Soar Tutorial Introduction [15 min]

John E. Laird, Nate Derbinsky July 2016

laird@umich.edu

Thanks to these agencies for support this research.

1

- 1.45-1.50: Welcome (both)
- Introductions, download software
- ٠
- 1.50-2.05: Overview (JEL)
- Cognitive a rchitecture as an area of research, Soar [in context]
- •
- 2.05-2.50: Basics (JEL)
- Working memory, rules, decision cycle, operators, preferences; random eater (have them copy from the slides?)+ debugger walk-through
- ٠
- 2.50-3.10: Reinforcement Learning (ND)
- Architectural integration, examples (left-right, eater -> RL)
- ٠
- 3.10-3.30: Impasses/Substates (JEL)
- Types+uses, results/resolution, example agents (eater "move" operator)
- •
- -- Coffee Break (3.30-4.00; deal with any software issues, maybe offer SML via Eclipse?) --
- ٠
- 4.00-4.20: Chunking (JEL)
- What it does, idea of deliberation->reaction, integration with RL for value-function initialization
- ٠
- 4.20-4.40: Semantic Memory (ND)
- Architectural integration, example agents (eater "move" + "evaluate" via SMem + "record", WordNet)
- •
- 4.40-4.50: Episodic Memory (ND)
- Architectural integration, example agent (eater "move" + "evaluate" via EpMem), scales in a variety of tasks to long time frames
- ٠
- 4.50-5.00: SVS (ND)
- Capabilities, architectural integration
- •
- 5.00-5.10: SML (ND)
- Overview, example environment (Eater)
- ٠
- 5.10-5.30: Summing Up (JEL)
- Rosie (uses full architecture + learns), resources (book, manual, tutorials, e-mail list, supported software)
- 5.30-5.45: Q&A (both)

Tutorial Outline

- 1. Cognitive Architecture
- 2. Core Soar
- 3. Reinforcement Learning
- 4. Substates and Impasses
- 5. Chunking
- 6. Semantic Memory
- 7. Episodic Memory
- 8. Interface to other software: SML

Requirements for Intelligent Autonomy

- 1. Ongoing existence
- 2. Pursue many different goals/tasks
- 3. Integrate with perception and motor control
- 4. Maintain rich relational representations
- 5. Make decisions based on current situation and goals in realtime
- 6. Support complex, deliberate reasoning and problem solving
- 7. Use large bodies of knowledge
- 8. Communicate and coordinate with humans and other agents
- 9. Online learning about all aspects of behavior

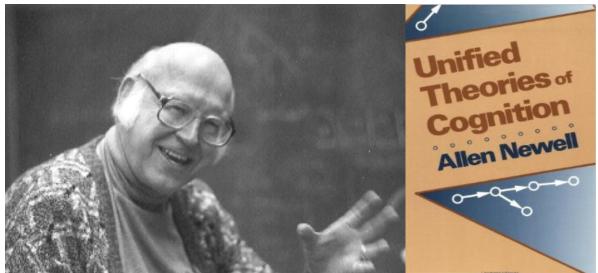
Newell's Time Scale of Human Action

Scale (sec)		<u>c)</u>	Time Units	<u>System</u>	Band	
10 ⁷			months			
10 ⁶			weeks		Social	
10 ⁵			days			
104			hours	Task		
10 ³			10 min	Task	Rational	
10 ²			minutes	Task		System 2
10 ¹			10 sec	Unit task		System 2
100			1 sec	Compositional	Cognitive	
10 ⁻¹			100 ms	Deliberate act		System 1
10-2			10 ms	Neural Circuit		
10 ⁻³			1 ms	Neuron	Biological	System 0 Implementation
10-4			100 µs	Organelle		Implementation

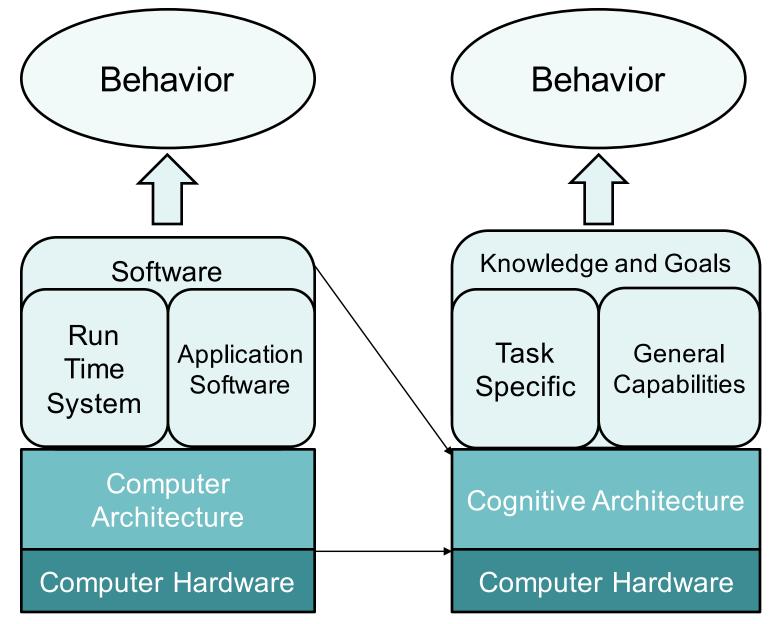
Newell's Time Scale of Human Action

<u>Scale (sec)</u>		Time Units	<u>System</u>	Band
107	$\mathbf{\mathbf{A}}$	months		
10 ⁶		weeks		Social
10 ⁵		days		
104		hours	Task	
10 ³		10 min	Task	Rational
10 ²		minutes	Task	
10 ¹		10 sec	Unit task	
10 ⁰		1 sec	Compositional	Cognitive
10 ⁻¹		100 ms	Deliberate act	
10 ⁻²		10 ms	Neural Circuit	
10 ⁻³		1 ms	Neuron	Biological
10-4		100 µs	Organelle	

Cognitive Band

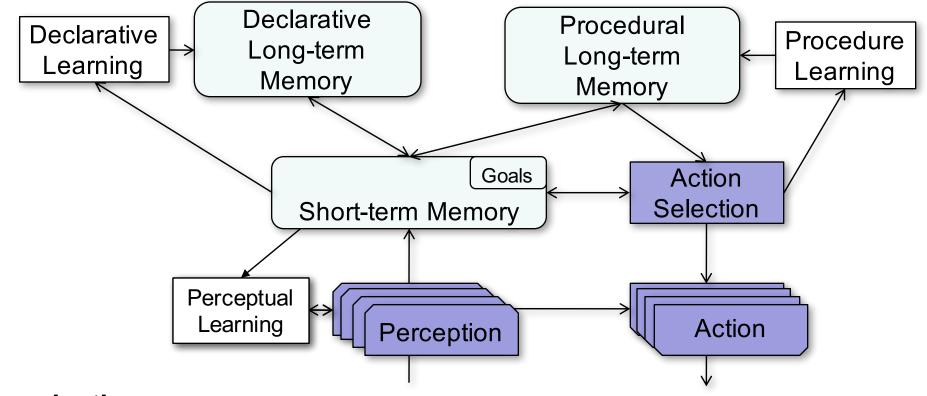

Time Units	System	Cognitive Capabilities	
10 sec	Unit tasks	Complex Reasoning Analogy Planning Meta Reasoning Theory of Mind	
1 sec	Compositional acts	Simple Reasoning Mental Imagery Access Language Processing	
100 ms	Deliberate acts	Reactive Decisions Skilled Behavior Primitive Internal Actions Access Long-term Memories	

- Promiscuous intermixing of cognitive capabilities.
- Ubiquitous learning: automatic and continuous.
 - "Compiles" System 2 to System 1.


Hypothesis

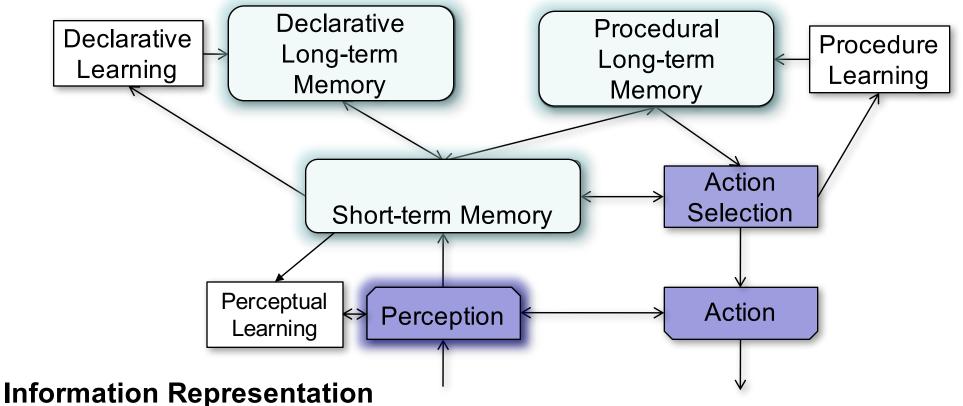
Systematic regularities at the 50ms level define the cognitive architecture.

- Complex behavior (cognitive capabilities) arises from fixed computational building blocks and knowledge:
 - Retrievals from different memories, storing to memories, fixed decision process, multiple learning mechanisms
- Supported by decades of work in cognitive psychology and cognitive architecture research

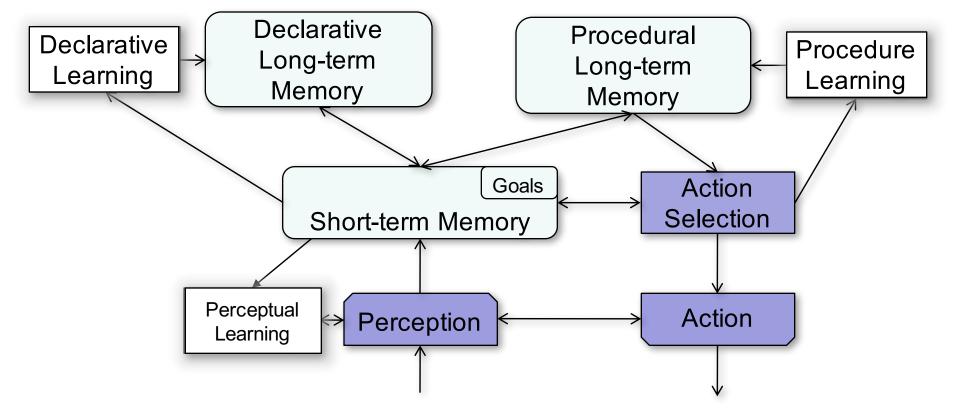


Newell's Time Scale of Human Action

Scale (sec)	<u>Time Units</u>	<u>System</u>	Band	
10 ⁷	months			
10 ⁶	weeks		Social	
10 ⁵	days			
10 ⁴	hours	Task		8 🗖
10 ³	10 min	Task	Rational	sadu
10 ²	minutes	Task		Soa ACI
10 ¹	10 sec	Unit task		
10 ⁰	1 sec	Compositional	Cognitive	
10 ⁻¹	100 ms	Deliberate act		ABRA
10 ⁻²	10 ms	Neural Circuit		RA Z
10 ⁻³ 10 ⁻⁴	1 ms	Neuron	Biological	
10-4	100 µs	Organelle		

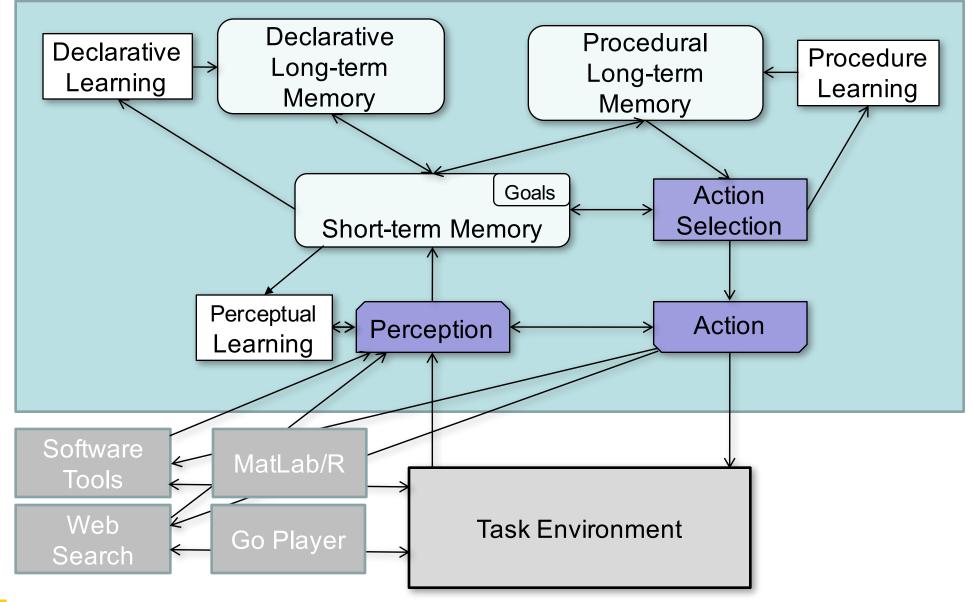

Standard Model of Cognitive Architecture

Organization


- Task-independent modules:
 - memories, learning, decision, perception, motor, ...
- Task-dependent content:
 - knowledge
- Architectural metadata not accessible to task knowledge

Standard Model of Cognitive Architecture

- Perceptual data:
 - Probabilistic/statistical converted to symbolic
- Short-term memory:
 - Symbolic relational structures with statistical metadata
- Long-term declarative memories:
 - Symbolic relational structures with statistical metadata
- Procedural memory:
 - Symbolic rules with statistical metadata


Standard Model of Cognitive Architecture

Processing

- Long-Term Memory Access: Associative asynchronous retrieval
- Performance: Single thread of decisions that are controlled by procedural memory
 - 50msec cycle time to model human cognition
 - Complex behavior arises from sequences of simple decisions
- Learning: Multiple, memory-specific algorithms that are on-line and incremental
 - Skill learning, declarative learning, reinforcement learning, activation tuning, ...

Expanded Architecture

