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Multi-Job Production (MJP) Systems

• Jobs are released one-by-one according to a product-mix and build 
schedule.

• Different job-types require different amount of work at some or all 
operations.

• Processing times are deterministic and job-dependent. 

• The setup times are zero.

• In-process buffers are non-dedicated.

• Jobs are processed on a FIFO basis.

• The machines are unreliable and experience random breakdowns.
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MJP Systems illustration
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Who uses MJP

• Auto industry
• Assembly plants

• Engine and transmission plants

• Battery plants

• Suppliers

• Household appliance industry

• Computer industry
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Problems
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The Problem

• The relation between throughput, bottleneck and product-mix is not 
known.

• Performance losses of 10-20% consistently observed in MJP plants 

• No theory exists to address these losses
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MJP Theory

• MJP Theory addresses the following problems

• MJP Toolbox
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Calculate performance characteristics  of MJP systems (e.g., TP, WIP, probability of 
machine blockage and starvation) as functions of the product-mix.

Performance analysis

Determine MJP system bottlenecks, indicate a way to alleviate them, and quantify 
the resulting performance improvement as functions of the product-mix.

Continuous improvement

Provide a software package to make the theory usable to industry and academia, via 
both real-time and off-line analysis capabilities.

MJP Toolbox



Different types of MJP systems

• Serial line
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Different types of MJP systems

• Hybrid serial line
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Different types of MJP systems

• Assembly system
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Solutions and results
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Work-based model

• Work-based model
• Machines produce work

• Work capacity of machine 𝑖: 𝑊𝑖

• Jobs require work
• Work-requirement of job 𝑗 at machine 𝑖: 𝑤𝑖𝑗

• Different job-types require different amount of work.
• Processing time of job-type 𝑗 at machine 𝑖: 𝜏𝑖𝑗 = 𝑤𝑖𝑗/𝑊𝑖

• Suitable for analysis of MJP and Single-Job Production (SJP) systems
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Performance analysis for serial lines

• Three-step procedure
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Virtual SJP 
system

Performance 
estimation

Conversion to 
MJP

For the given product-mix, create a virtual SJP system processing a virtual 
job whose work-requirements are weighted (by product mix) average of 
jobs’ work requirements (𝑤𝑖,𝑣 = σ𝑗 𝑟𝑗𝑤𝑖𝑗)



Performance analysis for serial lines

• Three-step procedure
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Performance of the virtual system is estimated using the methods 
available in the literature. We used aggregation method from Li and 
Meerkov (2007).



Performance analysis for serial lines

• Three-step procedure
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Virtual SJP 
system

Performance 
estimation

Conversion to 
MJP

Estimate the performance metrics of the original MJP line from the virtual 
SJP system.



Accuracy

• Accuracy of the conversion from MJP to virtual SJP is very high
• Less than 0.2% error in TP for 10-machine lines

• Accuracy of step 2 depends on the method used
• We used aggregation method by Li and Meerkov, 2009

• Around 4% error in TP for 10-machine lines

• Conversion from SJP back to MJP does not introduce additional 
errors.
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Classification of MJP systems

• Two distinct behaviors of TP as function of product-mix

• DEFINITION. Two job-types are non-conflicting if 𝐵𝑁𝐽1 = 𝐵𝑁𝐽2

• Otherwise, they are conflicting.

For illustration purposes, systems with 2 job-types are presented in the rest of 
the presentation. 

Product-mix is denoted as 𝑟1 = 𝑟, 𝑟2 = 1 − 𝑟
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Non-conflicting jobs

• THEOREM. If J1 and J2 are non-conflicting with common 
bottleneck 𝑚𝑘, and all buffers are of zero or infinite 
capacity

• 𝑚𝑘 is BN for any 𝑟

• 𝑇𝑃𝑣(𝑟) is given by

• 𝑇𝑃𝑣 𝑟 =
1

𝑟

𝑇𝑃𝐽1
+

1−𝑟

𝑇𝑃𝐽2

• 𝑇𝑃𝑣(𝑟) is
• Strictly monotonically increasing if 𝑇𝑃𝐽1 > 𝑇𝑃𝐽2
• Strictly monotonically decreasing if 𝑇𝑃𝐽1 < 𝑇𝑃𝐽2
• Constant if 𝑇𝑃𝐽1 = 𝑇𝑃𝐽2

• NUMERICAL FACT. The above results hold true for lines 
with any buffers. Analyzing 25000 lines:
• 𝐵𝑁 remaining the same machine in 99.2% of cases
• 𝑇𝑃 is monotonic in 92.8% of cases
• Accuracy of (b) is above 99% in 95.8% of cases
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Non-conflicting jobs

• Intuitive behavior

• Not linear 

• No BN switches

• Easily expandable to more than 

two job-types
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Conflicting jobs

• THEOREM. Consider an 𝑀-machine line producing conflicting jobs J1 and J2, i.e., 𝐵𝑁𝐽1 ≠ 𝐵𝑁𝐽2. If 
buffers are 𝑁 = 0 or 𝑁 = ∞, then

• BN has at most 𝑀 − 1 switches in the interval of 𝑟

• If there are 𝐾 BN switches, then  𝑇𝑃(𝑟) has 𝐾 + 1 intervals of continuous differentiability. 

• If 𝑤𝐵𝑁𝐽1,1 > 𝑤𝐵𝑁𝐽1,2 and 𝑤𝐵𝑁𝐽2,1 < 𝑤𝐵𝑁𝐽2,2, then there is an interval 𝑅 ⊂ [0,1], at which 
𝑇𝑃 𝑟 > 𝑇𝑃𝐽𝑗
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Conflicting jobs

• Why 𝑇𝑃(𝑟) acts non-monotonically?

1

Cycle times TP
Job-type1        1                   2 0.5
Job-type2        2                   1 0.5

0    1        3   4          6   7         9   10       11  12

𝑚2

𝑚1

𝑇𝑃 =
8

12
= 0.66

33% more production

0    1        3          5        7          9       11 

𝑚2

𝑚1

0         2          4         6         8        10  11

𝑚2

𝑚1

BN = 𝑚2
BN = 𝑚1

Both BNs are utilized
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Performance portrait

• Graphically presents 
throughput and bottlenecks 
as functions of the product-
mix

• Works with systems with 
more than two job-types by 
introducing additional 
degrees of freedom. 
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Case study
The data presented in the following slides are modified due to 
confidentiality purposes
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Production System 

• Automotive assembly plant > Body shop > Underbody

• Two job-types

• Study period: 14 weeks
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Current system

• Body shop target TP: 55 JPH

• Body shop current TP: 49 JPH

• Typical range of product-mix of job 1
• 𝑟1 ∈ [25%, 50%]

• Bottleneck OP7

Alavian, Denno, Meerkov | Multi-job production | POMS 2017, Seattle, WA 29



Continuous improvement project

• Improve OP7
• Prioritize maintenance

• Prioritize delivery

• Improve manual loading 

• Result
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Continuous improvement project

• Improve OP1
• Look into Front comp. line for J1

• Model Front comp. line 

• Find BNs

• Design improvement plan

• Result
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Continuous improvement project

OP7
OP6
OP5
OP4
OP3
OP2
OP1

OP7
OP6
OP5
OP4
OP3
OP2
OP1

OP7
OP6
OP5
OP4
OP3
OP5
OP1
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Summary 
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Summary

• MJP systems are widely used in the industries

• 15%-20% of their capacity is wasted

• MJP theory helps recover these losses

• Performance portraits are quick and easy way to understand system 
behavior and plan continuous improvement projects
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Future work

• Develop the theory for the assembly systems

• Improve overall MJP accuracy by improving the accuracy of current 
methods for SJP systems analyses

• Integrating MJP tools especially performance portrait into plants’ 
production management dashboard
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Thank you

36



© 2017 University of Michigan

37



© 2017 University of Michigan



Continuous improvement

• Bottleneck identification

• Bottleneck: machine whose capacity affects throughput the most

• 𝑚𝑖 is bottleneck iff 𝑤𝑖,𝑣 𝑟
𝜕𝑇𝑃

𝜕𝑊𝑖
>

𝜕𝑇𝑃

𝜕𝑊𝑘
𝑤𝑘,𝑣 𝑟 , for all machine 𝑘 ≠ 𝑖

• Alternate approach: arrow method
• Use blockage and starvation data

• Compare 𝐵𝐿𝑖 with 𝑆𝑇𝑖+1 and draw an arrow toward the smaller

• The machine(s) with no emanating arrows is the bottleneck
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Work-based model

• WBM characterizes the production system components

• Machines (Operations)
• Work capacity
• Reliability characteristics (MTBF/MTTR/…)
• Starvation/blockage measurement policy

• Buffers
• Non-dedicated vs. dedicated

• Jobs
• Work requirement at each operation

• Release
• According to product-mix or build-schedule
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Accuracy

• Step one has high accuracy
• Less than 0.6% discrepancy in BN identification of 5-machine lines

• Step two 
• Lower accuracy; 10% discrepancy in BN identification of 5-machine lines

• Step three
• No additional errors are introduced
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Performance analysis for serial lines

• Three-step procedure
• For any product-mix, create the corresponding virtual SJP system

• Calculate (estimate) performance of the virtual system using the methods 
available in the literature

• Convert the results back to original MJP system coordinates
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