UnIVERSITY OF Michigan

Multi-Job Production Systems

Pooya Alavian ${ }^{1}$ | Peter Denno ${ }^{2}$ | Semyon M. Meerkov ${ }^{1}$
1 University of Michigan, Ann Arbor, MI
2 National institute of Standards and Technology (NIST), Gaithersburg, MD

Introduction: MJP systems

Problems

Solutions and results
Case study
Summary and future work

Introduction

Multi-Job Production (MJP) Systems

- Jobs are released one-by-one according to a product-mix and build schedule.
- Different job-types require different amount of work at some or all operations.
- Processing times are deterministic and job-dependent.
- The setup times are zero.
- In-process buffers are non-dedicated.
- Jobs are processed on a FIFO basis.
- The machines are unreliable and experience random breakdowns.

MJP Systems illustration

MJP Systems illustration

Who uses MJP

- Auto industry
- Assembly plants
- Engine and transmission plants
- Battery plants
- Suppliers
- Household appliance industry
- Computer industry

Problems

The Problem

- The relation between throughput, bottleneck and product-mix is not known.
- Performance losses of 10-20\% consistently observed in MJP plants
- No theory exists to address these losses

MJP Theory

- MJP Theory addresses the following problems

Performance analysis

Calculate performance characteristics of MJP systems (e.g., TP, WIP, probability of machine blockage and starvation) as functions of the product-mix.

Continuous improvement

Determine MJP system bottlenecks, indicate a way to alleviate them, and quantify the resulting performance improvement as functions of the product-mix.

- MJP Toolbox

```
MJP Toolbox
```

Provide a software package to make the theory usable to industry and academia, via both real-time and off-line analysis capabilities.

Different types of MJP systems

- Serial line

Different types of MJP systems

- Hybrid serial line

Different types of MJP systems

- Assembly system

MA main assembly line SA_{i} subassembly lines

Solutions and results

Work-based model

- Work-based model
- Machines produce work
- Work capacity of machine $i: W_{i}$
- Jobs require work
- Work-requirement of job j at machine $i: w_{i j}$
- Different job-types require different amount of work.
- Processing time of job-type j at machine $i: \tau_{i j}=w_{i j} / W_{i}$
- Suitable for analysis of MJP and Single-Job Production (SJP) systems

Performance analysis for serial lines

- Three-step procedure

Virtual SJP
 system

Performance estimation

Conversion to MJP

Performance analysis for serial lines

- Three-step procedure

Virtual SJP system

Performance estimation

Conversion to MJP

For the given product-mix, create a virtual SJP system processing a virtual job whose work-requirements are weighted (by product mix) average of jobs' work requirements ($w_{i, v}=\sum_{j} r_{j} w_{i j}$)

Performance analysis for serial lines

- Three-step procedure

Virtual SJP system

Performance estimation

Conversion to MJP

Performance of the virtual system is estimated using the methods available in the literature. We used aggregation method from Li and Meerkov (2007).

Performance analysis for serial lines

- Three-step procedure

Virtual SJP system

Performance estimation

Conversion to MJP

Estimate the performance metrics of the original MJP line from the virtual SJP system.

Accuracy

- Accuracy of the conversion from MJP to virtual SJP is very high
- Less than 0.2\% error in TP for 10-machine lines
- Accuracy of step 2 depends on the method used
- We used aggregation method by Li and Meerkov, 2009
- Around 4% error in TP for 10-machine lines
- Conversion from SJP back to MJP does not introduce additional errors.

Classification of MJP systems

- Two distinct behaviors of TP as function of product-mix
- Definition. Two job-types are non-conflicting if $B N_{J 1}=B N_{J 2}$
- Otherwise, they are conflicting.

For illustration purposes, systems with 2 job-types are presented in the rest of the presentation.
Product-mix is denoted as $r_{1}=r, r_{2}=1-r$

Non-conflicting jobs

- Theorem. If J1 and J2 are non-conflicting with common bottleneck m_{k}, and all buffers are of zero or infinite capacity
- m_{k} is BN for any r
- $T P_{v}(r)$ is given by
- $T P_{v}(r)=\frac{1}{\frac{r}{T P_{J 1}}+\frac{1-r}{T P_{J 2}}}$
- $T P_{v}(r)$ is
- Strictly monotonically increasing if $T P_{J 1}>T P_{J 2}$
- Strictly monotonically decreasing if $T P_{J 1}<T P_{J 2}$
- Constant if $T P_{J 1}=T P_{J 2}$
- Numerical fact. The above results hold true for lines with any buffers. Analyzing 25000 lines:
- $B N$ remaining the same machine in 99.2% of cases

- $T P$ is monotonic in 92.8% of cases
- Accuracy of (b) is above 99% in 95.8% of cases

Non-conflicting jobs

- Intuitive behavior
- Not linear
- No BN switches
- Easily expandable to more than two job-types

Conflicting jobs

- Theorem. Consider an M-machine line producing conflicting jobs J1 and J2, i.e., $B N_{J 1} \neq B N_{J 2}$. If buffers are $N=0$ or $N=\infty$, then
- BN has at most $M-1$ switches in the interval of r
- If there are K BN switches, then $T P(r)$ has $K+1$ intervals of continuous differentiability.
- If $w_{B N_{J 1,1}}>w_{B N_{J 1}, 2}$ and $w_{B N_{J 2}, 1}<w_{B N_{J 2}, 2}$, then there is an interval $R \subset[0,1]$, at which $T P(r) \stackrel{>}{>} T P_{J j}$

Conflicting jobs

- Why TP(r) acts non-monotonically?

$$
T P=\frac{8}{12}=0.66
$$

33% more production

Performance portrait

- Graphically presents throughput and bottlenecks as functions of the productmix
- Works with systems with more than two job-types by introducing additional degrees of freedom.

Primary job-type: © J1 ○ J2 ○ J3
Mix of non-primary job-types:

Case study

The data presented in the following slides are modified due to confidentiality purposes

Production System

- Automotive assembly plant > Body shop > Underbody
- Two job-types
- Study period: 14 weeks

Current system

- Body shop target TP: 55 JPH
- Body shop current TP: 49 JPH
- Typical range of product-mix of job 1 - $r_{1} \in[25 \%, 50 \%]$
- Bottleneck OP7

Continuous improvement project

- Improve OP7
- Prioritize maintenance
- Prioritize delivery
- Improve manual loading
- Result

Continuous improvement project

- Improve OP1
- Look into Front comp. line for J1
- Model Front comp. line
- Find BNs
- Design improvement plan
- Result

Continuous improvement project

Summary

Summary

- MJP systems are widely used in the industries
- $15 \%-20 \%$ of their capacity is wasted
- MJP theory helps recover these losses
- Performance portraits are quick and easy way to understand system behavior and plan continuous improvement projects

Future work

- Develop the theory for the assembly systems
- Improve overall MJP accuracy by improving the accuracy of current methods for SJP systems analyses
- Integrating MJP tools especially performance portrait into plants' production management dashboard

Thank you

© 2017 University of Michigan

Continuous improvement

- Bottleneck identification
- Bottleneck: machine whose capacity affects throughput the most
- m_{i} is bottleneck iff $w_{i, v}(r) \frac{\partial T P}{\partial W_{i}}>\frac{\partial T P}{\partial W_{k}} w_{k, v}(r)$, for all machine $k \neq i$
- Alternate approach: arrow method
- Use blockage and starvation data
- Compare $B L_{i}$ with $S T_{i+1}$ and draw an arrow toward the smaller
- The machine(s) with no emanating arrows is the bottleneck

Work-based model

- WBM characterizes the production system components
- Machines (Operations)
- Work capacity
- Reliability characteristics (MTBF/MTTR/...)
- Starvation/blockage measurement policy
- Buffers
- Non-dedicated vs. dedicated
- Jobs
- Work requirement at each operation
- Release
- According to product-mix or build-schedule

Accuracy

- Step one has high accuracy
- Less than 0.6% discrepancy in BN identification of 5-machine lines
- Step two
- Lower accuracy; 10\% discrepancy in BN identification of 5-machine lines
- Step three
- No additional errors are introduced

Performance analysis for serial lines

- Three-step procedure
- For any product-mix, create the corresponding virtual SJP system
- Calculate (estimate) performance of the virtual system using the methods available in the literature
- Convert the results back to original MJP system coordinates

