
1

Impasses and Substates
[20 min]

Soar Tutorial
July 2016

22

Impasses

What if insufficient or conflicting knowledge for selecting an
operator? Called an impasse in Soar

• when no operator is proposed.
– [state no-change]

• when multiple operators are proposed by insufficient
preferences to select between them
– [tie]

• when an operator is selected, but it can’t be applied by a
single rule
– [operator no-change]

33

Substates
• Substate is created if there is an impasse
• Substate has structures that define impasse

– ^superstate
– ^impasse – no-change, tie, conflict, …
– ^item – tied or conflicted operators

– …

• Substate is context for deliberate reasoning and
accessing additional knowledge sources
– Long-term memories
– External environment
– Internal reasoning

• Select and apply operators in substate
– Access superstate information through
– (<s> ^superstate <ss>)

^superstate
^item

^impasse

44

Substates

• Substates are removed when the impasse
is resolved
– A new operator is selected.

• Results are structures created in substate
but linked to the superstate

• Can have recursive stack of
impases/substates

^superstate
^item

^impasse

5

Overview One-step Look-ahead
Using Selection Problem Space

(on A Table)
(on B Table)
(on C A)

A B
C

move(C,	B)

move(B,	C)

move(C,	Table)

Evaluate-operator(move(C,	Table))

(on A Table)
(on B Table)
(on C A)

move(C,	Table)

Tie	 Impasse

(on A Table)
(on B Table)
(on C Table)

Evaluation	=	1

Evaluate-operator(move(C,	B)) Evaluate-operator(move(B,C))

copy

Evaluation	=	0 Evaluation	=	0Evaluation	=	1

move(C,	Table)	>	move(C,	B)
move(C,	Table)	>	move(B,	C)
move(B,	C)	=	move(C,	B)

A B C

A
B
C

Goal

66

Operator Implementation
• Add two numbers by counting up and down.

Add 6 5

6
5

7
4

8
3

9
2

10
1

11
0+

-
+
-

+
-

+
-

+
-

77

Problem Solving in Substate
superstate

substate

6
add-pair

superstate

adden1

adden25

add-pair

add

operator

add

adden2

superstate

add

operator

6
add-pair

adden1

5

add-pair

add count-up-
count-down

4

7

adden2

superstate

add

operator

7
add-pair

adden1

4

add-pair

add count-up-
count-down

3

8

88

Results
• No explicit marking of results.

• Structures created by rules that match structures in
the substate, but create structures linked to a
superstate.

• Side effect of working memory structure.

8

9

Result Examples
superstate

substate

superstate

substate

new result

superstate

substate new
results

superstate
post-impasse

1010

Problem Solving in Substate
superstate

substate

6
add-pair

superstate

adden1

adden25

add-pair

add

operator

add count-up-
count-down

6

adden25

adden1

6
add-pair

adden1

adden25

add-pair

add

operator

add

6

adden2 5

adden1

4

7

count-up-
count-down

6
add-pair

adden1

adden25

add-pair

add

operator

add

10

adden2 1

adden1

0

11

11sum

1111

Operator Implementation
• Add operator to move in a cardinal direction:

(<o> ^name move ^direction << north south east west >>)

1212

Move Operator

• Need only a proposal.
• Apply will be by operators in substate.

If name eater and
in direction <dir> there is a non-wall

then
propose move in direction <dir>

Cardinal directions don’t “blink” during rotate, only during
forward

1313

Propose move

If name eater and
in direction <dir> there is a non-wall

then
propose move in direction <dir>

sp {eater*propose*move
(state <s> ^name eater

^io.input-link <input>)
(<input> ^{ << west east north south >> <dir> } <> wall)

-->
(<s> ^operator <op> + =)
(<op> ^name move

^direction <dir>)}

1414

Substate Structure
(s1 ^superstate nil

^type state
...)

(s9 ^attribute operator
^choices none
^impasse no-change
^superstate s1
^type state
^smem …
...)

No ^io structure in substate

1515

Rotate in Substate

If not facing direction of move (in superstate), propose rotate.
When rotate, will retract this proposal (orientation blinks)
Move operator will not retract (directions don’t blink on rotate)

sp {move*propose*rotate
(state <s> ^superstate <ss>)
(<ss> ^operator <o>

^io.input-link.orientation <dir>)
(<o> ^name move

^direction <> <dir>)
-->

(<s> ^operator <op> + =)
(<op> ^name rotate)}

sp {apply*rotate
(state <s> ^operator.name rotate

^superstate.io.output-link <out>)
-->

(<out> ^rotate <r>)}

1616

Forward in Substate

If facing direction of move (in superstate), propose forward.

sp {move*propose*forward
(state <s> ^superstate <ss>)
(<ss> ^operator <o>

^io.input-link.orientation <dir>)
(<o> ^name move

^direction <dir>)
-->

(<s> ^operator <op> + =)
(<op> ^name rotate)}

sp {apply*forward
(state <s> ^operator.name forward

^superstate.io.output-link <out>)
-->

(<out> ^forward <r>)}

1717

Adding Selection Knowledge

Select operators based on value of food they will
consume.
1. Maintain in working memory information on what

each color is worth.
2. Propose operators with value they will get
3. Use that values to select operators.

1818

Values in working memory

sp {hierarchical*elaborate*map-object*reward
(state <s> ^name eater)

-->
(<s> ^color-values <r>)
(<r> ^wall -10

^empty 0
^red 5
^purple 10
^green 15
^blue 20)}

1919

Numeric Indifferent Rule
sp {eater*propose*move

(state <s> ^name eater
^io.input-link <input>)

(<input> ^{ << west east north south >> <dir> }
{ <> wall <color>)

-->
(<s> ^operator <o> + =)
(<o> ^name move

^direction <dir>
^color <color>)}

sp {eater*select*move*operator*indifferent
(state <s> ^operator <o> +

^color-values.<color> <value>)
(<o> ^name move

^color <color>)
-->

(<s> ^operator <o> = <value>)}

2020

Comparison Rule
sp {eater*select*move*operator

(state <s> ^name eater
^operator <o1> +
^operator { <> <o1> <o2> } +
^color-values <cv>)

(<cv> ^<color1> <value1>
^<color2> < <value1>)

(<o1> ^color <color1>)
(<o2> ^color <color2>)
-->
(<s> ^operator <o1> > <o2>)}

2121

Hierarchical RL
• Use RL for move operators

sp {eater*propose*move
(state <s> ^name eater

^io.input-link <input>)
(<input> ^{ << west east north south >> <dir>}

{ <> wall <color>})
-->

(<s> ^operator <o> +)
(<o> ^name move

^direction <dir>
^color <color>)}

gp {eater*select*move
(state <s> ^name eater

^operator <o> +)
(<o> ^name move

^color [purple red blue green empty])
-->

(<s> ^operator <o> = 0)}

2222

Hierarchical RL
• Use RL for move operators
sp {RL*elaborate*state # same as in normal RL

(state <s> ^name eater
^reward-link <rl>
^io.input-link.score-diff <d>)

-->
(<rl> ^reward.value <d>)}

