
Movement: Path Finding,
Flocking, Formation

John LairdJohn Laird
9/27/10

Al b d t lk b L Lidé dAlso based on talks by Lars Lidén and
Damián Isla

MovementMovement
• Movement layer figures out how the character should

i h ldmove in the world
• Avoid obstacles, follow others, …
• Does not figure out

• where to move or
h t i t t• how to animate movement

Simple MovementSimple Movement
• Random motion

• Just roll the dice to pick when and which direction to movep

• Simple pattern
• Follow invisible tracks: Galaxians

• Tracking• Tracking
• Pure Pursuit: Move toward agent’s current position

• Heat seeking missile
• Lead Pursuit: Move to position in front of agent
• Collision: Move toward where agent will be

Pure PursuitPure Pursuit

Lead PursuitLead Pursuit

CollisionCollision

Simple Movement - moreSimple Movement more
• Tracking

• Weave: Every N seconds move X degree off opponent’s bearingy g pp g
• Spiral: Head 90-M degrees off of opponent’s bearing

• Evasive – opposite of any tracking

• Delayed or restricted sensing gives different effects

Moving in the World: Path FindingMoving in the World: Path Finding
• Just try moving toward goal while avoiding obstacles.

G lGoal

Source

ProblemProblem

G lGoal

Source

Create Avoidance RegionsCreate Avoidance Regions

G lGoal

Source

Path Planning ProblemPath Planning Problem
• Given a graph with some cost function, find the

h h b i i h hshortest path between two vertices in the graph
• Arbitrary graph
• 2D world – node-based, or tile based, convex regions,

squares, rectangles, hexes
• 2½D world – no arches – same thing
• 3D world – node-based, or treat mostly as 2D tiles with y

unusual connectivity

Path FindingPath Finding

A: 10 K: 54 3

F: 7

6
22

I: 5
3

7

C: 7

1

G: 5 L: 3

2

8

3
D: 6

2

J: 2
H: 4 M: 0

2
2 2

E: 5

2 1
2

B: 6

AnalysisAnalysis
• Find the shortest path through a maze of rooms
• Approach is A*:

• At each step, calculate the cost of each expanded path
• Also calculate an estimate of remaining cost of path
• Extend path with the lowest cost + estimate

• Cost can be more than just distance:
• Climbing and swimming are harder (2x)Climbing and swimming are harder (2x)
• Monster filled rooms are really bad (5x)
• Can add cost to turning – creates smoother paths
• But must be a numeric calculationBut must be a numeric calculation
• Must guarantee that estimate is not an overestimate

• A* will always find shortest path

A* Advantages/DisadvantagesA Advantages/Disadvantages
• Advantages:

P bl i l• Provably optimal
• Usually limits search

• Especially for simple graphs
• Linear with straight lines

• Can have complex cost function that includes many things
• Visibility, effort, …

• Disadvantages:
• Can spend a lot of resources getting optimal result
• Can be compute and memory intensive
• Exhaustive if no path
• Requires admissible heuristicRequires admissible heuristic

A* Nuts and BoltsA Nuts and Bolts
• Best-first search (with dynamic programming)

• Generating partial paths• Generating partial paths

• Evaluation function f = g + h
• g = actual cost from start node to current node along current path

• Must be monotonic
• h = estimated cost from current node to goal node

• h must not overestimate the cost to the goal
• Used to guide the search – closer to actual cost the smaller the search• Used to guide the search closer to actual cost the smaller the search

A C

A

B DA

D B
F

C B D

C E EF
E

F FD B

Cost FunctionsCost Functions
• Examples:

Di• Distance
• Geometric Distance
• Manhattan distance (when moving through tiles)(g g)

• Traversal speed based on terrain type
• Danger (near enemy)

Vi ibilit [Vi i R d]• Visibility [Vision, Radar]
• Amount of turning

• Things can’t do:• Things can t do:
• Negative cost (time travel)

NodesNodes
• Information associated with each node:

• g = cost of shortest path from start to nodeg p
• h = estimated cost to goal
• f = g + h
• Parent = parent on shortest path from start to node

N d i ll th!• Node is really a path!
• Children = all children of this node
• Other task dependent data – x, y, z location,…

Li k h f l• Links have cost of traversal

Path FindingPath Finding

A: 10 K: 54 3

F: 7

6
22

I: 5
3

7

C: 7

1

G: 5 L: 3

2

8

3
D: 6

2

J: 2
H: 4 M: 0

2
2 2

E: 5

2 1
2

B: 6

AlgorithmAlgorithm
1. Let P = starting point
2 A i f h t P2. Assign f, g, h to P
3. Add P to Open list
4 Let B = the best node from the Open list (lowest f)4. Let B the best node from the Open list (lowest f)

1. If B is the goal node, then quit – a path is found
2. If the Open list is empty, then quit – no path

5 Let C = a valid node connected to B (child)5. Let C = a valid node connected to B (child)
1. Assign f, g, h to C
2. Check if C is part of path on Open or Closed List

1. If so, check whether the new path is better (lower f), p ()
1. If so, recursively update all super-paths

2. Else, add C to the Open list
3. Repeat 5 for all valid children of B
4 Add B to Closed List4. Add B to Closed List

6. Repeat from step 4

Costly operations: Optimize executionCostly operations: Optimize execution
1. Let B = the best node from the Open list (lowest f)

1. Sorted open list: heapp p
2. Check if C is on Open or Closed List

1. Have bit vector associated with map nodes – in open/closed
2 H h h t2. Hash – heap sort

3. Else, add C to the Open list
1. Heapp

4. Add B to the Closed list
1. Don’t sort Closed list – make a hashtable

5 If i l d ll h5. If so, recursively update all super-path

Optimization: Cache top of open list don’t sort all of it don’tOptimization: Cache top of open-list – don t sort all of it – don t
expect to go through all of it

Lots of large spaces and obstaclesLots of large spaces and obstacles
• Add all regions of high terrain cost

• If the added region entirely covers the current cell, set the current cell’s cost to the
new cost.

• Otherwise, divide the current cell into four equal size quarters, and recursively
add the new region to each child cell.

• Simplify Quad trees• Simplify Quad-trees
• Recombine any cell that has all children of equal cost

• Extract the graph of neighboring cells
• If impassable, skip the restp , p
• If current cell is undivided, add it to list of cells, that border the n,s,e,w and skip
• Else recur through all children

• Create the list of internal cells that border our north border by merging the northborder lists of ne
and nw children.

• Create neighbor links.

• Need to smooth paths
• Find best corners of cells
• Use last-visible point –Use last visible point

• Draw a straight line from the current point to
• The earliest point on path and not exit cells in our path

Time-SlicingTime Slicing
• Can’t always compute complete path in one frame

I h l i k• Increase resources the longer it takes

• Do a very quick search to start
S h N d h f M• Search N nodes or search for M msec

• Do full search while moving through first N nodes
• If don’t complete take best so far• If don t complete, take best so far

• Splice from current [N] to final

DetailsDetails
• Cache paths – reuse and splice onto them

PRECOMPUTATION!• PRECOMPUTATION!

• If tried same failed path multiple times – kill unit, …
• Design maps so there aren’t big obstacles in the middle
• If maps have choke points, can precompute

Is optimal really necessary?Is optimal really necessary?
• What can we do to get a pretty good solution?
• If find a path to the goal, just take it
• Bias search by inflating h [dangerous, but possible]y g [g p]

Dynamic TerrainDynamic Terrain
• Re-plan when get to changed part of path
• Periodically re-plan
• Set trigger for terrain that is used and then re-plangg p

• Expensive if terrain will change and change back

Movement: Pathfinding ToolsMovement: Pathfinding Tools
• Waypoint

• Position in a map that is used for navigationp g
• Usually placed in word manually by a level designer
•• A*A* is the preferred pathfinding algorithm for quickly finding a short

path between two waypoints

• Link
• Connection between two waypoints
• Often annotated with the required navigation type (Jump, Swim,Often annotated with the required navigation type (Jump, Swim,

Climb)
• For a given NPC, two waypoints are linked when:

– The NPC has room enough to move from one node to another without
llidi ith th ld tcolliding with the world geometry

– The NPC has the required navigation ability

• Node Graphp
• Data structure holding all waypoints and links
• Either generated manually by a level designer or automatically by the

computer and annotated by a level designer

Movement: Node GraphMovement: Node Graph

Spatial Feature ExtractionSpatial Feature Extraction
A lot of features we’re interested in

can be extracted automatically …

• Surface categorization /
characterization

• Surface connectivitySurface connectivity
• Overhang detection
• Interior/exterior surfaces
• Ledgesg
• Wall-bases
• “Leanable” walls
• Corners
• “Step” sectors
• Thresholds
• Local environment classification

• Captures the “openness” of theCaptures the openness of the
environment at firing positions

Spatial Feature Extractionp
… and a lot can’t. So we

make the designers do
iit.

Designer “hints”:
• Jumping
• Climbing
• Hoisting
• “Wells”
• Manual fix-up for when the

i f ilautomatic processes fail:
• Cookie-cutters
• Connectivity hints

Configuration space approachConfiguration space approach

Embedded Info, Animation, SoundEmbedded Info, Animation, Sound

Embedded info can be used in path finding:
• Node graph is an example embedded environment information
• embed in path how to jump over crevices or how to open door

(Soldiers of Fortune 2)
• illusion of coordination by “reserving” a path

Embedding AnimationEmbedding Animation

Quake III ArenaQuake III Arena

• Released in 1999 by id Software
• Designed to be a multiplayer only game
• The player battles computer-controlled

opponents, or bots
• Bots developed by Jan Paul van Waveren

Quake III Bot AIQuake III Bot AI

• FSM based – Uses a stack for short-term goals
• Use Fuzzy Logic for some decision makingUse Fuzzy Logic for some decision making

• Collecting weapons and armor
• Choosing a weapon for combat

• Fuzzy Relations were selected using Genetic
Algorithms

• Each bot has a data file containing weapon preferences
and behavior-controlling variables

Bot NetworkBot Network

Quake III Bot NavigationQuake III Bot Navigation

• AAS (Area Awareness System)
• Level is subdivided into convex hulls that contain no

obstacles
• Connections between areas are formed

Simple Animate ObjectsSimple Animate Objects
• Bugs

• Never fly in a straight line
• Don’t always flap their wings

Att t d t d t i bj t• Attracted toward certain objects
• Avoid moving objects
• Affected by wind/breezes

• Solitary birds: Soaring Bird of Prey
Fl th i i l lid /• Flap their wings rarely: glide/soar

• Move to area to catch thermals
• Move in circle
• Dive to get food (either bird or ground animal)
• Stay away from planes, etcStay away from planes, etc.

• Ground animals
• Stay in limited area [bounding box]
• Feed most of the time

• look for food, Eat food, Bring food to nest, Fight over food, , g , g
• Startled/alerted by motion of bigger animal

• Flocks
• Schools of Fish

i d d i l• Primary and secondary animals

Flocking Things:
Wh / d lWhat to measure/model

• Nearby entities• Nearby entities
• Current path
• Interaction with weather
• Simple model of hunger, thirst…
• Don’t really need physics – can “embed” physics in

behavior

FlockingFlocking

Separation: steer to avoid crowding local flockmates
Alignment: steer towards the average heading of local flockmates
Cohesion: steer to move toward the average position of local flockmates
Avoidance: Steer to avoid running into local obstacles or enemies

a boid's neighborhooda boid s neighborhood

IssuesIssues
• Stateless
• Leader can have more influence than others
• Roll pitch yawRoll, pitch, yaw
• Perceptual range

A l ti h l it b t fi d• Acceleration – change velocity by up to some fixed
percent

Schools of fishSchools of fish

• Sudden change of motion every 2-10 seconds
• Random targets to head towardRandom targets to head toward
• Targets change as they are achieved

SwarmsSwarms

• Lots of agent
• Flies toward N nearest neighbors – don’t avoid collisions
• No alignment, computationally more efficient

FormationsFormations
• Organized movements

U ll i i b fi d i i• Usually same orientation – but fixed position

Right flank
Left flank

Wedge

Line Staggered
Column

Line Staggered
line

IssuesIssues

• Movement
• Spacing Distance
• Field of fire
• Protection of range attack
• Different turning radius
• Mixed types

• User control – automatic control

Web sitesWeb sites
• http://www.red3d.com/cwr/boids/ - reynolds boids
• http://www.riversoftavg.com/flocking.htm - flocking
• http://www.riversoftavg.com/formation_flocking.htm -p g _ g

formation

