge needed to continue processing.

Figure 7-1(a) shows graphically the presence of the impasse (crescent) and the resulting goal
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(resolve-tie) for our example. In this case, the impasse is an operator tie in the Pitch problem

space, and the goal is simply to resolve the operator tie.

Working 
Memory

0/0
bnl

get-
batter-out

 Pitch

Long-term Memory
a0...a5, a7...a9

resolve-tie

curve
fast

Recall
throw-
curve

Working 
Memory

0/0
bnr

get-
batter-out

 Pitch

Perception/Motor Interface

Long-term Memory
a1...a5, a7, a8

throw-
fast

resolve-tie

                               (a)
The architecture automatically creates the
  goal to resolve the operator tie impasse.

                        (b)
The content theory designates the
        remainder of the context.

...
...

throw-
curve

throw-
fast

Perception/Motor Interface

Figure 7-1: (a) An operator-tie impasse in Pitch causes a new context to arise.  When the
decision cycle can’t decide between the two proposed operators, the architecture  creates an
impasse structure (crescent) which links the current goal (get-batter-out) to its  subgoal (resolve-
tie), producing a goal-subgoal hierarchy. (b) Knowledge in the domain content then determines
the rest of the subgoal context, i.e. the problem space to work in  to achieve the subgoal, the
initial state and the operators that are applicable to it. The decision cycle may now result in a
single change to either goal context in the hierarchy.  In general, processing will continue in the
lower problem space (Recall). If the decision cycle suggests a change to a slot in the higher goal
context (Pitch), however, that change  takes precedence and the lower context will disappear.

Since the architecture establishes only the subgoal when an impasse arises, our domain content

must fill out the remainder of the new goal context using LTM associations that select a problem

space, state, and operator. In other words, we must provide the model with some method for

deciding between the pitches in order to resolve the operator-tie impasse. Let us assume that the

way Joe would make this decision is by trying to remember how successful he’s been with each

of the pitches in the past.  To link this bit of content to the architecture, we add the following
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association to the model’s LTM:

(a9) If there’s a goal to resolve an operator tie in the Pitch problem space
then suggest achieving it using the Recall problem space with an initial

state containing the tied operators.

Figure 7-1(b) shows how the new goal context is filled out via association a9 in the decision

cycle that follows the impasse.  Once the new context has been established, all of the

architectural mechanisms we have already discussed can be applied to it. So, this new context

will trigger associations that result in operator proposals that, in turn, transform Recall’s state,

etc.

In general, then, working memory actually consists of a goal-subgoal hierarchy where each

subgoal exists in order to resolve an impasse in the problem space above it.5 The hierarchy

grows as impasses arise in the normal course of processing, and shrinks as impasses are resolved

by eliciting the knowledge required to make progress in the higher context. Typically, decision

cycles correspond to movement through the problem space that is at the bottom of the hierarchy,

but it is not necessary that this be true; the decision cycle still results in only a single change to

one of the context slots but if multiple changes are suggested in different contexts, the change to

the context that is highest in the hierarchy is the one that occurs. Of course, if a change occurs to

a context high up in the hierarchy, then the knowledge needed to overcome the impasse in that

context must have become available, so all the subcontexts in the hierarchy below the changed

context, which were created because of the impasse, disappear.

An operator tie is just one of the ways in which the decision cycle can fail to decide.  An

operator no-change impasse, for example, occurs when knowledge about when to select an

operator is available in one problem space, but knowledge about the implementation of the

operator (how it changes the state) is not available in that space. For our purposes, what is

important is not to understand the particulars of the different kinds of impasse, but to understand

that the full set of impasses defined in Soar is fixed, and domain-independent.  As with the

vocabulary of preferences, the architecture defines a vocabulary of impasses so that it can

process domain content without understanding the meaning of that content.

5In fact, every goal in Soar is established by the architecture, a fact we have glossed over in the preceding
discussion for expository purposes. The highest level goal is created automatically; all subsequent goals result from
impasses. Thus, the goal ‘‘get-batter-out’’ in Figures 5-1, 6-1, and 7-1 is really shorthand for the goal to resolve the
impasse on the get-batter-out operator in a higher problem space that is not shown (but see Section 11).
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Returning to our example, our model of Joe must still choose a pitch.  Conceptually, the

resolution of the operator-tie impasse can come about in two ways.  If the catcher signals, for

example, then information coming in through perception might change the state in Pitch and

elicit preferences for one pitch or the other (or for some other behavior altogether). In this case,

the get-batter-out context in the goal hierarchy would change in the next decision cycle, and the

impasse would simply disappear.  Alternatively, processing could continue in the lower context.

Perhaps operators in Recall that elicit knowledge about how well Joe has done with each pitch in

the past will resolve the impasse, or perhaps further subgoals will arise. In any of these cases, we

must add more content to our model to have the model behave appropriately.  By now it should

be reasonably clear what form that knowledge should take and how to think about the way the

architecture will use the knowledge.  What is not yet clear is why this same impasse won’t arise

the next time our model faces Sam Pro. Certainly, if Joe were a seasoned veteran who had faced

Sam many times in his career we would expect his choice of pitch to be automatic. But won’t our

model of Joe always have to plod along, recalling past events and reasoning its way to the same

conclusion? Won’t the model always reach this impasse?

8. Learning
There is a very old joke in which a man carrying a violin case stops a woman on the street and

asks, ‘‘How do you get to Carnegie Hall?’’ and the woman replies, ‘‘Practice.’’ Her advice

reflects one of the most interesting regularities in human behavior; when we do something

repeatedly we generally get better at it. Better may mean that we make fewer errors, or do the

task more quickly, or simply seem to require less effort to achieve some given level of

performance. Somehow the act of doing the tasknow changes our ability to do the task in the

future. In short, doing results in learning — the acquisition of knowledge through experience. It

is this acquired knowledge that changes our behavior over time.

Two of the fundamental questions that arise when you talk about systems that learn are: What

do they learn? And when do they learn? We can answer the first of these questions from what we

know about Soar already: Soar systems learn new associations. To see why this must be so,

remember our equation:

BEHAVIOR = ARCHITECTURE x CONTENT

Because learning leads to a change in behavior, either the architecture or the content must be

affected by experience. Since the architecture is, by definition, a set offixed structures and
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mechanisms, it must be the content that changes.  And since domain content is captured by

associations, learning must lead to new associations.6

The answer to the question of when to learn is a bit harder to derive.  Figure 8-1(a) shows part

of the context that led to the impasse in Figure 7-1 in slightly different form and with the details

of the state expanded.  We call this thepre-impasse environment. When an impasse arises it

means that the system does not have available in long-term memory associations for this context

that lead to a single next move in the problem space. Expressed a bit more intuitively, an impasse

is the architecture’s way of signaling a lack of knowledge. A lack of knowledge is an opportunity

for learning.

Now let’s follow the processing in the resolve-tie subgoal, as shown in Figure 8-1(b).

Association a9, given above, created Recall’s initial state with nothing but information about the

tied operators in it. The purpose of the Recall space is to model Joe deciding among the possible

pitches by remembering how successful he’s been with each in the past. Our model will

accomplish this by augmenting the Recall state with cues from the pre-impasse environment

until a relevant memory is evoked, i.e. until working memory contains elements that represent an

event from Joe’s past involving one or both of the tied pitches. Once such an event has been

recalled, it can be used as the basis for evaluating each of the proposed pitches. There are many

ways to produce this general behavior within the Soar architecture. The one we explore here

requires that we add two kinds of knowledge to our model, knowledge that encodes memories of

events in Joe’s past, and knowledge that defines two new operators, augment and evaluate, that

will evoke and evaluate those memories.

As in the case of modeling perception, modeling episodic memory is a complex topic that we

will not address in detail. Instead, we will simply give Joe the following memory for

demonstrative purposes:

(a10) If using the Recall problem space and thebatter is left-handed
and theweather is windy

then add event116 to Recall’s state with substructure
part-of game22, isa homerun, pitch throw-fast, etc.

What is important to note about this association is that it does not fire in the Pitch problem space

6Strictly speaking, learning could lead to removing associations as well. However, Soar as a theory assumes that
long-term memory only grows. So forgetting, in Soar, is a phenomenon that results when a new association prevents
an old association from firing.
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Figure 8-1: Learning when to prefer the curve ball.  Elements in the higher goal context (the
pre-impasse environment (a)) are used by operators available in the lower goal context (b) to
elicit knowledge that resolves the operator tie.  Here, the model elicits a ‘‘memory’’ of a previous
game (event116) in which it was windy and throwing the fast ball to a left-handed batter led to a
home run. On this basis, throwing the curve becomes preferred. The new association that will
result from the resolution of this impasse will test for only those elements in the pre-impasse
environment that led to the result, i.e. the windy day, left-handedness and the proposals of the
two pitches.

although Pitch’s state does have the necessary features in it. It seems unlikely that Joe is

constantly being reminded about all the games in his past that share features with the current

situation, and we don’t want our model of Joe to be inundated with memories either. Instead, we

want the model to be reminded when there is a reason for the reminding. In other words, the

reminding is goal-driven; here, the goal that drives the reminding is the need to resolve the

operator tie.

To elicit the memory of event116, Recall’s state must contain the features and values in the

‘‘if’’ portion of association a10. To accomplish this, we use augment operators that copy a single

feature and its values from Pitch’s state to Recall’s state:

(a11) If there is a feature in Pitch’s state that is not in Recall’s state
then suggest an augment operator for that feature
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(a12) All augment operators are equally acceptable
(a13) If the augment operator has been selected in Recall for some feature

then add that feature and its values to Recall’s state

Observe that association a11 proposes one augment operator for every feature that is in Pitch’s

state and not yet in Recall’s state.  Association a12, however, provides preference information

about the proposed operators to the decision procedure. The preference information results in the

random selection of a single instance of augment at the end of the decision cycle.  The first state

transition in Figure 8-1 shows the first application of an augment operator (via association a13)

copying the batter information into Recall’s state.

Remember that processing in the Recall problem space is driven by the goal of resolving the

tie between the throw-curve and throw-fast-ball operators in Pitch.  Since no useful knowledge

has been elicited by the batter information alone, associations a11 through a13 fire again,

selecting and copying a new feature and its values from Pitch. Eventually, however, an augment

operator is selected that copies the weather feature. Once this has happened, the contents of

working memory trigger association a10 (the episodic memory of event116), moving the model

into the third state in Figure 8-1(b).  In other words, the model has now been reminded of a

previous game that has some elements in common with the current situation.

Once an episodic memory has been evoked, working memory contains information that can be

used to try to resolve the tie. The next three associations define the evaluate operator. In the

language of Table 3-1, this operator maps knowledge of particular episodes (K2) and knowledge

of objectives (K4) into knowledge of when to choose actions or methods (K6):

(a14) If using the Recall problem space and there are two tied operators
and an event with a pitch that is one of the tied operators

then suggest an evaluate operator
(a15) Prefer evaluate operators over augment operators
(a16) If applying an evaluate operator to a state that has two tied operators

and an event that isa homerun
with a pitch that is one of the operators

then prefer the other operator

Association a14 proposes the evaluate operator on the basis of a relevant event. Association a15

is included to prefer an evaluation just in case there are other augment operators that are still

possible. Association a16 adds a preference to working memory that results from applying the

evaluate operator. In the current situation, a14-a16 simply mean that if Joe remembers a time

when someone threw a fast ball that led to a homerun under similar circumstances, then he

should prefer to throw the curve.  As shown in the right-most state in Figure 8-1(b), the actual
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working memory changes produced by association a16 include both a preference for the throw-

curve operator and the delineation of the current state as a goal state in this problem space.

Look what just happened. The operator-tie impasse arose because the original goal context did

not provide cues for eliciting the LTM knowledge to choose between two pitches. In response to

the impasse, a subgoal to find the knowledge was created by the architecture. Domain content

then expanded this subgoal into a second goal context involving the Recall problem space, i.e.

the total context that could trigger relevant LTM knowledge (Pitch + Recall) was expanded. As a

result of processing in Recall, the knowledge needed in Pitch has become available, and the

impasse can be resolved. Moreover, we have an opportunity to learn a new association that will

make that knowledge immediately available in Pitch under the circumstances that originally led

to the impasse. In fact, the architecture automatically forms such a new association whenever

results are generated from an impasse. To distinguish associations that are learned by the model

from those created by the modeler, we give them a special name, chunks, and call the learning

process that creates them chunking.

To create a chunk the architecture looks at every part of the context that existed in the pre-

impasse environment (Figure 8-1(a)) that was used in reaching the result. In our example, the

new association would be:

(c1) If using the Pitch problem space
and both the throw-curve and throw-fast-ball operators are suggested
and the batter is left-handed and the weather is windy

then prefer the throw-curve operator

As expected, the ‘‘ if’’  portion of c1 includes only elements in the context before the impasse

arose, and the ‘‘ then’’  portion mirrors the knowledge elicited. With c1 in long-term memory, the

model will not encounter an impasse the next time it is in a state like the one in Figure 8-1(a).

Instead, this chunk will fire, the curve ball will be preferred, and processing will continue in

Pitch.

Chunking is essentially a deductive, compositional learning mechanism; that is, the preference

for a curve ball represents a kind of deduction from prior knowledge, and the new association is

composed from a ‘‘ then’’  part containing the deduction, and an ‘‘ if’’  part containing the

knowledge that contributed to the deduction. This recombination of existing knowledge makes it

accessible in new contexts via new long-term memory associations. Notice that chunking

overcomes some of the partitioning function of problem spaces (making knowledge available in
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a problem space that it was not available in before learning), but that it does so only when

experience dictates the need. As a theory, Soar says that chunking happens all the time — it is a

ubiquitous mechanism that requires no intention to learn on the part of the agent.  Impasses arise

automatically when there is a lack of knowledge and chunks arise automatically when

knowledge becomes available that helps resolve the impasse.

If chunking is appropriately characterized as deductive, can Soar systems still learn in all the

ways humans do? Although chunking is the only architectural mechanism for learning, nothing

about Soar keeps us from building other styles of learning as content theories that rest on top of

the architecture. Indeed, since it is the only mechanism for changing the contents of long-term

memory, chunking must be at the heart of any other learning method in Soar.  Notice in our

example that the augment operator is used to add features of the pre-impasse environment until a

memory is elicited that has key features in common with the current situation. The system’s

behavior looks very much like reasoning by analogy, and the chunk that is learned may well be

an overgeneralization (i.e., it may fire in situations where the preference it provides is actually

inappropriate). Thus, even this simple model takes an inductive leap via the architecture’s

deductive mechanism.  Other learning methods that have been demonstrated in Soar include

learning by abduction (Johnson, 1994), and learning by instruction (Huffman, 1993).

9. Putting it all together: a Soar model of Joe Rookie
In our scenario, Joe Rookie chooses to throw a curve ball which is hit by the batter, caught by

Joe on a bounce, and thrown to first base.  Over the last five sections, we’ve moved from this

narrative description of the activity of a rookie pitcher to a computational description of the

architecture and content that produces that activity. Of course, we’ve only described a fraction of

the knowledge involved in deciding to throw a curve ball and an even smaller fraction of the

knowledge involved in playing out our original scenario. To expand the model to full

functionality is beyond the scope of this chapter, but the method we would use should be clear.

First, we specify the domain knowledge Joe needs; that’s our content.  Next, we tie the different

types of domain knowledge to the different parts of the goal context: goals, problem spaces, state

structures (including percepts and any other working memory elements that trigger actions), and

operators. Finally, we specify the relationships between problem spaces by the impasses that

will arise and the kinds of knowledge that will be missing, and consequently learned.
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Figure 9-1: Expanding the model’s capabilities.  Our model of Joe needs far more knowledge to
play out our original scenario than we have given it in the previous sections. Still, increasing the
model’s functionality can be done within the architectural framework we’ve  described by adding
more domain content in the form of goal contexts and LTM  associations that map between them.

Figure 9-1 shows what a fuller model might look like in terms of problem spaces and their

relationships. In Soar, the Top goal and Top problem space are given by the architecture and are

the only goal and problem space that persist across time (other problem spaces and goals come

and go as the goal hierarchy grows and shrinks).  All perception and action occurs through the

Top state so that they are part of the pre-impasse environment for all subgoals (this ensures that

tests of percepts and actions will be preserved in any chunks that are learned). Operators in the

Top problem space correspond to tasks Joe has to perform, like getting a batter out,

comprehending language or gestures, and so on.  Subgoal problem spaces implement these high-

level tasks.  Thus, our now-familiar Pitch problem space is actually evoked in response to an
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impasse in Soar’s Top problem space.  Knowledge may be spread out among the subspaces in

various ways, but will be integrated as a result of chunking in response to impasses. The dark

arrows connect contexts in the goal hierarchy that arise while coming to the decision to throw the

curve ball as we discussed it above.  The chunk that arises in the Top space under this

configuration would look like c1 except that it would check for the Top problem space and the

task operator of getting the batter out (because these are elements in the pre-impasse

environment that are used in arriving at the result).

Another possibility evident from the figure is that while Joe is in the Pitch problem space

trying to decide on a pitch, the catcher might just signal the appropriate pitch. Under the

configuration shown, the impasse from the Top space to Pitch would have to be terminated (by

associations that prefer comprehension of the catcher’s signal to getting the batter out), and the

comprehend operator selected. Then an impasse on the comprehend operator would redirect

processing along the dotted lines, into the Comprehend space and downward, in this case, to the

Gesture problem space.  The chunk resulting from the impasse on comprehend might map

directly to the choice of a pitch and a motor action in the Top state. Alternatively, it might

simply result in an augmentation to the Top state (e.g. with suggested action throw-curve). In

this latter case, the get-batter-out operator would be reselected and impasse again, allowing the

catcher’s advice to be weighed against evidence from Recall in the subspace.

We could go on exploring alternatives to the model shown in Figure 9-1, elaborating it with

more problem spaces and operators, moving operators or the connections between problem

spaces around to explore the effect on learning, and so on. Clearly, the architecture permits many

different ways of organizing domain content.  It is possible that some of this variation must be

there in order to model the natural variations in behavior that occur both within and across

people. However, if even after taking such variability into account, the architecture still does not

sufficiently constrain the structuring of the domain content, how has its specification helped us in

our search for a unified theory of cognition?  Before we address this question, let’s step back and

draw together in one place all the mechanisms and structures of the architecture we have

developed above.
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10. Stepping back: the Soar architecture in review
A cognitive architecture is really two things at once. First, it is a fixed set of mechanisms and

structures that process content to produce behavior.  At the same time, however, it is a theory, or

point of view, about what cognitive behaviors have in common. In this chapter we have looked

at one particular architecture, Soar, and so at one particular set of mechanisms and one particular

point of view. Here is a brief synopsis of the mechanisms and structures we have discussed,

along with some of the theoretical commitments that underlie them:

• The Goal Context is the structure at the heart of the architecture.  Every goal context is
defined by four slots and their values: the goal (ensures goal-directed behavior), the
problem space (partitions or organizes knowledge in a goal-related way), the state (an
internal representation of the situation), and the operator (maps from state to state).

• Working Memory (WM) contains the current situation (including past states and
hypothetical states if they are important for reasoning) in the form of one or more goal
contexts. WM also holds the results of perception as features and values in the Top state.
The contents of working memory trigger both associations in LTM and motor actions.

• Long-term Memory (LTM) is the repository for domain content that is processed by the
architecture to produce behavior. The form of knowledge in LTM is associations that map
from the current goal context in WM to a new goal context.  Because the mapping is from
context to context, the triggering of an association can be accomplished by a simple match
process against working memory. In addition to being associational, Soar’s long-term
memory is impenetrable. This means that a Soar system cannot examine its own
associations directly; its only window into LTM is through the changes to working
memory that are the results of association firings.

• The Perception/Motor Interface is the mechanism for defining mappings from the
external world to the internal representation in working memory, and from the internal
representation back out to action in the external world. Through this interface, perception
and action can occur asynchronously and in parallel with cognition.

• The Decision Cycle is the basic architectural process supporting cognition. It is composed
of two phases.  Parallel access to LTM during the elaboration phase changes the features
and values that define the state and suggests new values for context slots. Quiescence
defines the moment at the end of the elaboration phase and the beginning of the decision
phase when all the knowledge that can be elicited by the current context has been.  During
the second phase, the decision procedure interprets the domain-independent language of
preferences and suggestions for changes to the context. The result of the decision
procedure is either a single change to the goal context, or an impasse if no single change
has been suggested.  The application of a single operator per decision cycle imposes a
cognitive bottleneck in the architecture, that is, a limit on how much work cognition can do
at once.

• Impasses signal a lack of knowledge, and therefore, an opportunity for learning. An
impasse occurs automatically whenever the knowledge elicited by the current context isn’ t
enough for the decision procedure to resolve the preferences in working memory to a
single change in the context. The language of impasses, like the language of preferences,
is defined independently of any domain. When an impasse arises, the architecture also
automatically begins the creation of a new subgoal context whose goal is to resolve the
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impasse. In this way, impasses impose a goal/subgoal hierarchy on the contexts in working
memory.

• Chunking is the pervasive architectural learning mechanism. Chunking automatically
creates new associations in LTM whenever results are generated from an impasse.  The
new associations map the relevant pre-impasse WM elements into WM changes that
prevent that impasse in future, similar situations.  Although basically a deductive or
compositional mechanism, chunking serves many purposes. It can integrate different types
of knowledge that have been spread over multiple problem spaces. It can speed up
behavior by compiling many steps through many subspaces into a single step in the pre-
impasse problem space. It can be used as the basis of inductive learning, analogical
reasoning, and so on. Because it is the only architectural mechanism for changing LTM, it
is assumed to be the basis of all types of learning in people.

Using these structures and mechanisms we have shown how to model a small piece of

cognitive behavior in the Soar architecture. Our purpose in building the model was to ground our

discussion in some concrete, familiar behavior so it would be easy to see what was architectural

— and, therefore, fixed — and what was not. It is important to realize, however, that the

particular examples we modeled are only that, examples.  To see how the Soar architecture can

be used to help produce some other specific behavior, we would begin by viewing that behavior

through the framework introduced in Section 3, describing the relevant goals that drive the

behavior and the knowledge required to accomplish them. Once we have a knowledge-level

description, we would tie the knowledge to the particular constructs in the goal context: to

problem spaces, states, and operators. In partitioning the knowledge among problem spaces we

would attend to the relationships defined by the different types of impasses so that learning

results in meaningful new associations. These are the steps to building a Soar model, whether it

is a model of a baseball pitcher, a student solving physics problems, or a jet fighter pilot

engaging an enemy plane.

We have asked and answered a lot of questions about Soar. What structures and mechanisms

are fixed? What structures and mechanisms are left up to the modeler?  What processes occur

automatically? What processes must be chosen deliberately? By answering these questions we

have told you about the architecture we use. By asking them, we have tried to give you a method

for analyzing and understanding other architectures.

The power behind the idea of cognitive architecture, any cognitive architecture, is that it lets us

explore whether a single set of assumptions, a single theory of what is common among many

cognitive behaviors, can in fact support all of cognition.  However, defining the architecture, the



36

fixed mechanisms and structures, is only a step toward producing a unified theory of cognition.

The architecture, by itself, does not answer all the questions we might want to ask about

cognition. Still, given the architecture as a starting point, we know that additional theory must

be cast as content that can be processed by that architecture. In short, the architecture is the

framework into which the content theories must fit.  Moreover, the framework provides the

opportunity to combine content theories and watch how they interact — to move them from

isolation into a unified system.

11. From architecture to unified theories of cognition
Our model of Joe Rookie is a content theory, although it is hard to imagine what in its content

we might want to argue is general across human cognition.  As a community of more than 100

researchers world-wide, the Soar project has contributed a number of more interesting content

theories to the field, including:

• NL-Soar, a theory of human natural language (NL) comprehension and generation
(Lehman, Lewis, & Newell, 1991; Rubinoff & Lehman, 1994) that has been used to
explain many results from psycholinguistics, including the garden path phenomenon
discussed in Section 1 (Lewis, 1993).

• SCA, a theory of symbolic concept learning that acquires and retrieves category prediction
rules (e.g. if you see something round and small that rolls, predict it is a ball) (Miller,
1993). SCA mirrors psychological data along the dimensions of response time, accuracy
and learning rate as a function of various instance and category structures.

• NOVA, a theory of visual attention whose performance matches human data from a
number of distinct experimental results in the psychology literature (Wiesmeyer, 1992).
Using a single set of mechanisms, NOVA explains regularities in human reaction times
under various precuing and stimulus conditions, as well as regularities in the loss of
memory for visual stimuli. Although we can view NOVA as a content theory with respect
to the current Soar implementation, most of its content constitutes a theory of how the
cognitive and vision systems interact. In this sense, we can also view NOVA as an
architectural extension.

Each of these content theories has, in its own way, been an attempt at unification because each

has explained a set of phenomena that had not been explained by a single theory previously.

Moreover, because these content theories have been expressed computationally as Soar models,

they all share the assumptions in the Soar architecture. What this means is that even though a

content theory models aspects of human language (or concept learning, or vision), it does so

within a framework that makes certain assumptions about human problem solving, memory, etc.

The resulting model may not, itself, show the full range of human problem solving or memory

phenomena, but the theory will, at the very least, be compatible with what is assumed to be
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architectural in the other content theories.  In this weak sense, content theories like the ones

above constitute a burgeoning unified theory of cognition (UTC).

Of course, the stronger notion of Soar as a UTC requires that these individual content theories

all work together in a single computational model. A number of other Soar projects have focused

on variations of that goal, producing models such as:

• NTD-Soar, a computational theory of the perceptual, cognitive, and motor actions
performed by the NASA Test Director (NTD) as he utilizes the materials in his
surroundings and communicates with others on the Space Shuttle launch team (Nelson,
Lehman, & John, 1994). NTD-Soar combined NL-Soar and NOVA with decision making
and problem solving knowledge relevant to the testing and preparation of the Space
Shuttle before it is launched.

• Instructo-Soar, a computational theory of how people learn through interactive instruction
(Huffman, 1993).  Instructo-Soar combined NL-Soar with knowledge about how to use
and learn from instructions during problem solving to produce a system that learned new
procedures through natural language.

• IMPROV, a computational theory of how to correct knowledge about what actions do in
the world (Pearson & Laird, 1995).  IMPROV combined SCA with knowledge about how
to detect when the system’s internal knowledge conflicts with what it observes in the
world so that the system can automatically improve its knowledge about its interactions
with the world.

The complex behavior achieved by each of these systems was made possible, in part, because

some component content theories were already available.  Using Soar as a common framework

meant that there already existed a language capability (or visual attention mechanism, or concept

acquisition mechanism) cast in the right terms and ready (more or less) for inclusion. From the

point of view of the NTD project, for example, the availability of NL-Soar meant that they didn’ t

have to build a theory of human language in addition to a theory of the launch domain. More

importantly, incorporating NL-Soar meant that the whole model had to ‘‘ play by the rules’’

linguistically. NTD-Soar couldn’ t be constructed to wait to pay attention to linguistic input

indefinitely because NL-Soar says that acoustic information doesn’ t stay around indefinitely. It

couldn’ t wait until the end of the sentence to produce the meaning because NL-Soar says

meaning has to be produced incrementally, word-by-word. In essence, NTD-Soar was

constrained by incorporating NL-Soar. But, of course, the constraints hold in both directions.

From the point of view of the NL-Soar project, the NASA Test Director’s linguistic environment

presented many challenges that had not originally shaped the model. Indeed, NL-Soar had been

created as a model of comprehension and generation in isolation. The need to actually

comprehend and generate sentences while doing other things changed the structure of NL-Soar
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for all time.

As these examples show, we are still a long way from creating a full unified theory of

cognition. As a candidate UTC, Soar currently insists that theories of regularities in behavior be

cast in terms of associational memory, goal contexts, impasses, and chunking.  Whether these are

the right assumptions, whether we can construct on top of these assumptions a set of

computationally-realizable mechanisms and structures that can answer all the questions we might

want to ask about cognitive behavior, is an empirical question. Still, our methodology in working

toward that goal is clear:  work within the architecture, base content theories on the regularities

already available from the contributing disciplines of cognitive science, and combine those

content theories to try to explain increasingly complex behaviors. In short, keep searching for the

big picture.

12. Suggestions for Further Reading
The origins of the Soar architecture in the early 1980’s were in models of problem solving.

Since then, effort has focused on additional topics, including knowledge, learning, planning,

robotics, human-computer interaction, and cognitive modeling.  A range of articles that provide

more detail on these topics can be found in Rosenbloom, Laird, and Newell, 1993. The best

presentation of Soar as a candidate unified theory of cognition, and of unified theories of

cognition in general, can be found in Newell, 1990, which came out of Allen Newell’s 1987

William James Lectures at Harvard University.  In addition to Soar, the one other architecture

that has been central to a sustained effort at creating a unified theory of cognition is ACT.  An

overview of Soar and ACT* — one of the most significant landmarks in the development of the

ACT theory — can be found in Newell, Rosenbloom, and Laird, 1989, along with a comparison

between the two architectures and a more detailed discussion of the nature and uses of symbolic

architectures. For a detailed description of the most recent version of the ACT theory — ACT-R

— see Anderson, 1993. Beyond Soar and ACT, a number of other cognitive architectures have

also seen some amount of recent development.  A useful sampling of such architectures can be

found in VanLehn 1991, which came out of the 22nd Carnegie Mellon Symposium on

Cognition. Finally, philosophical reflections on the topic of cognitive architectures can be found

in Pylyshyn, 1984.

Several of the chapters in this volume present different but related view of some aspects of the
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problem of developing models of human behavior. Although it focuses on motor behavior, the

chapter by Wright and Lindemann discusses how behavior is planned and organized. The chapter

by Dosher presents a detailed account of model development for the problem of visual search, a

problem that we would describe as a microtheory. The chapter by Lewontin addresses the

question of whether it is possible to understand how cognitive architecture developed through

evolution. The chapter by Flanagan and Dryden asks the question of where consciousness and

self-awareness arise in cognition. The chapter by Anderson also addresses issues of content and

architecture within the framework of artificial neural network models. Gallistel’s chapter

describes some remarkable cognitive abilities in other species which raise the question of

whether cognition is based on one or many architectures. Finally, Steedman argues for the

importance of the computational approach in the development of theories in cognitive science.

13. Problems and Questions for Further Thought
Problems:

1. What are the two components required to generate behavior?

2. Is architecture always a piece of hardware (like a computer)?

3. Identify two properties that are common to cognitive behavior but are not included in the
list in Section 3.

4. What are the key components of a problem space?  Give examples from the baseball
domain.

5. What changes could be made in the principle of rationality to cope with a situation in
which there is more than one goal?

6. How does Soar avoid considering every operator defined in long-term memory for every
decision it has to make?

7. What is the difference between the types of information held in Soar’s long-term memory
and working memory?

8. What happens in Soar when it can’ t decide what to do in the current situation?

9. For Figure 8-1, assume that Joe’s memory of event116 was that a fast ball led to an out.
How would that change Joe’s behavior, and also change what Joe learns?

Questions for further thought:
1. Define a problem space (or set of problem spaces) for a task such as playing soccer,

cooking dinner, or driving a car.  What are the operators and states?  What are the types
of knowledge that would be used to select appropriate operators?

2. What aspects of Soar seem to be unrealistic as a model of human behavior? What
psychological experiments could be developed (or already exist) that would help
determine if Soar was unrealistic?
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3. As described, working memory is for the specifics of what is true now, and long-term
memory is for general facts about many situations.  What are two possible ways to
represent episodic knowledge within Soar — that is, specific knowledge about what was
true in the past?  What are the advantages and disadvantages of your two approaches?
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15. Answers to Problems
1. Architecture and content.

2. No, architecture can also be software.  For example, in Figure 2-1, WordPerfectTM is the
architecture for the task of writing a book chapter.

3. It is not error free.  We often make small errors, such as slips of the tongue, typing errors,
or even errors in baseball.  Often errors increase under time pressure.

It is influenced by emotion.  Our interactions with the world, and especially other people,
are not governed just by pure rationality, but also by our current emotional state.

It is a product of evolution.

4. The components are states, operators, and the knowledge to guide the selection of
operators. Examples:

• State: The current situation Joe is in — standing on the mound, facing a specific
batter, the position of other players, the current status of the game, etc.

• Operators: Different pitches he can throw, calling time out, throwing to first base to
keep the runner on, playing with the rosin bag, etc.

• Knowledge: see Table 3-1.

5. If an agent has knowledge that one goal is more important than another, and there are
operators available for the more important goal, then the agent will select operators to
achieve that goal.

6. It only considers operators that are relevant to the current state of the current problem
space.

7. Long-term memory holds knowledge that is independent of the current goal context.
Working memory holds knowledge that is directly relevant to the current goal context.

8. An impasse arises and a subgoal is created to try to figure out how to resolve the impasse.
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9. During recall, Joe would believe that a fast ball would lead to an out, so his evaluation
would be that throwing a fast ball would be very good, and he would select that as his
pitch. Learning would remember this and create a new association to throw a fast ball if
it is windy and the batter is left-handed.

16. Key words for the Index
architecture
goal
problem space
state
operator
goal-oriented behavior
principle of rationality
unified theories of cognition
content theory
symbols
cognitive model
long-term memory
working memory
baseball
goal/sub-goal hierarchy
impasse
chunking
learning
cognitive architecture
Soar
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17. THROW THIS AWAY
(Gibson, 1990) (Pritchett, 1988) (Anderson, 1993) (Kieras & Meyer, 1994) (The

Commissioner of Baseball, 1994) (Rosenbloom, Laird, & Newell, 1993) (Newell, 1990)

(Newell, Rosenbloom, & Laird, 1989) (Anderson, 1993) (VanLehn, 1991) (Pylyshyn, 1984)
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