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1. Introduction
Smart Production Systems (SPS) are manufacturing systems capable of self-diagnosing and providing
the operation management with an advice concerning performance improvements, along with rigor-
ously quantified outcomes of their potential deployment. Numerous versions of SPS architecture are
possible. The one developed here is based on a supposition that to be “smart”, a production system
should be equipped with an Artificial Intelligence Block (AIB) consisting of the following three units:
• information unit (IU)
• analytics unit (AU)
• optimization unit (OU).

The purpose of IU is to acquire information concerning the current status of the equipment and
provide it to AU and OU. The required information typically entails machines’ average up- and down-
time, cycle time, probabilities of blockages and starvations, average buffer occupancy, etc., along with
the system throughput. In many cases, modern manufacturing plants do have some kind of Production
Monitoring Systems, which collect the data from a huge number of PLCs and other production mon-
itoring sensors. Experience shows, however, that these data may or may not contain the information
necessary for the two subsequent AIB units. Even if the required information is available, it practically
always needs “cleaning-up” to be appropriate for utilization. In fact, in every project, which we have
carried out on a factory floor during the last 30 years, the most time and efforts have been devoted to
collecting the data and cleaning it up, so that it would be usable for system diagnostics and design of
continuous improvement projects. Thus, developing and implementing an effective IU is an extremely
important and time-consuming problem. Unfortunately, no rigorous methods for solving this problem
are available, and IUs must be developed “manually” by the SPS developers in cooperation with plant
personnel (preferably, involved in operating the Production Monitoring Systems). Without an effective
IU, no SPS will be successful, no matter how powerful methods are used in AU and OU.

Please leave the footer for the organization board.



Alavian, Denno, Meerkov: SMART PRODUCTION SYSTEMS IN MULTI-JOB MANUFACTURING

The purpose of AU is to investigate the system performance for any given set of machine and buffer
parameters (i.e., calculate the average throughput, TP, average work-in-process, WIP, and probabil-
ities of blockages, BL, and starvations, ST), diagnose its health (e.g., production losses), identify its
bottlenecks (BNs), and quantify the effects of various “what if” scenarios of continuous improvement.
To accomplish this, AU must be equipped with a mathematical model of the system at hand, which
may be constructed and validated off-line, but continuously updated on-line, based on the information
provided by IU. In addition, AU must contain methods for performance analysis and BN identifi-
cation in the available system model. In most cases, these methods can be found in the rich theory
of stochastic production systems analysis and design (see, for instance, Viswanadham and Narahari
(1992), Askin and Standridge (1993), Buzacott and Shanthikumar (1993), Papadopoulos et al. (1993),
Gershwin (1994), Altiok (1997), Papadopoulos et al. (2009), Curry and Feldman (2009), and Li and
Meerkov (2009)). So, designing AUs is, mostly, a matter of selecting a right method for the system at
hand or, in some cases, extending the existing methods to a new class of systems (see, e.g., Section 2).

The purpose of OU is to provide an optimal improvement plan. This is based on the results obtained
in AU as well as the models of internal structure of bottleneck operations. For instance, while AU
provides the identified bottleneck operation and its desired cycle time reduction, OU uses the inter-
nal model of the bottleneck in order to find the critical path improvement steps and, therefore, an
optimal path for the improvement project implementation. Typically, OU is based on optimization
techniques, which are readily available in the filed of optimization (see, for instance, Bazaraa et al.
(2009), Papadimitriou and Steiglitz (1998), Boyd and Vandenberghe (2004), and Ruszczynski (2006)).

This paper is intended to describe the development of AIB for a class of production systems, referred
to as Multi-Job Production (MJP). Accordingly, the outline is as follows: Section 2 introduces MJP
serial lines and work-based model to be used for their analysis. Section 3 presents a method for per-
formance and bottleneck analysis in MJP serial lines. Using this method, Section 4 investigates quan-
titative and qualitative features of MJP serial lines as a function of their main characteristic feature –
the product-mix. Section 5 presents and illustrates the AIB for MJP serial lines, developed using the
results of Sections 3 and 4. Finally, the conclusions and the directions of future work are given in Sec-
tion 6. Due to space limitations many details and all proofs are omitted and can be found in Alavian
et al. (2016).

2. MJP Systems: Description, Definition, and Work-based Model
2.1. Description and definition
Multi-job production is a class of flexible manufacturing systems, intended to produce different prod-
ucts (or job-types) within the same production system. MJP is widely used in product assembly, e.g.,
in automotive assembly plants, engine and battery plants, computer and appliance assembly, etc.

To illustrate MJP operation, consider an automotive assembly plant manufacturing two car models,
A and B. In each area of the plant, i.e., body shop, paint shop, and final assembly, each job-type
follows the same sequence of manufacturing operations. Let r = (rA, rB) be the product-mix, where
rA is the fraction of automobiles A to be manufactured and rB = 1− rA is that of B. The jobs are
released one-by-one into the body shop in a sequence defined by the product-mix and a corresponding
build-schedule and then proceed to the paint shop and final assembly. For instance, a segment of a
release sequence may be · · ·BAAABABAAB · · · , generated by the product-mix with rA = 2/3 and
rB = 1/3. The jobs are transported from one operation to another (typically, by conveyors, which serve
also as buffers) in the sequence of the release. Each job-type is processed by the machines (operations
or stations) with zero (or practically zero) setup time, but requires different processing time at some or
all machines.

Based on the above, the class of MJP systems is defined as follows:
• The required system performance is specified in terms of the product-mix, which may be changing

frequently (e.g., on a daily basis).
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• The jobs are released one-by-one (without batching) according to the product-mix and a corre-
sponding build-schedule.

• All jobs undergo identical sequence of manufacturing operations, but require different amount of
work at some or all operations.

• The setup times are zero.
• In-process buffers are non-dedicated (i.e., store different job-types in the sequence of arrival).
• The jobs are processed on a first-come, first-served basis.
• The machines are unreliable and experience random breakdowns.
• The processing time of each machine is deterministic, but job-dependent.

Unfortunately, current literature does not offer methods for MJP systems performance analysis as a
function of the product-mix. To develop such methods, the next subsection introduces a work-based
model of serial lines. Based on this model, Section 3 presents the sought methods for performance and
bottleneck analysis in MJP systems with exponential machines.

2.2. Work-based model of MJP serial lines
As mentioned above, the approach developed here is based on a novel work-based model, instead of the
traditional part-based model, of production systems. This implies that, unlike the traditional approach,
where the analyses are carried out in terms of ‘parts produced’, in this paper the research is carried out
in terms of the ‘work produced’, which is insensitive to whether a single- or multi-job manufacturing
takes place. Given the work produced, the throughput of each job-type and other performance metrics
can be calculated using the product-mix.

More specifically, the work-based model is defined as follows:
(i) Each machine, mi, i= 1, · · · ,M , is characterized by its work-capacity, Wi (in units of work/min).

(ii) Each job-type, Jj , j = 1, · · · , S, is characterized by its work-requirements, wij , i= 1, · · · ,M ; j =
1, · · · , S (in units of work/job-type), i.e., by the vector wj = [w1j , · · · ,wMj ]. The set-up times for
each job-type are zero.

(iii) The jobs are released one-by-one (without batching) according to a given product-mix, r =
[r1, · · · , rS ],

∑S
j=1 rj = 1, where rj is the fraction of job-type j to be manufactured; the release

sequence is formed by releasing each job-type j with probability rj , j = 1, · · · , S.
(iv) The buffers are not dedicated.

While these features of the model are novel, the remaining ones follow standard conventions used
in serial lines modeling and analysis (as, for instance, in Li and Meerkov (2009)):

(v) Machines are characterized by the breakdown and repair rates, λi and µi (in units of 1/min), respec-
tively; this implies that the machines are exponential with the average up- and downtime given by
Tup,i =

1
λi

and Tdown,i = 1
µi

, and with machine efficiency ei = µi

λi+µi
.

(vi) The first machine is not starved and the last machine is not blocked.
(vii) Specific technical conventions, under which the MJP lines are analyzed in this paper, are:

– the machines obey the blocked-before-service assumption;
– the breakdowns are time-dependent;
– the flow model description is used;
– the job release also follows the flow model convention.

Discussion: (a) The machine work-capacity, Wi, is defined by the technological operation it carries
out. For instance, for a welding operation the work-capacity is the number of welds it can carry out
per unit of time; for turning, milling or drilling operations, it is the feed rate of a cutting instrument;
for robotic or manual assembly, it is the number of assembly steps carried out per unit of time; etc.
The units of work in job work-requirements, wij , are the same as in the corresponding machines (but
in terms of work per job-type, rather than work per unit of time).

(b) As it follows from (i) and (ii), the time necessary to process a job-type j on machine i (i.e., the
cycle time of machine i for processing job j) is

τij =
wij
Wi

, i= 1, · · · ,M ; j = 1, · · · , S. (1)
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While in the part-based model the cycle time is an independent variable, (1) indicates that in the work-
based model it is not: wij andWi are the independent variables. This allows for investigating the effect
of the job work-requirements on the system’s throughput and bottleneck.

(c) Model (i)-(vii) can be used for analysis of single-job production (SJP) as well. In this case, S = 1

and wij =wi.
The performance metrics of production systems in the framework of work-based model (i)-(vii) are

as follows: TPj , j = 1, · · · , S – the average number of jobs of type j produced by the last machine
per unit of time; TP =

∑
j TPj – the average total number of jobs produced by the last machine per

unit of time; WIPi, i= 1, · · · ,M − 1 – the average number of jobs in buffer bi; STi, i= 2, · · · ,M –
the probability that machine mi is starved; BLi, i= 1, · · · ,M − 1 – the probability that machine mi

is blocked. The methods for evaluating these performance metrics and identification of bottlenecks as
functions of the product-mix are described next.

3. Performance Analysis and Bottleneck Identification
3.1. Performance analysis
Consider an MJP serial line defined by assumptions (i)-(vii) and denote its performance characteristics
as TP =

∑S
j=1 TPj ,WIPi, STi, andBLi. To evaluate these characteristics, the following three-stage

procedure is introduced:
Stage I. Given the work-requirements wij , i= 1, · · · ,M, j = 1, · · · , S, define the work-requirements

of the virtual job at machine mi as the average work imposed on mi under the product-mix
[r1, · · · , rS ], i.e.,

wi,v :=

S∑
j=1

rjwij . (2)

Stage II. Consider the virtual SJP line consisting of the machines and buffers of the original MJP line,
but manufacturing the virtual job. Denote this line as SJPv and its performance metrics as TPv,
WIPi,v, STi,v, and BLi,v. Evaluate these performance metrics using the recursive aggregation
technique described in Li and Meerkov (2009) by expressions (11.40)-(11.49) (with the machine
capacity ci replaced by Wi/wi,v). As a result, SJPv is approximated by ŜJPv with the performance
characteristics T̂P v, Ŵ IP i,v, ŜT i,v, and B̂Li,v.

Stage III. Calculate the estimates of the performance characteristics of the original MJP line according
to

T̂P j = rj T̂P v, j = 1, · · · , S, Ŵ IP i = Ŵ IP i,v, i= 1, · · · ,M − 1,

ŜT i = ŜT i,v, i= 2, · · · ,M, B̂Li = B̂Li,v, i= 1, · · · ,M − 1. (3)

The accuracy of this analysis method has been analyzed in Alavian et al. (2016). The results are as
follows:
• Stage I induces practically no errors in all four performance metrics for all M and S considered.
• Stage II does introduce errors in all performance metrics. The errors in TP are two-to-four times

smaller than those in WIP. The errors in BL and ST are practically identical. All the errors are
increasing functions of M and practically independent of S. We note that these errors are similar to
those observed in evaluating asynchronous exponential SJP lines (Li and Meerkov 2009, Section
11.2).

• Similar to Stage I, Stage III introduces practically no errors in all performance metrics.
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3.2. Bottleneck identification
Recall that in the framework of part-based model, BN is defined as machine mi with the largest effect
on the system throughput quantified as

∂TP

∂ci
>
∂TP

∂cj
, ∀j 6= i, (4)

where ck = 1/τk is the capacity of machinemk, and τk is its cycle time. Since in the work-based model
the average cycle time is wk,v

Wk
and the only variable characterizing the machine is Wk, expression (4)

becomes:

wi,v
∂TP

∂Wi
>wj,v

∂TP

∂Wj
, ∀j 6= i. (5)

We use this expression for BN identification in the framework of work-based model (see Alavian
et al. (2016) for details).

4. Behavior of MJP Serial Lines as a Function of the Product-Mix
For simplicity, we analyze this behavior for the case of two job-types being manufactured. Note that in
the case of S = 2, the product-mix is specified by a single variable r= r1 (since r2 = 1− r1). Similar
results for S > 2 have been obtained as well.

It turns out that both qualitative and quantitative properties of TP (r) and BN(r) in MJP systems
depend on the relationship between the jobs work-requirements. To characterize this relationship, con-
sider an MJP serial line producing two job-types, J1 and J2, with work-requirements, wi1 and wi2,
i = 1, · · · ,M , respectively, and with product-mix r. Let the bottleneck of this line be the machine
denoted as BNJ1 when r= 1, and BNJ2 when r= 0.

DEFINITION 1. Given a serial MJP line defined by assumptions (i)-(vii), jobs J1 and J2 are called
non-conflicting if BNJ1 = BNJ2. Otherwise the jobs are conflicting.

THEOREM 1. Consider an MJP serial line defined by assumptions (i)-(vii) and producing two non-
conflicting job-types, J1 and J2, with BNJ1 = BNJ2 =mk. Then, if all buffers are of infinite or zero
capacity,

(a) BNv(r) =mk, for all r ∈ [0,1];
(b) TPv(r) is strictly monotonically increasing if TPJ1 > TPJ2; strictly monotonically decreasing if

TPJ1 <TPJ2; constant if TPJ1 = TPJ2.

Proof : See Alavian et al. (2016).
For any finite sequence of Ni’s, TPv(r) and BN(r) can be evaluated by the methods of Section

3 and the results obtained conform with those of Theorem 1 in over 95% of cases among the 24000
production lines analyzed.

THEOREM 2. Consider an MJP serial line defined by assumptions (i)-(vii) producing two conflict-
ing job-types, J1 and J2. Then, if all buffers are of infinite or zero capacity,

(a) BN(r) has at most M − 1 switches in the interval [0,1]; each machine can be a bottleneck only in
a single interval of [0,1];

(b) TPv(r) has the following properties:
• if the number of switches of BN(r) is 1≤K ≤M , then TPv(r), r ∈ [0,1], has K +1 intervals

of continuous differentiability; the BN(r) switches occur at the values of r, where TPv(r) is
non-differentiable;

• if wBNJ1,1 > wBNJ1,2 and wBNJ2,2 > wBNJ2,1, then there exist r′ and r′′ such that TPv(r) >
max{TPJ1, TPJ2},∀r ∈ (r′, r′′).
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Proof : See Alavian et al. (2016).
The second bullet in part (b) of this theorem states that in the case of conflicting jobs, there exists a

range of product-mixes, where the total throughput of MJP is larger than that of SJP of any constituent
job-type. This phenomenon takes place because SJP overloads respective bottlenecks, while MJP with
the “right” product-mix leads to more balanced work allocation. Using the method of Section 3, it has
been shown that a similar behavior takes place for any sequence of finite buffer capacities Ni’s (see
Alavian et al. (2016) for details).

5. AIB for MJP Serial Lines
The methods developed in Sections 3 and 4 are the foundations of AU and OU discussed in this section.
The input to AU is the mathematical model of the system at hand shown in screenshot (a) of Figure 1.
Since IU is not currently available, the machine and buffer parameters shown in this screenshot have
been entered manually. Screenshot (b) shows the output of AU, which represents the self-diagnosed
state of the system at hand. We refer to this type of output as the Product-Mix Performance Portrait
or just Performance Portrait (PP). It shows the total throughput and bottleneck for all values of the
product-mix (note that, as follows from Theorem 2, this PP indicates that the job-types involved are
conflicting). Selecting a particular product-mix on the PP, returns screenshot (c) (corresponding to
product-mix r1 = 0.25 and r2 = 0.75), which indicates the effect of various “what if” scenarios of BN
improvement. If a specific scenario is selected, the information is transferred to OU, which returns
the results shown in Figure 2, indicating the optimal way of cycle time reduction for BN operation.
In addition, OU summarizes the results and produces the overall AIB output referred to as Advice
for Operation Manager, shown in screenshot (a) of Figure 3. If the product-mix were different (say,
r1 = 0.8 and r2 = 0.2), the advice would be as shown in screenshot (b).

This approach has been used for developing a continuous improvement project at an automotive
assembly plant, and the results have found favorable acceptance by the management.

6. Conclusions and Future Work
This paper showed that analytical theory for stochastic production systems analysis and improvement
is an enabler of the development and application of SPS, in particular for multi-job manufacturing.
While the results reported here refer to serial MJP lines, derivation of similar results for MJP assembly
systems is an important theoretical and industrial problem, especially in the framework of SPS design
and implementation.
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Figure 1. AU operation
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Figure 2. OU operation

Figure 3. Output of AIB


