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Abstract: Production systems with infinite buffers typically have the lead time (LT ) vs.
throughput (TP ) characteristic curve (CC) with a knee-type shape. Operating the system below
the knee is not efficient, since TP can be increased without an appreciable increase in LT .
Operating the system above the knee is also counterproductive, since LT becomes extremely
large without a significant increase of TP . Thus, the desirable operating point is at the knee,
which is why it is often referred to in practice as the “sweet point”. In this paper, using an
empirical/analytical approach, CCs of re-entrant lines described by the bottleneck workcenter-
based model with exponential machines are analyzed, the positions of the sweet point are
quantified, and an open- and closed-loop job release strategies that ensure the operation at the
knee are developed. The development is carried out in terms of the First Buffer First Served and
Last Buffer First Served dispatch policies, although CCs for other policies can be investigated
in a similar manner.

Keywords: Re-entrant lines, Characteristic curves, Lead time, Throughput, Exponential
machines, Open- and closed-loop job release, Sweet point operation

1. INTRODUCTION

1.1 Motivation and goal

Production systems with infinite buffers typically have the
lead time (LT ) vs. throughput (TP ) characteristic curve
(CC) with a knee-type shape as illustrated in Fig. 1. Here
LT is the average time a job (e.g., lot) spends in the
system, being processed or waiting for processing (LT is
sometimes referred to as the production cycle-time or flow-
time), and TP is the average number of jobs produced by
the system per unit of time. In the steady state of system
operation, TP = RR, where RR is the Release Rate, i.e.,
the number of jobs released into the system per unit of
time. So, the CC of Fig. 1 can be understood as LT vs.
RR or, in different notations, as LT = F (RR), where F (.)
is a function defined by the production system, i.e., its
structure (e.g., serial, cellular, or re-entrant), the number
of machines in the system, their reliability models (e.g.,
Bernoulli, exponential, Weibull, etc.), and, in the case of
re-entrant lines, dispatch policies.

The shape of F (RR) implies that operating the system
below the knee (indicated by the black dot in Fig. 1) is not
efficient since RR (and, thus, TP ) can be increased without
an appreciable increase of LT . Operating the system above
the knee is also counterproductive, since LT (and, thus,
work-in-process, WIP ) becomes extremely large without a
significant increase of TP . Thus, the desirable operating
point is at the knee, which is why it is often referred to
in practice as the “sweet point”. In this paper, we use the
terms “sweet point” and “knee” interchangeably.
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Fig. 1. Characteristic curve of a production system with
infinite buffers

Operating a production system at or close to the knee
requires the knowledge of function F (RR). For serial pro-
duction lines, this function has been investigated analyti-
cally in Biller et al. (2013) and Meerkov and Yan (2014b)
for machines having the Bernoulli and exponential reli-
ability models, respectively. Cellular lines with Bernoulli
machines have been analyzed in Meerkov and Yan (2014a).
The goal of the current paper is to investigate this function
for re-entrant lines with exponential machines and, on this
basis, develop open- and closed-loop job release policies,
which ensure the “sweet point” operation. Note that re-
entrant lines in semiconductor industry are particularly
known for excessively long LT ; hence, providing a method
for its evaluation and control is an important industrial
problem. Clearly, it is of theoretical interest as well.

1.2 System considered and problems addressed

The development reported in this paper is carried out
using the bottleneck workcenter model of a re-entrant line



(BNWC model) introduced in Rose (1998) and further
explored in Yan et al. (2012). This model (see Fig. 2) con-
siders in details BNWC (consisting of M machines and N
buffers), while all other workcenters are modeled as fixed
time delays, T0, T1, . . . , TN . In addition, the BNWC model
is defined by dispatch policies employed. The current paper
considers two of such policies: First Buffer First Served
(FBFS) and Last Buffer First Served (LBFS), although
other dispatch policies can be explored in a similar man-
ner.

Fig. 2. BNWC-based re-entrant line with release machine
and delays

To model the job release, we associate with this system
a job release mechanism (RM, shown in Fig. 2 in gray).
Various modes of RM operation can be considered. Ini-
tially, we assume that RM is another machine (referred
to as the release machine), which releases a job during
a machine cycle-time with a certain probability. Then we
generalize the results to deterministic, once-per-hour or
once-per-shift, release policies.

Given this system, the problems addressed in this paper
are to investigate its CC, i.e., LT vs. RR; quantify the
position of the knee; determine the release rate to enable
the operation at the knee (this is interpreted as open-loop
control of LT ); and develop a closed-loop job release policy,
which ensures the desired LT , while maximizing TP , even
if the parameters of the producing machines are not known
precisely.

1.3 Related literature

The literature on performance analysis and design of re-
entrant lines contains hundreds of publications, many of
which are summarized in the recent monograph by Mönch
et al. (2012). Below, we offer a few remarks on this
literature, mostly in order to place the current paper in
the perspective of the existing results.

The current literature on analytical investigation of re-
entrant lines can be classified into three groups. The first
one is devoted to stability analysis under various dispatch
policies, see, for instance, Kumar (1993); Yan et al. (2012).
The main results here are that for all practical dispatch

policies re-entrant lines are stable, while some contrived
ones may lead to instability, even if the release rate is below
the system capacity. In these publications, stability was
understood as buffers occupancy being bounded. In Yan
et al. (2012), the notion of Lyapunov stability was applied
to the BNWC-based model of re-entrant lines, and it has
been shown that some of the practical dispatch policies are,
in fact, unstable in the sense of Lyapunov, implying that
under strong perturbations (e.g., long downtime of the
BNWC), the system may leave the equilibrium point and
lock into a periodic or even chaotic regime. In particular, it
was shown that from this point of view, FBFS is preferable
to LBFS.

The second group addresses the issue of efficacy of var-
ious dispatch policies from the point of view of system
throughput (see, for instance, Pfund et al. (2006); Chen
et al. (2010); Sarin et al. (2011)). Here, numerous dispatch
rules have been analyzed, and it has been shown that those
favoring almost completed lots or lots with the smallest
slack time lead to a better WIP performance (e.g., LBFS
is preferable to FBFS).

Finally, the last group addresses the issue of job release
to ensure a sufficiently small WIP , while maximizing
TP (Fowler et al. (2002); Qi et al. (2009)). The main
approaches here are kanban and CONWIP. It is shown,
both theoretically and in applications, that each of these
approaches may lead to a substantial improvement of the
TP vs. WIP behavior.

In spite of these considerable achievements, the current lit-
erature does not offer a method for operating a re-entrant
line at the sweet point of the LT vs. RR characteristic. The
current paper is intended to contribute to this end.

1.4 Abbreviations and notations

Abbreviations: BNWC - bottleneck workcenter, C (sub-
script) - release per cycle, CC - characteristic curve, FBFS
- First Buffer First Served, LBFS - Last Buffer First
Served, r (subscript) - re-entrant line, RM - release mech-
anism.

Notations: a and b - constants, e - machine efficiency, E
- deterministic release, LT - lead time, M - number of
machines in the BNWC, N - number of re-entrant paths,
RI - release interval, RR - release rate, τ - machine cycle-
time, Tdown - machine downtime, Ti - time delays, Tup -
machine uptime, TP - throughput, WIP - work-in-process

1.5 Paper outline

The remainder of this paper is structured as follows:
Section 2 defines formally the BNWC-based model of re-
entrant lines. Section 3 quantifies the characteristic curves
of re-entrant lines described by this model, investigates the
position of their sweet points, and provides a comparative
investigation of CCs under FBFS and LBFS dispatch
policies. Sections 4 and 5 are devoted to open- and closed-
loop control of job release to ensure the operation at the
sweet point or, for that matter, at any desired point of
CC. Conclusions and topics for future work are provided
in Section 6. The proofs are included in the Appendix.



2. BNWC MODEL

Consider the re-entrant line of Fig. 2. Let LTtotal be the
total average time that a job spends in the system with
delays T0, T1, . . . , TN , and LT the average time a job
spends in the system without the delays. Then, in the
steady state of operation,

LTtotal = LT +
N∑

i=0

Ti. (1)

Below and in the subsequent section, we consider the
system without the delays, evaluate LT , and specify LTtotal

using (1). We define this system (see Fig. 3) by the
following assumptions:

Fig. 3. BNWC-based re-entrant line with release machine

(i) The system consists of the BNWC with M producing
machines, m1,m2, . . . , mM , a release machine, m0,
and N buffers, b0, b1, . . . , bN−1, storing jobs at various
stages of their processing.

(ii) All producing machines in the BNWC are identical.
The release machine, m0, has the same cycle time, τ
(in min), as the producing machines. (This assump-
tion is introduced to simplify the presentation.)

(iii) Each machine obeys the exponential reliability model
defined by breakdown and repair rates λ and µ for
producing machines and λ0 and µ0 for the release ma-
chine, both in 1/min. While λ and µ are fixed, λ0 and
µ0 are design parameters to be selected at will. (This
assumption is also introduced for simplification.)

(iv) Each buffer is of infinite capacity.
(v) The flow model is assumed, i.e., infinitesimal quantity

of jobs, produced during an infinitesimal time inter-
val, are transferred to and from the buffers. BNWC
is starved if the total occupancy of all N buffers is
less than M ; m0 is never starved. Machine failures
are time-dependent, i.e., a machine can be down even
if it is starved. (These are standard assumptions in
Production Systems Engineering, Li and Meerkov
(2009).)

This model (i)-(v) is used throughout this paper.

3. QUANTIFICATION OF CHARACTERISTIC
CURVE AND SWEET POINTS

3.1 Approach

The approach to analyses of CCs and sweet points of model
(i)-(v) is based on the results of Meerkov and Yan (2014b),
where function F (RR) and its knee are analyzed for serial
lines in terms of two dimensionless quantities. The first
one, referred to as the relative lead time, is given by

lt =
LT

Mτ
, (2)

where M is the number of machines in the serial line and τ
is the machine cycle-time (assuming that all machines have
the same τ ; reference Meerkov and Yan (2014b) provides
also a generalization for non-identical τ ’s). Obviously, lt
quantifies LT in units of its smallest possible value, i.e.,
Mτ . For instance, lt = 5 implies that LT is 5 times longer
than the total processing time.

The second quantity, referred to as the relative workload,
is defined as

ρ =
e0

e
, (3)

where e is the producing machine efficiency, i.e.,

e =
Tup

Tup + Tdown
(4)

(Tup = 1
λ and Tdown = 1

µ are the average up- and
downtime of the producing machines), and e0 is the
release machine efficiency, which can be interpreted as the
probability to release a job during the machine cycle-time,
τ .

In terms of these normalizations and under the assumption
e0 < e (5)

(to ensure the existence of a steady state), the following
expression, which defines the function F (RR), has been
derived in Meerkov and Yan (2014b):

l̂t =
a

1− ρ
+ b, (6)

where l̂t is a sufficiently accurate estimate of lt (see
Meerkov and Yan (2014b) for details), and a and b are
constants given by

a =
1− e

Mτ

[
Tdown,0 + (2M − 1)Tdown

]
,

b = 1− 1− e

Mτ
Tdown,0

(7)

(Tdown,0 = 1
µ0

is the average downtime of the release
machine).

The characteristic curve l̂t(ρ), specified by (6), (7), is
shown in Fig. 4 for the serial line with the parameters
indicated in the figure caption. Using the definition of the
knee as a point of CC with the largest curvature, it is
shown in Meerkov and Yan (2014b) that the knee of l̂t(ρ)
satisfies the relationship:

α
d(l̂t)
dρ

∣∣∣∣∣
ρ=ρknee

= 1 (8)

or, taking into account (6),
ρknee = 1−√αa. (9)



In (8) and (9), α is the scaling ratio defined by the
operating regime of the system at hand. Specifically,
assume ρ ∈ [ρmin, 1) and l̂t ∈ (0, l̂tmax], where ρmin is
the smallest relative load factor of interest and l̂tmax is
the largest acceptable relative lead time. Then

α =
1− ρmin

l̂tmax

. (10)

In Fig. 4, α = 1/4000 and the knee, defined by (9), is shown
by the black dot (with the coordinates indicated). Thus,
the position of the knee depends on the regime of system
operation (i.e., α) and the parameter a of CC, while it is
independent of b.
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Fig. 4. Characteristic curve and sweet point of a serial line
with M = 10, τ = 1min, e = 0.9, Tdown,0 = 10min,
Tdown = 100min

Unfortunately, expression (6) for re-entrant lines defined
by assumptions (i)-(v) proved to be all but impossible
to derive analytically. Therefore, we resort to an empir-
ical/analytical approach, whereby the constants a and b
are determined empirically and the validity of (6) for re-
entrant lines is justified by simulations, while the position
of the knee as well as the open- and closed-loop release
control policies are quantified analytically.

More specifically, consider the system of Fig. 3 and assume
that M < N , i.e., the number of machines in the bot-
tleneck workcenter is less than the number of processing
stages. Then, the approach of this paper consists of the
following:

(a) Introduce the relative lead time and the relative
workload for re-entrant lines:

ltr =
LT

Nτ
,

ρr =
N

M

e0

e
.

(11)

To ensure stability, assume ρr < 1, i.e.,

e0 <
Me

N
. (12)

(b) Identify empirically the two constants involved in
expression (6). This is accomplished by evaluating LT
by either simulations or operating the system under
two workload factors, say, ρr1 and ρr2. Using (6), this
leads to two equations with two unknowns. Solving
these equations, we obtain:

ar =
ltr(ρr1)− ltr(ρr2)

ρr1 − ρr2
(1− ρr1)(1− ρr2),

br =
ltr(ρr2)(1− ρr2)− ltr(ρr1)(1− ρr1)

ρr1 − ρr2
,

(13)

where ltr(ρri), is the empirically determined relative
lead time under the relative load factor, ρri, i = 1, 2.

(c) Next, we justify that expression (6) with constants
(13) holds for any ρr ∈ [ρr,min, 1). This is accom-
plished by simulating 100 systems with randomly
selected parameters (see Subsection 3.2 for details).
Thus, the characteristic curve for re-entrant lines is
established empirically as

l̂tr(ρr) =
ar

1− ρr
+ br. (14)

(d) The analytical part of the approach is based on (14).
Specifically, we quantify the position of the knee by
(9) and develop open- and closed-loop job release
policies that ensure the operation at the sweet point
or at any other desired point of the characteristic
curve.

3.2 Accuracy

In this subsection, we investigate the accuracy of l̂tr(ρr)
specified by (14). This is carried out in two steps. First,
we construct 100 re-entrant lines obeying the BNWC-
based model, identify empirically their constants ar and
br, and, thus, specify their characteristic curves. Second,
we evaluate the accuracy of the resulting expressions
by comparing them with the true characteristic curves,
ltr(ρr), identified by simulations.

Specifically, the 100 re-entrant lines satisfying assumptions
(i)-(v) are constructed by selecting the parameters ran-
domly and equiprobably from the following sets:

M ∈ [2, 5], N ∈ [M + 1, 10], e ∈ [0.7, 0.99],
Tdown,0 = Tdown ∈ [1min, 10min],

(15)

and, without loss of generality, use τ = 1min. For each
of these lines, ρr1 is selected randomly and equiprobably
from the interval ρr1 ∈ [0.8, 0.97] and ρr2 is assumed to be
0.9ρr1. To evaluate ltr(ρri), i = 1, 2, we employ the follow-
ing simulation procedure (also used in all subsequent sec-
tions): In addition to a warm-up period of 2, 000, 000min,
the simulation runs for 22, 000, 000min, and 20 repetitions
of this procedure are carried out. This procedure results in
a 95% confidence interval of ±2.5% of ltr. Using ltr(ρr1)
and ltr(ρr2), thus evaluated, the constants ar and br are
calculated according to (13). Thus, the characteristic curve
l̂tr(ρr) is specified analytically by (14) for all ρr1 ∈ (0, 1).

To investigate the accuracy of l̂tr(ρr), we simulate the 100
systems discussed above for

ρr ∈ P = {0.8, 0.85, 0.9, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97},
(16)

evaluate ltr(ρr), and quantify the relationship between
ltr(ρr) and l̂tr(ρr) by

ε = max
ρr∈P

|l̂tr(ρr)− ltr(ρr)|
ltr(ρr)

× 100%. (17)

These analyses are carried out under FBFS and under
LBFS dispatch policies. As a results, we obtain:

• Under FBFS dispatch, the smallest and the largest
ε’s are 1.45% and 33.10%, respectively; the average
error (over the 100 systems analyzed) is 12.19%.

• Under LBFS dispatch, the smallest and the largest ε’s
are 0.05% and 1.93%, respectively; the average error
is 0.60%.



Typical relationships between the curves l̂tr(ρr) and
ltr(ρr) are illustrated in Figs. 5 and 6 for FBFS and
LBFS, respectively, along with the position of the sweet
point (calculated using (9) with α = 1/750). Obviously,
the accuracy of the approximation (14) for LBFS is very
high, while for FBFS the errors could be relatively signif-
icant. However, recognizing that machine parameters on
the factory floor are rarely known with accuracy better
than ±5%, we conclude that the estimate (14) is precise
enough for the lead time analysis and control.

(a) ρr1 = 0.8378, M = 2, N = 9,
e = 0.7451, Tdown = 5.54min

(b) ρr1 = 0.8964, M = 3, N =
4, e = 0.7163, Tdown = 1.08min

(c) ρr1 = 0.9669, M = 5, N = 9,
e = 0.9685, Tdown = 5.85min

Fig. 5. Typical relationship between l̂tr(ρr) and ltr(ρr)
under FBFS dispatch

(a) ρr1 = 0.8378, M = 2, N = 9,
e = 0.7451, Tdown = 5.54min

(b) ρr1 = 0.8964, M = 3, N =
4, e = 0.7163, Tdown = 1.08min

(c) ρr1 = 0.9669, M = 5, N = 9,
e = 0.9685, Tdown = 5.85min

Fig. 6. Typical relationship between l̂tr(ρr) and ltr(ρr)
under LBFS dispatch

3.3 Comparison of lead time under FBFS and LBFS
dispatch

To illustrate relative properties of lt under FBFS and
LBFS, consider the re-entrant line defined by assumptions
(i)-(v) with the following parameters:

M = 3, N = 10, e = 0.9,

Tdown,0 = Tdown = 5min, τ = 1min.
(18)

Using the procedure of Subsection 3.2 with ρr1 = 0.9,
evaluate the constants involved in (14). The results are:

• under FBFS, ar = 2.7526, br = −6.0343;
• under LBFS, ar = 0.3807, br = 0.6366.

The corresponding l̂tr(ρr)’s are shown in Fig. 7, along with
the position of the knees (with α = 1/400). Clearly, LBFS
outperforms FBFS. As one can see, operating both systems

at the sweet points leads to T̂P
LBFS

, which is 5.7% larger

than T̂P
FBFS

, and l̂t
LBFS

r 52% smaller than l̂t
FBFS

r .
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Fig. 7. Characteristic curves of system (18) under FBFS
and LBFS

In addition, based on the 100 systems analyzed, we arrive
at the following:
Observation 3.1.

aLBFS
r < aFBFS

r . (19)

Thus, according to (9), ρFBFS
r,knee < ρLBFS

r,knee , i.e., T̂P
LBFS

knee >

T̂P
FBFS

knee .
Observation 3.2.

l̂t
FBFS

r (ρr)

l̂t
LBFS

r (ρr)

ρr→1−−−−−−→ N. (20)

This implies, for instance, that the lead time of a system
with 9 re-entrant paths under FBFS is up to 10 times
larger than that under LBFS, if the relative workload is
sufficiently high.
Observation 3.3.

l̂t
FBFS

r (ρr)

l̂t
LBFS

r (ρr)

ρr→0+

−−−−→ 1. (21)

Thus, the lead times of the system under FBFS and LBFS
are practically the same, if the workload is sufficiently low.

While this subsection shows that LBFS outperforms
FBFS, reference Yan et al. (2012) arrived at the opposite
conclusion. However, in Yan et al. (2012), the perturba-
tion was a catastrophic breakdown of all machines in the
BNWC. Under this perturbation, Yan et al. (2012) showed
that FBFS leads to a faster recovery than LBFS. Thus, the
relative advantages/disadvantages of each dispatch policy



depend on the model of perturbations considered. Assum-
ing that a statistical (e.g., exponential) reliability model is
more prevalent in practice than catastrophic breakdowns,
LBFS could be viewed as superior to FBFS.

4. OPEN-LOOP CONTROL OF LT

In this section, first we quantify the set of attainable lead
times (i.e., feasible set) and then derive formulas for the
random job release rates that ensure the desired feasible
lead time, while maximizing the throughput. Next, we
extend this result to the deterministic job release.

4.1 Random job release

Calculating ρr,knee using (9) allows us to evaluate job
release rate ê0,knee, which ensures the operation at the
sweet point. Indeed, as it follows from (11),

ê0,knee =
Me

N
ρr,knee. (22)

This can be implemented as releasing a job once per
machine cycle-time with probability ê0,knee. The release
rate to ensure operation at any other point of CC is
specified by:
Proposition 4.1. Consider the re-entrant lines defined by
assumptions (i)-(v) with M < N and either FBFS or
LBFS dispatch. Then, the set of feasible lead times, F

l̂t
,

is given by

l̂tr > ar + br. (23)
For any feasible desired lead time, ltd ∈ F

l̂t
, the release

rate is given by

ê∗0 =
Me

N

(
1− ar

ltd − br

)
. (24)

For this release rate,

T̂P
∗

=
ê∗0
τ

, ŴIP
∗

= Nê∗0
( Mare

Me−Nê∗0
+ br − 1

)
. (25)

Note that if ltd = l̂tr,knee, (24) reduces to (22). The
behavior of ê∗0 as a function of ltd under both FBFS and
LBFS is illustrated in Fig. 8 for the re-entrant line (18),
with black dots indicating (l̂tr,knee, ê

∗
0(l̂tr,knee)). From this

figure follows:
Observation 4.1. Under both FBFS and LBFS, for ltd <

l̂tr,knee, the optimal release rate ê∗0 (and, therefore, T̂P
∗
)

is a rapidly increasing function of ltd. For ltd > l̂tr,knee,
ê∗0 is practically constant. Thus, releasing raw material
with the rate beyond the knee is not only unnecessary
(since T̂P

∗
is practically a constant), but detrimental as

well (since ŴIP
∗

grows almost linearly in accordance with
ŴIP

∗
= T̂P

∗
(LTd −Nτ)).

4.2 Deterministic job release

The random, once-per-cycle, job release may be inconve-
nient for practical implementation. Therefore, below we
use the results of Subsection 4.1 to derive deterministic,
e.g., once-per-hour or once-per-shift, release policies with
guaranteed LT and insignificant losses of the throughput.

0  20 40 60 80 100
0.675

0.72

0.765

0.81

0.855

0.9

ltd

ê
∗ 0

FBFS
LBFS

Fig. 8. Release rate, ê∗0, as a function of the desired lead
time, ltd

Let ê∗0(ltd) be the once-per-cycle release rate calculated
using (24). Then, within a release interval, RI (in hour),
the deterministic release, Ê∗

RI (jobs/release interval), is
defined as:

Ê∗
RI = bHê∗0(ltd)c , (26)

where bxc denotes the largest integer not greater than x,
and H is the number of cycles in a release interval, i.e.,
H = 60RI

τ .

While release according to (26) results in the obvious
inequality

L̂T (Ê∗
RI) < L̂T (ê∗0) + 60RI, (27)

where L̂T (Ê∗
RI) and L̂T (ê∗0) are the lead times under (26)

and (24), respectively, the losses of the throughput under
deterministic release (26) are not obvious and must be
evaluated. We carry out this evaluation by simulating re-
entrant line (18) under both FBFS and LBFS. Based on
ltd selected, ê∗0 and Ê∗

RI are evaluated using (24) and (26),
respectively. For the systems considered, we ran the sim-
ulations with once-per-cycle and once-per-release-interval
release and evaluated the resulting throughputs, TPC and
TPRI (both in jobs/min), where the subscripts “C” and
“RI ” denote cycle and release interval, respectively. Based
on these measurements, we quantified losses in TP by

TPloss =
TPC − TPRI

TPC
× 100%. (28)

The results are shown in Table 1 for RI = 1hour and
for RI = 8hour shift. As one can see, under both FBFS
and LBFS, throughput losses for once-per-hour release are
significant (due to relatively small Ê∗

RI), while for once-
per-shift release, the losses are negligible.

5. CLOSED-LOOP CONTROL OF LT

5.1 Scenario

The previous section provides methods for estimating
job release rates that ensure the desired lead time, if
the parameters of the machines are known precisely. In
practice, however, this is seldom the case – the machine
parameters (e.g., their efficiencies or up- and downtimes)
are known only nominally, and their real values may vary.
In this situation, the above methods may result in lead
times dramatically different from the expected ones. For
instance, if the real machine efficiency, ereal, is lower than
the nominal one, enom, and the desired lead time, ltd, is
sufficiently large, it may happen that

ê∗0(ltd) >
M

N
min

16i6M
ereal,i, (29)



Table 1. Throughput losses due to once-per-RI
release

(a) FBFS, once-per-hour release

ltd ê∗0 Ê∗RI TPC TPRI TPloss (%)

6 0.2082 12 0.2083 0.2000 3.97
8 0.2170 13 0.2171 0.2167 0.18
20 0.2415 14 0.2414 0.2333 3.36
50 0.2567 15 0.2567 0.2500 2.61
100 0.2630 15 0.2630 0.2500 4.95

(b) LBFS, once-per-hour release

ltd ê∗0 Ê∗RI TPC TPRI TPloss (%)

2.4 0.2117 12 0.2117 0.2000 5.54
3.2 0.2299 13 0.2299 0.2167 5.75
8 0.2560 15 0.2560 0.2500 2.35
20 0.2647 15 0.2647 0.2500 5.55
40 0.2674 16 0.2674 0.2667 0.27

(c) FBFS, once-per-shift release

ltd ê∗0 Ê∗RI TPC TPRI TPloss (%)

6 0.2082 99 0.2083 0.2063 0.97
8 0.2170 104 0.2171 0.2167 0.18
20 0.2415 115 0.2414 0.2396 0.77
50 0.2567 123 0.2567 0.2563 0.18
100 0.2630 126 0.2630 0.2625 0.20

(d) LBFS, once-per-shift release

ltd ê∗0 Ê∗RI TPC TPRI TPloss (%)

2.4 0.2117 101 0.2117 0.2104 0.63
3.2 0.2299 110 0.2299 0.2292 0.31
8 0.2560 122 0.2560 0.2542 0.72
20 0.2647 127 0.2647 0.2646 0.04
40 0.2674 128 0.2674 0.2667 0.27

resulting in an arbitrarily large lead time.

To prevent this situation, feedback control may be used
to throttle the job release if the work-in-process in the
systems exceeds a certain limit. A number of such control
strategies can be proposed. Here, we investigate the one
proposed for serial lines in Meerkov and Yan (2014b),
which is simple enough for factory floor implementations.
Specifically, we consider a relay-type release policy based
on the real-time total work-in-process, WIPtotal: if at the
end of the release interval, RI, the WIPtotal is below
WIPnominal, the release takes place; otherwise it does not.
In Subsection 5.2 below we formally introduce this control
law and in Subsection 5.3 investigate its performance using
simulations.

5.2 Control law

Consider a re-entrant line defined by assumptions (i)-(v)
with the nominal breakdown and repair rates λ and µ.
Let LTd be the desired lead time (in min). Based on this
information, calculate ê∗0 and Ê∗

RI using (24) and (26),
respectively. Also, calculate the nominal total work-in-
process using Little’s law: since T̂P

∗
is given by the first

formula in (25), and the total waiting time in all buffers is
LTd −Nτ , we obtain:

ŴIPnominal =
ê∗0
τ

(LTd −Nτ). (30)

Using these data, introduce the following control law:

E(s+1) =

{
Ê∗

RI , if WIPtotal(s) 6 ŴIPnominal,

0, otherwise,
(31)

where s = 0, 1, . . . , is the index of the release interval;
E(s + 1) is the number of job release at the beginning of
release interval s+1; and WIPtotal(s) is the real-time total
work-in-process in the system at the end of release interval
s.

5.3 Performance evaluation

To evaluate the performance of feedback law (31), we
use the re-entrant line (18) as the nominal one and form
a real one for it. The real line is formed by increasing
or decreasing machine up- and downtimes randomly and
equiprobably within ±50% of their nominal values. Pro-
ducing machine parameters of the resulting line are as
follows:
e = [0.9154, 0.7678, 0.8708], Tdown = [3.02, 7.15, 4.09]min.

We simulate this system with and without feedback control
(31) under both FBFS and LBFS. The desired lead time,
ltd, for FBFS is selected 10 times larger than that for
LBFS (see Observation 3.2). Based on these simulations,
we evaluate the lead times in open- and closed-loop cases
(denoted as ltOL and ltCL, respectively). The results,
shown in Table 2, lead to the following:
Observation 5.1. Under both FBFS and LBFS, closed-
loop job release according to (31) maintains the lead time
close to the desired, while the open-loop release results, in
some cases, in an unbounded lt.

Table 2. Lead time under control law (31)

(a) FBFS, once-per-hour release

ltd ê∗0 Ê∗RI ltOL ltCL

100 0.2630 15 15.52 15.45
200 0.2664 15 15.53 15.53
300 0.2676 16 ∞ 288.77
400 0.2682 16 ∞ 394.55

(b) LBFS, once-per-hour release

ltd ê∗0 Ê∗RI ltOL ltCL

10 0.2590 15 4.87 4.86
20 0.2647 15 4.87 4.87
30 0.2665 15 4.87 4.87
40 0.2674 16 ∞ 41.7

(c) FBFS, once-per-shift release

ltd ê∗0 Ê∗RI ltOL ltCL

30 0.2494 119 47.94 47.16
50 0.2567 123 ∞ 61.26
80 0.2614 125 ∞ 80.53
100 0.2630 126 ∞ 91.82

(d) LBFS, once-per-shift release

ltd ê∗0 Ê∗RI ltOL ltCL

3 0.2265 108 22.17 22.17
5 0.2464 118 24.27 24.26
8 0.2560 122 29.25 26.51
10 0.2590 124 ∞ 28.90



6. CONCLUSIONS AND FUTURE WORK

This paper provides a method for operating re-entrant
lines (described by BNWC-based model with identical
exponential machines) at the sweet point of the l̂tr(ρr)-
curve, or, for that matter, at any other desired point of this
characteristic curve. The method consists of determining
empirically two constants and using them in the formula
for the characteristic curve, l̂tr(ρr). Based on this formula,
one can calculate the job release rate, which ensures the
desired mode of operation. This can be implemented either
in open-loop format (if the machine parameters are known
precisely) or in closed-loop (if they are not).

Numerous problems, however, remain opened. They can
be classified into two groups: extensions of the results ob-
tained and novel problems related to this subject matter.

Extension problems:

• Investigation of the accuracy of (14) under dispatch
policies other than FBFS and LBFS.

• Analysis of l̂tr(ρr)-curve for non-identical exponential
machines.

• Analysis of l̂tr(ρr)-curve for non-exponential ma-
chines.

• Investigation of the accuracy of the characteristic
curve (14) as a function of ρr1 and ρr2.

New problems:

• Analytical derivation of a formula for l̂tr(ρr) for
BNWC-based model. As mentioned in Subsection 3.1,
we have worked on this problem, but we were not able
to solve it. Nevertheless, we believe that this problem
is solvable using the “right” simplification technique.

• Analysis of l̂tr(ρr)-curve for re-entrant lines modeled
as multiple workcenters with a single or multiple
bottlenecks.

Solutions of these problems will lead to a relatively com-
plete theory for sweet point operation of re-entrant lines.

APPENDIX

Proof of Proposition 4.1: As it follows from (14), l̂tr(ρr)
is an increasing function of ρr. Since 0 < ρr < 1, this
implies (23).

As for the optimal release rate, from (14) it follows that

ρ∗r = 1− ar

ltd − br
, (32)

which, using (11), leads to (24). As far as (25) is concerned,
clearly, T̂P

∗
= ê∗0

τ , and, based on Little’s law and (11), we
obtain:

ŴIP
∗

= T̂P
∗
(LTd −Nτ) =

ê∗0
τ

(ltd − 1)Nτ

=
ê∗0
τ

( ar

1− ρ∗r
+ br − 1

)
Nτ

= Nê∗0
( Mare

Me−Nê∗0
+ br − 1

)
.

(33)

¥
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