
Techniques and Strategies
for Data-driven design in
Game Development

Scott Shumaker
Outrage Games

Motivations

Many games are never completed
Many completed games are not
financially successful
These failures are frequently
caused by flaws in the development
process

Game development is hard
From a technology standpoint, game
development is no more difficult than other
software development
However, properly functioning technology is
just one of many requirements for a
successful title
The majority of the development time is not
spent developing technology, but content and
gameplay

Content

Art
Levels
Music
Sound FX
Scripting
Cutscenes
Basically anything that isn’t code

Gameplay

Rules
Goals
Controls
AI and object behavior
Overall play mechanics

Fun and Appeal

Making a game fun and appealing is one of
the hardest challenges in game development
Difficult to predict how a decision will impact
fun factor until after it is actually implemented
Gameplay and content both require a large
amount of tweaking before the game looks,
feels, and plays right

Fun and Appeal - Summary

Fun and appeal are huge factors in a
game’s commercial success
The difficulty in achieving and assessing
these important traits make them the
biggest risk in the project
Improving our process for adjusting
gameplay and tweaking content will
help us minimize risk

Case Study: PacMan

What makes PacMan fun?

Level design
Location of walls
Location of dots
Location of power-pills

Enemy behavior
Speed (before and after power pills)
Respawn rate
AI

Player behavior
Speed
Invincibility time

Tweaking enemy and
player speed, 1st attempt
Pac-man was designed a long time ago
They probably hard-coded the speed

Problems with 1st

approach
Player and enemy have the same
speed, so you need to change it in
multiple places to tweak it
We need to recompile and re-run the
game to see the results of our change
Only someone familiar with this specific
code can tweak it

Tweaking speed, 2nd approach

Pull the variables out and place them in a separate file
You can do this with a #define

Or even better, with a const global variable

Problems with 2nd

approach
We still need to recompile and re-run to
see our changes
You still can’t expect a designer to be
able to make changes
Different, interrelated variables may still
be spread across the code

Tweaking variables
Put all of the variables in a text file, excel
table or database to keep track of them
Designers or programmers can both edit this
‘data source’
Now, we could manually update the variables
in the code whenever they change in the data
source
Instead, why not enable our program to read
in the data source itself?

Advantages of moving
data externally

We no longer need to recompile to tweak
variables
Designers and programmers can edit the
data source
You can view all of the variables at once
You can even change these variables on a
per-level basis
You can write more intuitive tools to edit the
variables

Extending the data source
In PacMan, you can apply this technique to more
than just numerical variables
Levels can be stored as some kind of data file
You can write a level editor that will allow graphical
editing and then write out to this data format
The game can then read in the data file
You can extend this technique to virtually any
aspect of gameplay or content

Character art (models / sprites)
Visual effects
Spawning of enemies / powerups
Attacks, damage, health
Etc.

Case study Summary
Code is a poor location for behavior that
needs to be changed frequently
Moving game behavior out of code and
into data results in a more efficient process
for tweaking content and gameplay
We call this technique Data-Driven Design
This lecture will discuss techniques to
achieve good data-driven design

Part II - Data-driven
design methodologies

Technique I:
Separate Hard and Soft

Architecture

Hard Architecture
Hard Architecture is code that is low-level and
would be pretty uniform across different titles
Examples:

Renderer (graphics system)
Sound system
Low-level input
Resource loader (I/O)
Low-level utility classes
Math library

Soft architecture

Soft Architecture is code that is specific
to the game that you are working on
Examples:

Powerup spawning
Inventory system
Combat system
Scoring system

Hard and Soft Architecture

The distinction is very important
Soft architecture is allowed to know about the
hard architecture systems, but not vice versa
Only be your soft architectural systems that
are responsible for retrieving and
manipulating game data
At some point, they might pass data to the
hard architecture low-level systems

Technique II: Separate
functionality into

Systems

Tokens
Every discrete element of the game is a token
Example: Pac-man

Dots
Power pills
Ghosts
Pac-man
The ghost respawner
The level itself

All of these are tokens, or game elements

The systems approach
What is a game system?

A self-contained module
Operates on some aspect of your game
tokens
Usually performs a piece of game
functionality and implement a specific type of
game behavior
Should be able to be tested in isolation from
most other systems

Case Study: Smash TV 3D

The final 494 project that I and two
other programmers worked on
Designed as a modern, 3d version of
the classic SNES and arcade game
Smash TV
Very fast-paced action game filled with
hordes of enemies, weapons, and
powerups

Case Study: Smash TV 3D

Goals of enemy spawning system
Frenetic action
Responsive to player
Not too difficult, not too easy
Adjustable based on player difficulty
Good complement of enemies

Smash TV 3D Spawn System

Spawn points – placed at various points
in the level (usually behind the doors)
Each spawn point is associated with a
number of waves
Each wave is a group of enemies
(number, configuration, and delay
between each enemy)

Spawn System 2

Spawn System Analysis

Behavior of the spawning system is very
game specific
The spawning system operates on
spawn points, waves, and enemies
It has sole responsibility for managing
waves and spawn points in the game,
but for enemies, it only manages their
creation

The Systems Approach

Game systems manage the tokens in your
game world
Design your systems around functional
aspects of your game, not around the tokens
themselves
You want each system to be responsible for a
specific game behavior, and you’ll find that
your tokens end up interacting with multiple
game systems

Bad example #1
Grunt system
Idea: A system that manages all aspects of the

“grunt” enemies, including creation,
initialization, behavior / AI, collisions,
projectiles, death, rendering.

Why it sucks:
A large portion of the functionality in your grunt

system will need to be duplicated for all your
other enemies, which will also require
systems under this design

Bad Example #2

Enemy System
Idea: A system that manages all aspects

of all enemies
Why it bites:
You soon discover that the player also

shares a lot of common functionality
with enemies, like rendering, weapons,
collision detection, etc.

Systems Approach Strategies

Break up your systems by functionality
In the previous examples, we might have
separate systems for:

Creation
Weapons
Behavior / AI

A good rule of thumb: If there are some
tokens in the world that could benefit from
some of a system’s functionality, but they
cannot use it because of other functionality in
the system, it should be split

Systems Approach Summary

Functionality common to different objects is
all in one place.
Each system needs only limited knowledge
about various tokens. This reduces coupling.
If the system works with one kind of object, it
will work with all kinds of objects that have the
same aspect (this makes it easier to test)

You can view each token as a set of
parameters to one or more systems. This
allows you to tweak the tokens themselves to
change the way your game works.

Technique III:
Component-based

Architecture

Token Architecture

Most games have many different types
of tokens
Many tokens share some properties but
differ in others
Example: Two different enemies

Both have ‘health’
Both have ‘score’
Probably have different AI
May have different movement types (e.g. flying or walking)

Token Architecture

We want to practice code and interface
re-use for tokens

Copy and paste code hurts maintainability
Identical functionality in different tokens
should be treated uniformly by the system
that manages that functionality

How do we structure our tokens to best
realize code and interface re-use?

Approach I: Inheritance-
based class hierarchy
We can use C++
inheritance to share
functionality and
interface

The inheritance
diagram looks like this:

Bullet Bill:
Enemy
Flying
Non-animating

Inheritance hierarchy
Summary

The class-based hierarchy approach
has serious problems with scale
Very complex
Not robust
Poor extendibility

Component-based
architecture

Instead of inheritance, we use
containment.
Take each level of the class hierarchy,
and change it to a component.
This technique is called “Levelizing”.

Levelizing, 2
Model

Animating
Non-animating

Movement
Flying
Walking

Behavior
Enemy
Player
Powerup

If we apply this approach, we end up with the
following for CGameObject:

Implementing the
components

There are several methods for converting a
level of the hierarchy over into a component
The first method involves using C++
inheritance – make a base class that each
class on that level can inherit from
The second method involves containment –
you put all of the functionality in the base
component class

Inheritance Implementation

Containment Implementation

Implementation details, 4
Sometimes you’ll actually end up with a class
inheritance hierarchy off one of the components

Implementation Details, 5

Class hierarchies aren’t completely evil
They just have serious scale problems
For very simple hierarchies, they work
fine
Good rule of thumb: Don’t have a
hierarchy with more than 3 levels
If the hierarchy needs to get deeper,
you should levelize it

Advantages of component-
based architectures

Provides code and interface re-use
without scalability problems
Works well with the systems approach

Physics system – movement
Rendering system – model

Composition of objects isn’t fixed at
compile time – can change while the
game is running.

Token Architecture
Summary

Code and interface re-use are highly desirable
for game object functionality
Inheritance-based class hierarchies should only
be used on limited numbers of object types
Use a component-based architecture for
anything significant
Component-based architectures use
containment rather than inheritance
Component-based architectures also give run-
time flexibility

Technique 4:
Prototype-instance approach

Token Composition
In a inheritance-based token hierarchy, the
composition of each token is determined at
compile time by the inheritance tree

Token composition, 2
In the component token architecture, every
token is composed out of a number of
different components and sub-components
The composition of a token is not defined at
run time.

Prototype definition

Each kind of token in your game has a
‘prototype’ that describes the basic traits
of the token
Example - Smash TV 3D enemies:

Grunts
Orbs
Mr. Shrapnel
Tanks

Prototypes
Prototypes specify the components that compose a
token
They can also specify the values of some of the
variables in those components
Prototypes are shared among tokens of the same
type
Example: Each different enemy type has a unique
behavior, appearance, score, etc.
This information is the same for all instances of that
enemy type
All of this shared information makes up the prototype

Instances

Some information is instance specific - it
can vary even among tokens of the
same type
Examples:

Location in the level
Velocity
Current hit points
Animation state

Protoypes and instances

When an token is created, we want it to be
initialized with the properties in its prototype
We only need to store one set of data for
each prototype
Some data we want to store for every
instance of the token that currently exists in
the game world. This is called ‘instance-
specific data’.

Prototype data – Where
does it come from?

In Smash TV 3D, we had various types of
weapon projectiles in our games:

Rockets
Grenades
3-way spread shot

Each of these projectiles had corresponding
prototype data
The weapons were created through a factory
function

Case study, part deux

A common approach is to initialize a
token’s prototype data in the creation
routines for the token
You probably want to have a listing of
all of the weapons side by side, to
compare their properties
In Smash TV 3D, we had a bunch of
enums and #defines at the top of a file

Weapons example

Case Study, continued
Whenever a weapon was constructed, the
factory would initialize it’s variables.
p_Weapon->SetDamage(kRocketWeaponDamage);
p_Weapon->SetSpeed(kRocketWeaponSpeed);

This approach has many of the problems we
discussed in the Pac-man case study.
The variables are all in code, which is a bad
place for variables that change frequently
During development, a good deal of time was
wasted tweaking variables and then
recompiling

Improvements

We want to move this information into
a text file or database (the “data
source”)
This would allow us to just modify the
data source to test your changes
How do we associate the information
in the data source with the game?

Prototype IDs
A prototype ID corresponds to an entry in our data
source that contains information for a specific prototype

This ID should be globally unique

Prototype ID Name Damage Speed Amount Delay Model
0 Normal Shot 1 10 42 200 Normal.model
1 Rocket 2 5 42 200 Rocket.model
2 SpreadShot 1 10 42 250 3WaySpreadShot.model
3 Grenades 1 5 84 50 Grenades.model

Advantages of Prototype
IDs

We can avoid storing any of the prototype data in the
class at all. Instead of:

m_damage = kRocketWeaponDamage

We get:
CWeapon::GetDamage()
{

return GetWeaponDamage(m_prototype_id);
}
Where m_protoype_id would be initialized to

PROTOTYPE_ROCKET.

Prototype summary

All of the information for your prototypes
should be stored externally in a data source
The game should read in the data source at
run-time and keep a database of prototypes
in memory, each entry storing all of the
information for a specific prototype
Each instance of a token should have a
prototype ID so they can reference their
prototype when it is needed

The Mr. Potatohead
Prototype

Mix N’ Match
You don’t need to have a different prototype
for every token that describes ALL of the
token’s properties explicitly

Instead, you can have prototypes
corresponding to each component in the
token
Then a prototype for a token will actually be
composed of sub-prototypes

Name Model Type Model Name Movement Mode Movement Speed Movement Turn Rate AI type AI Aggressiveness AI Morale AI Learning
Grunt ANIMATING Grunt.model Walking 5 360 ENEMY 0.5 10 No

Mix n’ Match, continued
In Smash TV 3D, we could make
prototypes for the following categories:

Model Prototype ID Name Model Type
0 Grunt.model Animating
1 MrShrapnel.model Animating
2 Invincibility.model Static

Physics type (movement mode)
Prototype ID Movement mode Speed Turn Rate

0 Ground 5 360
1 Air 3 180
2 Air 10 30

AI
Prototype ID Aggressiveness Morale Learning

0 0.5 10 Yes
1 0.7 8 No

More Mix n’ Match

You could then have a prototype for an
enemy look as follows:
Grunt Prototype:

Model: Prototype 0 (Grunt.model)
Physics: Prototype 0 (Walking)
AI: Prototype 1

The Grunt token is then composed of several
sub-prototypes, each which describes one of
the grunt’s components (model, physics, AI)
This allows different tokens to share sub-
prototypes

Extending Mix n’ match
Prototypes can also reference other prototypes
Example: The grunt prototype could reference a
specific weapon prototype, indicating the weapon
the grunt will use – e.g. “Rocket Launcher”
The rocket launcher might in turn reference a 3d
model indicating the visible appearance of the
weapon when wielded
The player could also reference the same weapon
prototype
Using this scheme, the code could treat the
player’s weapon and the enemy’s weapon
identically
This buys consistency and reliability because we
get code and interface re-use in-game

Mix n’ match

Sub-prototypes can be further split into sub-
sub prototypes

Ground movement prototype could be split into
‘treads’ and ‘walking’, etc.
This process can continue ad infinitum

Using prototypes with a component-based
architecture results in a flat object hierarchy,
but a complex data hierarchy

What about Instances?
Once you have your prototypes, you want to
have a way to create instances of them in
your game and set up the instance specific
data
In Smash TV 3D, different types of tokens
were handled differently

Enemies was created through spawn points. A
text file controlled the timing of enemy creation.
The Spawn Points themselves were placed in the
level in 3DS Max and were created when the level
started in the appropriate positions
Powerups were created randomly every couple of
seconds, based on a percentage in a text file

Instances
Instances can be created through designer
intervention and/or through systems
The creation must provide all of the instance specific
data that the token requires
This is usually at least a position in the game world
In Smash TV 3D, the spawn points gave each object
its initial position (at the spawn point)
Initial velocity was always towards the center of the
room
Powerups were created in a random position within a
certain radius of the room’s center

Factory Functions
A common way to implement instantiation of
tokens is through factory functions
Factory functions take a prototype ID, and any
instance-specific data that cannot be filled out by
the data source, and create an instance of an
object
Usually look something like:

Factory functions insulate concrete entity details
from systems that use and spawn those entities

Some_Type_Of_Object_Handle_Or_Pointer
CreateObject(int PrototypeID, instance_specific_initial_params...)

Prototype-instance
Summary

Prototypes consist of the information
necessary to describe the basic traits of a
specific type of token in the game
The instances of a prototype are the actual
tokens of that type that exist in the game
world
Instances contain both a reference to their
prototype (ID) and instance-specific data
Game behavior is generated by tokens, their
prototypes, and the systems that operate on
those prototypes

Technique IV:
Scripting

The systems approach / component
architecture tends to break down when the
number of unique prototypes of a given type
beings to grow dramatically, and when each
prototype requires very different behavior
Examples:

Scripted Events
Object AI implementation

Scripted Events / In-game
Cutscenes

You want a specific sequence of events to occurred
in a specific timed order
Each scripted event is unique
Having a system to manage a bunch of unique
events doesn’t make sense, since you just end up
with a lot of very special case functions in code, one
for each scripted event:

This makes it difficult to tweak these sequences

void PerformCutsceneWherePlayersEntireVillageIsWipedOut();

void PerformCutsceneWherePlayerFlashbacksToPresent();
void PerformCutsceneWhereShadowyFiguresDiscussPlansOfWorldDomination();

That bothersome AI
Object AI is similar in this regard
Each AI is unique and provides a different set
of behaviors
Many of the behavioral variables need to be
greatly tweaked before they look appropriate
There is not enough in common among
disparate AIs to move all of their variables to
a data source without enormous amounts of
effort

The general problem

You will run into this problem whenever you’re
dealing with some component that requires a
large number of very different pieces of special
case code
The key word is ‘different’
If you have a hundred different objects, but you
can break them down into a few variables and
behaviors, you can still use the system-prototype
approach
Each creature AI and cutscene has a vastly
different behavior, even in a simple game

Grunt Variables
static const float32 kEnemyGruntBackswingSpeed = 5.0f;
static const float32 kEnemyGruntSwingSpeed = 15.0f;
static const float32 kEnemyGruntRecoverSpeed = 2.0f;
static const float32 kEnemyGruntSpeed = 15.0f;
static const uint32 kEnemyGruntNumSwings = 3;
static const uint32 kEnemyGruntBackswingTime = 300;
static const uint32 kEnemyGruntSwingTime = 100;
static const uint32 kEnemyGruntRecoveringTime = 500;
static const uint32 kEnemyGruntRecoveredTime = 200;

Rhino Boss Variables
static const uint32 kBossRhinoEntranceDuration = 3000;
static const uint32 kBossRhinoTurnTime = 2000;
static const uint32 kBossRhinoDeathTime = 300;
static const uint32 kBossRhinoTimeBetweenAttacks = 5000;
static const uint32 kBossRhinoTimeBetweenShots = 100;
static const uint32 kBossRhinoPrepShotTime = 1000;
static const uint32 kBossRhinoPrepChargeTime = 3000;
static const float32 kBossRhinoChargeAdjust = 0.95f;
static const uint32 kBossRhinoChargeAdjustTime = 250;

and only a few variables in common:

static const uint32 kBossRhinoHealth = 500;
static const uint32 kEnemyGruntHealth = 1;

What do we want?
Each custom behavior should be able to
function in isolation from other custom
behaviors, so it is easier to test and manage
We want to be able to tweak as easily as
possible
Behavior should be determined at run-time,
rather than compile-time, for the above
reason
Behavior should be treated as “data”, rather
than code, and be managed accordingly

Scripting Languages

Scripting languages are programming
language other than the one actually used to
program your game, and are used them to
write game behavior through an API
You pass the scripting language through tools
that compile the language into a format that
can be loaded on the fly and executed

Problems with Scripting
Languages

Writing one is not for the faint of heart
Require an enormous amount of work
You have to write a compiler and executer
You have to expose an API to them
You will have to write a parameter marshaller
You will want a nice suite of tools, like a development
environment, debugger, etc.
There will be learning curve since it’s a brand new language
May result in unmaintainable spaghetti code if poorly designed
Usually at best 1/10 speed of C/C++, so can drag down
performance
Existing scripting languages (Python, Ruby) may not meet your
needs, there’s still a learning curve, and will still run very slowly

Dlls
All we really want is to be able to write in
code, and have that code loaded at run-time
rather than linked in at compile-time
On Windows, DLLs do exactly that
Very similar to executables – collections of
methods and variables in a specific format
DLLs cannot be launched directly
Another executable or DLL must load the DLL
into its memory space, and then it can use
the DLLs functions

Using DLLs

You should encapsule each different behavior
in its own DLL
Within each DLL, you’ll probably need to
expose a few entry points

A Run() method
An Initialize() method
A Shutdown() method
A way to notify the script of events

Keep entry points to a minimum; your game
should communicate with the script in your
DLL through a limited number of connections

Using DLLs, 2
You will need to provide an API to allow the script to
communicate with the rest of the game
Approach 1:

Write another DLL that contains the API. The game should
load this DLL on startup and intialize it with access to all of
the appropriate global variables. These variables should
be stored in a shared segment of the DLL. All script DLLs
should link against the LIB provided with this DLL
Approach 2:

When the script starts up, pass it a structure that contains a
bunch of function pointers to all of the API functions (or
optionally a class with pure virtual functions)

Using C++ classes in scripts

Because of name-mangling, you can’t place
the exported functions in a class
To avoid this problem, you can use a wrapper
approach. In your initialize(), allocate an
instance of the class you want to use as a
global variable. Then, have the Run(),
CallEvent(), and other exported functions just
forward the call to functions in the instantiated
class.

A better approach
Create an abstract base class with the functions that
you would have normally exposed in your DLL.

class CScriptDLL
{
public:

virtual bool Initialize() = 0;
virtual bool Shutdown() = 0;
virtual bool Run() = 0;

};

You cannot instantiate CScriptDLL.
You have to create a class that inherits from it, and
implement all its the pure virtual functions

class CCreatureAI: public CScriptDLL
{
public:

virtual bool Initialize() {...}
virtual bool Shutdown() {...}
virtual bool Run() {...}

};

Now, any code that knows about CScriptDLL can call
these functions through a CScriptDLL pointer, even if it
actually points to a CCreatureAI.
Now, instead of exposing all of these functions in the DLL,
you only need to expose one function:

CScriptDLL* EXPORT CreateDLLInstance()
{

return new CCreatureAI;
}

When the executable loads your DLL, it only needs to call
CreateDLLInstance(), hold on to the returned pointer, and
use it to call the Initialize(), Shutdown(), and Run() functions

Scripting Languages vs. DLLS
There are tradeoffs between both scripting languages and
DLLs
The argument that scripting languages are easier to use
for non-programmers is irrelevant; most complex behavior
can only be written by someone could also understand
C/C++
One advantage scripting languages can offer is language
features difficult or impossible to realize in C/ C++
For DLLs, you must have a version of Visual C++ or the
equivalent on the machines that will be compiling scripts
For a game like Quake, where a lively mod community is
desired, this may not be an option
On consoles, you will have to learn the executable format
and write your own linker to use the DLL method
This is still easier than writing a scripting language

Technique VI: The Data
Editor

The prior techniques have suggested
ways to move much of the game
behavior into a ‘data source’ external to
the code
We want to be able to edit the ‘data
source’ as easily as possible
A database can be a good choice for
your data source, since they are easy to
read and edit

The Data Editor, 2
Databases are only good for numerical and text data
For graphical data, you should write new or leverage
existing tools to manipulate the data in a graphical
fashion
Try to use existing tools when possible
In Smash TV 3D, we used 3DS Max to create levels
and place spawn points, collision data, and doors
At Outrage, we use Maya for editing of objects and
levels, and have written a whole suite of plugin tools to
add game content
Even for text and numerical data, it can also be useful
to write dialogs that wrap the database for ease of
editing

Technique VII: ASCII vs.
Binary

If you have a lot of files that get loaded into the game,
you can adopt a dual ASCII / binary approach
ASCII is easier to debug and validate
Binary is faster and reduces file size
You can have all your tools write out ASCII files in a
manner that can be easily read in
Also provide a tool that convert the ASCII into tightly
packed binary
If you add binary / ASCII transparency into your file
I/O libraries, you will get the best of both worlds
Don’t read in the database as is either; have tools to
convert it to an easily-read binary form

Technique VIII:
Reload game content on the fly

Editing values in the database does not
require a recompile
It still requires a restart of the game and a
reload
A system that lets you reload portions of the
game data while the game is actually running
can save huge amounts of time
You can even add a button on the data editor
to automatically signal the game to reload its
game data, making the process automatic

Technique IX: Debug
global variables

DLLs / scripts often have dozens of variables that need to
be tweaked
We must recompile or at least reload the script to make
any changes
This slows down tweaking of these variables
It is also far too time-consuming to expose all of the
variables in DLLs / scripts individually in the data source
Instead, create some generic debug global variables
(some floats, some ints, etc.)
Use the debug variable in place of the real variable while
testing values that need tweaking
Since they are global, you can change their values in the
debugger
This will give you instant feedback for tweaking

Caveats
Don’t lose sight of your original goal
All of these techniques require additional
work up front before you see any results
Take the timeframe and design of your
project into account
Don’t write code that won’t be used
immediately
The best way to design for the future is to
have a solid design and clean, well-
commented code

Data-driven design
Summary

Moving game behavior out of code and
into data results in a more efficient process
for tweaking content and gameplay
Use a component-based architecture with the
prototype-instance approach for easily
tweakable and incredibly flexible game
tokens
Structure your game systems to operate on
specific tokens and / or token components

Questions?

THE END

Techniques and Strategies for Data-
Driven Design in Game Development

Scott Shumaker
Programmer,
Outrage Games
sshumaker@outrage.com

	Techniques and Strategies for Data-driven design in Game Development
	Motivations
	Game development is hard
	Content
	Gameplay
	Fun and Appeal
	Fun and Appeal - Summary
	Case Study: PacMan
	What makes PacMan fun?
	Tweaking enemy and player speed, 1st attempt
	Problems with 1st approach
	Tweaking speed, 2nd approach
	Problems with 2nd approach
	Tweaking variables
	Advantages of moving data externally
	Extending the data source
	Case study Summary
	Part II - Data-driven design methodologies
	Technique I:Separate Hard and Soft Architecture
	Hard Architecture
	Soft architecture
	Hard and Soft Architecture
	Technique II: Separate functionality into Systems
	Tokens
	The systems approach
	Case Study: Smash TV 3D
	Case Study: Smash TV 3D
	Smash TV 3D Spawn System
	Spawn System 2
	Spawn System Analysis
	The Systems Approach
	Bad example #1
	Bad Example #2
	Systems Approach Strategies
	Systems Approach Summary
	Technique III:Component-based Architecture
	Token Architecture
	Token Architecture
	Approach I: Inheritance-based class hierarchy
	Inheritance hierarchy Summary
	Component-based architecture
	Levelizing, 2
	Implementing the components
	Inheritance Implementation
	Containment Implementation
	Implementation details, 4
	Implementation Details, 5
	Advantages of component-based architectures
	Token Architecture Summary
	Technique 4:Prototype-instance approach
	Token Composition
	Token composition, 2
	Prototype definition
	Prototypes
	Instances
	Protoypes and instances
	Prototype data – Where does it come from?
	Case study, part deux
	Weapons example
	Case Study, continued
	Improvements
	Prototype IDs
	Advantages of Prototype IDs
	Prototype summary
	The Mr. Potatohead Prototype
	Mix N’ Match
	Mix n’ Match, continued
	More Mix n’ Match
	Extending Mix n’ match
	Mix n’ match
	What about Instances?
	Instances
	Factory Functions
	Prototype-instance Summary
	Technique IV:Scripting
	Scripted Events / In-game Cutscenes
	That bothersome AI
	The general problem
	What do we want?
	Scripting Languages
	Problems with Scripting Languages
	Dlls
	Using DLLs
	Using DLLs, 2
	Using C++ classes in scripts
	A better approach
	Scripting Languages vs. DLLS
	Technique VI: The Data Editor
	The Data Editor, 2
	Technique VII: ASCII vs. Binary
	Technique VIII:Reload game content on the fly
	Technique IX: Debug global variables
	Caveats
	Data-driven design Summary
	Questions?
	THE END

