Reinforcement Learning (RL)
[JCAI 2016

Nate Derbinsky
Wentworth Institute of Technology

John Laird
University of Michigan

Topics

* RL as a learning mechanism
* Simple example

* Architecture & agent design
* Eater integration

Soar 9

Symbolic Long-Term Memories

Procedural Semantic Episodic
A A
Semantic Episodic
Learning Learning
v

A
|
Symbolic Working Memory

ARt

- —

Decision
Procedure

Spatial Visual System
Object-based
continuous metric space
A
[Perception] [Action

N

July11, 2016 Reinforcement Learning (RL)

RL Cycle

Goal: learn an action-selection policy such as to maximize expected receipt of future reward
Soar: learn numeric _preferences in rules to maximize expected receipt of future reward [in rules]

state _
action
St g
t
|
, reward
I Ftr1
le
I
|
I St+1

July11, 2016 Reinforcement Learning (RL)

Soar Basic Functions

Input from environment

Elaborate current situation: parallel rules

Propose operators via acceptable preferences

Evaluate operators via preferences: Numeric indifferent preference
Select operator

Apply operator: Modify internal data structures: parallel rules
Output to motor system [and access to long-term memories]

NoUunkwhE

State Operator Operator Operator Operator
Elaboration Proposal Evaluation Elaboration Application

@} @@—@@ c) Desiion @@— @z@—@

July11, 2016 Reinforcement Learning (RL)

Left-Right Demo

1. Soar Java Debugger
2. Source left-right.soarfile

July11, 2016 Reinforcement Learning (RL)

Left-Right Demo

Script

l. srand 50412

2. step

3. run 1 -p

4. click:op preftab

» note numeric indifferents

5. print left-right*rl*left
6. print left-right*rl*right

/. run
> note movement direction

8. print left-right*rl*left
9. print left-right*rl*right
10. 1nit-soar

11. Repeat from #2 (~5 times)

Left-Right: Takeaways

Reinforcement learning changes rules in procedural
memory
* Changes are persistent

* Change affects numericindifferent preferences, which in
turn affects the selection of operators

* Changeis in the direction of the underlying reward
signal (will discuss this more shortly)

RL -> Architecture & Agent Design

Value function
via RL rules [agent]

Reward
via working-memory structures [architecture, agent]

Policy updates
via Temporal Difference (TD) Learning [architecture]

RL Rules

The RL mechanism maintains Q-values for state-operator
pairs in specially formulated rules, identified by syntax

 RHS with a single action, asserting a single numeric
indifferent preference with a constant value

sp {left-right*rl*left sp {left-right*rl*right
(state <s> “name left-right (state <s> “name left-right
~“operator <op> +) “operator <op> +)
(<op> “name move (<op> “name move
“dir left) “dir right)
-2 -—2>

(<s> “operator <op> = 0)} (<s> “operator <op> = 0)}

Reward Representation

Each state in WM has a reward-1ink structure

Reward is recognized by syntax
(<reward-link> “reward <r>)

(<r> “value [integer or float])

* The reward-link is not directly modified by the environment or architecture (i.e.
requires agent interpretation/management)

 Reward s collected at the beginning of each decide phase
 Reward on a state’s reward-link pertains only to that state

(more on this later)

« Reward can come from multiple sources: reward values are summed by default

Reward Rule Examples

sp {left-right*reward*left

(state <s> “name left-right

~“location| |

“reward-link <rl>)
-—>
(<rl> “reward <r>)

(<r> “value [|

sp {left-right*reward*right
(state <s> “name left-right
~location |
“‘reward-link <rl>)
-—>
(<rl> “reward <r>)

(<r> “valuel)

July11, 2016

Reinforcement Learning (RL)

RL Updates

» Takes place during decide phase, after operator selection

* For all RL rule instantiations (n) that supported the /ast
selected operator

valuey,; = valuey + (64/n)

Where, roughly...

64 = af rewardy,; + Y(q4,,) - valuey]

Where...
* ais a parameter (learning rate)
* Yis a parameter (discount rate)

* (Qg.1 is dictated by learning policy
* On-policy (SARSA): value of selected operator
» Off-policy (Q-learning): value of operator with maximum selection probability

Eaters RL: General Idea

* Reward comes from:

e eating food
e -1 for movement (push toward efficiency)

* RL rules will learn to select between forward and
rotate operators based on reward

Eaters RL 1: Enable RL

Get your eater code

Add to top of file—turn on RL
* rl -s learning on
 indiff -g #usegreedy decision making
e indiff -e 0.1 #lowepsilon

Eaters RL 2: Modity Proposals

Remove indifferent preference from proposals so RL rules will influence decision.

sp {propose*forward
(state <s> “name eater
Aio.input-link.time)
-->
(<s> "~operator <op> +)
(<op> “name forward)}

sp {propose*rotate
(state <s> “name eater
Aio.input-link.time)
-->
(<s> ~operator <op> +)
(<op> “name rotate)}

Eaters RL 3: General RL-Rules: GP

Generate RL rules for every color and operator combination:

gp {eater*evaluate*forward
(state <s> “name eater
“io.input-link.front [red wall blue empty green purple]
“operator <op> +)
(<op> “name forward)
-—>
(<s> “operator <op> = 0.0)}

gp {eater*evaluate*rotate
(state <s> “name eater

“io.input-link.front [red wall blue empty green purple]
“operator <op> +)
(<op> “name rotate)
-=>
(<s> “operator <op> = 0.0)}

Each of these will generate 6 rules!

RL will change the value of = 0.0in each of the rules as it learns

Eaters RL 4: Reward

Add rule that assigns reward: use the change in score:

sp {eater*elaborate*state
(state <s> “name eater
“‘reward-link <rl>

“io.input-link.score-diff <d>)
-->

(<rl> “reward.value <d>)

Eaters RL 5: Run!

* Run eater
 Lookatrl rules:p -r

* Reset eater (type “r”), run again

* See how rl rules change:
* Number of updates
* Value of indifferent preference

* Gets better, butis very limited by the operators
available (forward and rotate).

