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Abstract

The characteristic curve (CC) of a production system is a function describing the behavior
of production lead time (LT ) vs. throughput (TP). In systems with unlimited buffers, this
function has a knee-type shape. Operating the system below the knee is not efficient, since
TP can be increased without an appreciable increase in LT . Operating above the knee is also
counterproductive – LT becomes extremely large without a significant increase of TP. Thus,
the desirable operating point is at the knee, which is why it is often referred to in practice as
the ‘sweet point’. In this paper, an analytical/empirical method for calculating CCs of single-
product re-entrant lines without batch processing is developed using the so-called bottleneck
workcenter model of systems at hand. Based on this method, the position of the sweet point
is quantified and open/closed-loop control of job release policies, which ensure the operation
at the desired CC point (including the sweet point) are provided. The development is carried
out in terms of the First Buffer First Served and Last Buffer First Served dispatch policies,
although CCs for other policies can be investigated in a similar manner.

Keywords: Re-entrant lines, Lead time, Throughput, Characteristic curves, Sweet points, Open-
and closed-loop job release policies, FBFS and LBFS dispatch.



1 Introduction

1.1 Motivation and goal

Production systems with infinite buffers typically have the lead time (LT ) vs. throughput (TP)

characteristic curve (CC) with a knee-type shape as illustrated in Figure 1.1. Here LT is the av-

erage time a job (e.g., lot) spends in the system, being processed or waiting for processing (LT

is sometimes referred to as the production cycle-time or flow-time), and TP is the average num-

ber of jobs produced by the system per unit of time. In the steady state of system operation, the

throughput equals to the release rate (RR), which is the number of jobs released into the system per

unit of time. So, the CC of Figure 1.1 can be understood as LT vs. RR or, in different notations,

as LT = F(RR), where F(·) is a function defined by the production system, i.e., its structure (e.g.,

serial, cellular, or re-entrant), the number of machines in the system, their reliability models (e.g.,

Bernoulli, exponential, Weibull, etc.), and, in the case of re-entrant lines, dispatch policies (i.e.,

priorities of servicing buffers containing jobs at various stages of their processing).
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Figure 1.1: Characteristic curve of production system with infinite buffers

The shape of F(RR) implies that operating the system below the knee (indicated by the black

dot in Figure 1.1) is not efficient since RR (and, thus, TP) can be increased without an appreciable

increase of LT . Operating the system above the knee is also counterproductive, since LT (and,

thus, work-in-process, WIP) becomes extremely large without a significant increase of TP. Thus,

the desirable operating point is at the knee, which is why it is often referred to in practice as the

sweet point. In this paper, we use the terms ‘sweet point’ and ‘knee’ interchangeably.

Operating a production system at or close to the knee requires the knowledge of function F(RR).

For serial production lines, this function has been investigated analytically in [1] and [2] for ma-

chines having the Bernoulli and exponential reliability models, respectively. Cellular lines with
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Bernoulli machines have been analyzed in [3]. The goal of the current paper is to investigate

this function for re-entrant lines with exponential and non-exponential machines and, on this ba-

sis, develop open- and closed-loop job release policies, which ensure the sweet point operation

or the operation at any desired point of CC. Note that re-entrant lines, which are widely used in

semiconductor industry, are particularly known for having excessively long LT ; hence, providing a

method for its evaluation and control is an important industrial problem. Clearly, it is of theoretical

interest as well.

1.2 System considered

The development reported in this paper is carried out using the bottleneck workcenter model of

a re-entrant line (BNWC model) introduced and investigated in [4–7] and further explored in [8].

This model (see Figure 1.2) considers in details BNWC (consisting of M machines and N buffers),

while all other workcenters are modeled as fixed time delays, T0,T1, . . . , TN . In addition, the

BNWC model is defined by dispatch policies employed. The current paper considers two of such

policies: First Buffer First Served (FBFS) and Last Buffer First Served (LBFS), although other

dispatch policies can be explored in a similar manner.

Figure 1.2: BNWC model of re-entrant line with release mechanism

To model the job release, we associate with this system a job release mechanism (RM, shown

in Figure 1.2 in gray). Various types of RMs can be considered. Initially, we assume that RM is
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another machine (referred to as the release machine), which releases a job during a machine cycle-

time with a certain probability. Then, we generalize the results to deterministic, once-per-hour or

once-per-shift, release policies.

Given this system, operating in a single-product regime without batch processing, the current

paper develops a method for calculating its CC, the sweet point, and open/closed-loop job release

policies to ensure operation at the desired point of the CC. Specifically, the contributions of this

paper are the following:

• An analytical expression of CC as a function of the BNWC structure (i.e., the number of

machines and buffers, the machines’ reliability characteristics, and job release rate) as well

as two parameters identified empirically (using either simulations or operating the system

under two different job release rates).

• An analytical expression of the sweet point, defined as the point of CC with the largest

curvature.

• A quantification of LT ’s, which are feasible (i.e., achievable) in a given system.

• An analytical expression for a job release rate, which ensures the desired feasible LT as a

function of machine parameters.

• If the machine parameters are not known precisely, a closed-loop job release policy, which

ensures operation close to the desired point of the CC (even if open-loop release leads to

instability).

• While the above results are initially obtained for exponential machines, it is shown that they

hold for machines obeying the Weibull, gamma, and log-normal reliability models as well.

1.3 On the Validity of BNWC Model in the Problem of Lead Time Investi-

gation

Although investigating the validity of the BNWC model of re-entrant lines is beyond the scope of

this paper, in this subsection, we provide an example, which quantifies the conditions when the
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complete and the BNWC models exhibit a similar lead time behavior.

Consider the systems with three workcenters and a job release machine shown in Figure 1.3.

Assume that all the machines are exponential, and the machines in each workcenter with multiple

machines have identical efficiency: e1 in WC1 and e3 in WC3. The efficiency of the release ma-

chine and the machine in WC2 are denoted as e0 and e2, respectively. Also, assume for simplicity

that the cycle time of all machines is the same, τ (in min).

Figure 1.3: Re-entrant line with three workcenters

Given this system, introduce the notion of WC workload as

ρWCi =
NWCi

MWCi

e0

ei
, i = 1, 2, 3, (1.1)

where NWCi and MWCi are the number of buffers and machines in workcenter i, respectively. A

workcenter with the largest ρWCi is referred to as the BNWC and its severity is defined as

S =
largest ρWCi

second largest ρWCi
. (1.2)

If, for instance, e1 = e3 = 0.85, e2 = 0.99 and e0 = 0.4, then ρWC1 = ρWC3 = 0.47, ρWC2 = 0.81, and

the BNWC is WC2 with S = 1.72. If, on the other hand, e1 = e3 = 0.99, e2 = 0.85 and e0 = 0.4,

then ρWC1 = ρWC3 = 0.40 and ρWC2 = 0.94, and the BNWC is again WC2, but with S = 2.33.

In view of the above, the BNWC model of the system in Figure 1.3 is that in Figure 1.4, where

T0 = 2 min, and T1 = T2 = 1 min, assuming that τ = 1 min.

We have investigated the lead time, LTexact, of the system in Figure 1.3 and that of its BNWC

approximation, LTBNWC, for various values of machine efficiencies as a function of ρBNWC. Typi-

cal results are illustrated in Figure 1.5 for two dispatch policies, FBFS and LBFS. Based on the

results obtained, we conclude that the BNWC model faithfully represents the lead time of a multi-
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Figure 1.4: BNWC model of re-entrant line in Figure 1.3

workcenter re-entrant line if the severity of the bottleneck workcenter is sufficiently high.
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Figure 1.5: Typical relationships between LTexact and LTBNWC

1.4 Related Literature

The literature on CC analysis in re-entrant lines can be classified into two groups. The first one

is devoted to CC identification using discrete event simulations and the second to analytical ap-

proaches using queueing theory models. Below, we provide several remarks on each of these

groups, with the aim to place the current paper in the framework of this literature.

The representative papers of the first group are [9–14]. The main issue here is to generate an

“economical” sample of job release intensities, which would allow for an effective CC identifica-

tion. Specifically, [9, 10] provide a fixed sample size strategy, which generates CC with minimal

mean square error. Based on [11], where a method for improving design of experiments has been
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developed, the series of papers [12–14] presents effective techniques for CC evaluation in single-

and multi-product re-entrant lines by judiciously selecting input traffic intensity using metamodels

motivated by queueing theory expressions.

The representative publications of the second group are [15–18]. Specifically, the survey [15]

states that many problems related to re-entrant lines performance analysis still remain open. Ref-

erences [16] and [17] provide bounds on CCs in closed tandem lines. In addition, [17] introduces

the notion of critical WIP, which leads to system operation at the sweet point; however, meth-

ods for calculating the critical WIP in re-entrant lines with unreliable machines are not provided.

Finally, [18] develops a capacity planning tool for design on re-entrant lines taking into account

numerous practical features, including randomness in process times, random machine breakdowns,

batch processing, machine setups, and multi-job production. In spite of the number of simplifying

assumptions taken in the development of this tool, simulations show that it provides reasonably

accurate results and is quite useful for rapid investigation of various “what if” scenarios.

The current paper has an intermediate position within this body of literature. Namely, it uses

simulation or operation of the system under two levels of job release intensities, but then provides

analytical expressions for CCs, sweet points, and control strategies, which ensure the desired lead

time performance as a function of the system and machine parameters.

Another body of literature, which relates to the current paper, addresses the issue of job release

to ensure a sufficiently small WIP (see [10, 19–26]). The main approaches here are kanban and

CONWIP. It is shown, both theoretically and in applications, that each of these approaches may

result in a substantial improvement of the WIP vs. TP behavior. However, to the best of our

knowledge, no analytical expressions for the number of kanbans or the level of CONWIP necessary

to achieve the desired LT in re-entrant lines with unreliable machines, have been obtained. By

providing analytical expressions for open- and closed-loop job release policies, which ensure the

desired lead time while maximizing TP, the current paper contributes to this end.

6



1.5 Abbreviations and notations

Abbreviations: BNWC – bottleneck workcenter, CC – characteristic curve, FBFS – First Buffer

First Served, LBFS – Last Buffer First Served, CL – closed-loop, OL – open-loop, RM – release

mechanism.

Notations: α – scaling ratio, e – machine efficiency, E – deterministic release, LT – lead time,

lt – relative lead time, λ – breakdown rate, µ – repair rate, M – number of machines in BNWC,

N – number of processing stages, ρ – relative workload, RI – release interval, RR – release rate, τ

– machine cycle-time, Tdown – machine downtime, Ti – time delay, Tup – machine uptime, TP –

throughput, WIP – work-in-process.

1.6 Paper outline

The remainder of this paper is structured as follows: Section 2 defines formally the BNWC-based

model of re-entrant lines and formulates the problems addressed. Sections 3-5 investigate CCs and

control policies in synchronous re-entrant lines with identical exponential machines. Specifically,

Section 3 investigates the position of sweet points and provides a comparative investigation of

CCs under FBFS and LBFS dispatch policies; Sections 4 and 5 develop open- and closed-loop

control techniques for job release to ensure the operation at the sweet point or, for that matter, at

any desired point of CC. Section 6 addresses similar issues for the so-called release-asynchronous

systems. Sections 7 and 8 extend the results to asynchronous re-entrant lines with non-identical

exponential machines and to synchronous lines with non-exponential machines, respectively. The

conclusions and topics for future work are provided in Section 9.

2 Modeling and Problems Addressed

Let, as before, LTBNWC be the average lead time of the system in Figure 1.2, and LT the average

lead time of the same system, but with Ti, i = 0, 1, . . . ,N, equals to 0. Then, in the steady state,

LTBNWC = LT +

N∑

i=0

Ti. (2.1)
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Since Ti’s affect LTBNWC as an additive constant, throughout this paper we consider the system

without the delays, evaluate its LT , and then specify LTBNWC by (2.1).

Accordingly, we consider the system shown in Figure 1.2 and define its operation by the fol-

lowing assumptions:

(i) The system consists of:

• BNWC with M producing machines, m1,m2, . . . ,mM;

• N − 1 re-entrant paths with in-process buffers, b1, b2, . . . , bN−1, containing parts at var-

ious stages of their processing;

• The input path, consisting of the release mechanism, RM, and the raw material buffer,

b0. RM releases raw material into the system according to a release policy. RM may

be modeled as a release machine, m0, or as an once-per-interval release policy (e.g.,

once-per-hour or once-per-shift).

(ii) Each machine mi, i = 0, 1, . . . , M, is characterized by:

• The reliability model, i.e., continuous random variables that define its up- and down-

time. If the up- and downtime distributions are exponential, i.e., defined by the break-

down rate λi and repair rate µi, i = 0, 1, . . . , M, (in 1/min), the line is called ex-

ponential; otherwise, it is non-exponential. For the producing machines, λi and µi,

i = 1, 2, . . . , M, are fixed, for the release machine, λ0 and µ0 are design parameters and

can be selected at will.

• The cycle time, τi (in min), i.e., the time necessary to process a part by machine mi, i =

0, 1, . . . , M. While τi, i = 1, 2, . . . , M, are fixed, τ0 can be chosen at will. When τi = τ,

i = 0, 1, . . . , M, the system is referred to as synchronous; when τi = τ, i = 1, 2, . . . , M,

and τ0 , τ, the system is called release-asynchronous; when cycle times of some or all

producing machines are different, the system is asynchronous.

(iii) Each buffer is of infinite capacity.
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(iv) The assignment of machines m1,m2, . . . ,mM to process parts from buffers b0, b1, . . . , bN−1 is

carried out according to a dispatch policy. This paper considers two dispatch policies:

• FBFS, whereby the priority is given to buffer bi with the smallest i.

• LBFS, whereby the priority is given to buffer bi with the largest i.

(v) Modeling assumptions:

• The flow model [27] is assumed, i.e., an infinitesimal quantity of a part, produced during

an infinitesimal time interval, is transferred to and from the buffers.

• A machine is starved, if the buffer in front of it is empty; m0 is never starved.

• Machine failures are time-dependent [27], i.e., a machine can be down even if it is

starved.

Assumption (iii) is introduced to reflect the fact that in most re-entrant lines the buffer capacity

is not hardware-limited. Assumption (iv) can be extended to other dispatch policies as well. As-

sumption (v) is introduced for technical reasons: it permits a precise formulation of the equations

describing the systems at hand.

Let Tup,i and Tdown,i denote the average up- and downtime of mi, i = 0, 1, . . . , M. Then the

machine efficiency for any continuous reliability model is:

ei :=
Tup,i

Tup,i + Tdown,i
, i = 0, 1, . . . , M, (2.2)

and its throughput in isolation (i.e., when the machine is not starved) is

TPisol,i :=
Tup,i

τi(Tup,i + Tdown,i)
, i = 0, 1, . . . , M. (2.3)

Since for exponential machines, Tup,i = 1
λi

and Tdown,i = 1
µi

, then

ei =
µi

λi + µi
and TPisol,i =

µi

τi(λi + µi)
, i = 0, 1, . . . , M. (2.4)

In the framework of model (i)-(v), this paper addresses the following problems:
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• Develop a method for calculating characteristic curves and sweet points of re-entrant lines.

• Develop open-loop raw material release control policies, which ensure the desired lead time

(in particular, sweet point operation) when the parameters of the machines are known pre-

cisely.

• Develop closed-loop release control policies, which ensure the desired lead time when the

parameters of the machines are not known precisely.

We address these problems by considering several specific cases of increasing complexity and

practical significance.

• First, we address the synchronous case with identical exponential producing machines (i.e.,

with λi = λ and µi = µ, i = 1, 2, . . . , M). This case allows for a detailed investigation of LT

and various release policies, leading to insights useful for other cases as well.

• Then, we consider the release-asynchronous case with identical exponential producing ma-

chines. This case is a stepping stone to analysis of asynchronous systems.

• Asynchronous case with non-identical exponential producing machines. We analyze the sys-

tems of this type using lower- and upper-bounds derived based on the results of the previous

two cases.

• Finally, we address the synchronous case with identical non-exponential producing ma-

chines. The asynchronous systems with non-exponential machines can be analyzed using

the same approach as in the previous case, but it is not included here due to space limita-

tions. Also, for the same reason, this and the previous cases are analyzed in fewer details

than the first one.

The results obtained are described below.
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3 Synchronous Case with Identical Exponential Producing Ma-

chines: LT Analysis

In this and two subsequent sections, we consider synchronous re-entrant lines defined by assump-

tions (i)-(v) with identical exponential producing machines and analyze their CCs, sweet points,

and LT control issues. Initially, we assume that RM is represented by an exponential machine with

τ0 = τ, and then generalize the results based on deterministic, e.g., once-per-hour or once-per-shift,

release.

3.1 Approach

The approach of this section is based on the results of [2], where the function F(RR) (i.e., the CC)

and its knee have been analyzed for synchronous serial lines with identical exponential machines.

This analysis has been carried out in terms of two dimensionless quantities. The first one, referred

to as the relative lead time, is given by

lt =
LT
Mτ

, (3.1)

where M is the number of producing machines and τ is the machine cycle-time. Obviously, lt

quantifies LT in units of its smallest possible value, i.e., Mτ. For instance, lt = 5 implies that LT is

5 times longer than the total processing time.

The second quantity, referred to as the relative workload, is defined as

ρ =
e0

e
, (3.2)

where e and e0 are the efficiency of the producing and release machines, respectively. Note that e0

can be interpreted as the probability to release a job during the machine cycle-time, τ.

In terms of these normalizations and under the assumption

e0 < e (3.3)

(to ensure the existence of a steady state), the following expression, which defines the CC, has
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been derived in [2]:

l̂t(ρ) =
a

1 − ρ + b, (3.4)

where l̂t is a sufficiently accurate estimate of lt (see [2] for details), and a and b are constants given

by

a =
1 − e
Mτ

[
Tdown,0 + (2M − 1)Tdown

]
,

b = 1 − 1 − e
Mτ

Tdown,0.

(3.5)

The CC, specified by (3.4), (3.5), is shown in Figure 3.1 for the serial line with parameters

indicated in the figure caption. Using the definition of the knee as a point of CC with the largest

curvature, it is shown in [2] that the knee of l̂t(ρ) satisfies the relationship:

α
d(̂lt)
dρ

∣∣∣∣∣∣
ρ=ρknee

= 1 (3.6)

or, taking into account (3.4),

ρknee = 1 − √αa. (3.7)

In (3.6) and (3.7), α is the scaling ratio defined by the operating regime of the system at hand.

Specifically, if ρ ∈ [ρmin, 1) and l̂t ∈ [1, l̂tmax], where ρmin is the smallest relative load factor of

interest and l̂tmax is the largest acceptable relative lead time, then

α =
1 − ρmin

l̂tmax

. (3.8)

In Figure 3.1, α = 1/4000 and the knee, defined by (3.7), is shown by the black dot (with the

coordinates indicated). Thus, the position of the knee depends on the regime of system operation

(i.e., α) and the parameter a of CC, while it is independent of b.

Unfortunately, an expression similar to (3.4) for re-entrant lines defined by assumptions (i)-

(v) proved to be all but impossible to derive analytically. Therefore, we resort to an empiri-

cal/analytical approach, whereby the constants a and b are determined empirically and the validity

of (3.4) for re-entrant lines is justified by simulations, while the position of the knee as well as the

open- and closed-loop release control policies are quantified analytically.
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Figure 3.1: Characteristic curve and sweet point of serial line with M = 10, τ = 1min, e = 0.9,
Tdown,0 = 10min, Tdown = 100min

Specifically, consider the system of Figure 1.2 and assume that M < N, i.e., the number of

machines in the bottleneck workcenter is less than the number of processing stages (which is

typically the case in practice). Then, the approach of this paper consists of the following:

(a) Introduce the relative lead time and relative workload for synchronous re-entrant lines with

identical producing machines as

ltr =
LT
Nτ

,

ρr =
N
M

e0

e
.

(3.9)

To ensure existence of the steady state, assume ρr < 1, i.e.,

e0 <
Me
N
. (3.10)

(b) Identify empirically the two constants involved in expression (3.4). This is accomplished by

evaluating lt either by simulations or by operating the system under two workload factors,

say, ρr1 and ρr2. Using (3.4), this leads to two equations with two unknowns. Solving these

equations, we obtain:

ar =
ltr(ρr1) − ltr(ρr2)

ρr1 − ρr2
(1 − ρr1)(1 − ρr2),

br =
ltr(ρr2)(1 − ρr2) − ltr(ρr1)(1 − ρr1)

ρr1 − ρr2
,

(3.11)

where ltr(ρri), is the empirically determined relative lead time under the relative load factor,

ρri, i = 1, 2. Having ar and br, we postulate that CC for re-entrant lines under consideration
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is given by

l̂tr(ρr) =
ar

1 − ρr
+ br. (3.12)

(c) Next, we justify that expression (3.12) holds for any ρr ∈ [ρr,min, 1). This is accomplished

by simulating a sufficiently large number of systems with randomly selected parameters (see

Subsection 3.2 for details) and showing that ltr obtained by simulations and by (3.12) are

sufficiently close to each other. This constitutes the empirical part of the approach.

(d) The analytical part is based on (3.12). Specifically, as in (3.7), we quantify the position of

the knee by

ρr,knee = 1 − √αar (3.13)

and develop open- and closed-loop job release policies that ensure the operation at the sweet

point or at any other desired point of the characteristic curve.

3.2 Accuracy

The accuracy of l̂tr(ρr) is investigated in two steps. First, we construct 100 re-entrant lines obey-

ing the BNWC-based model, identify empirically their constants ar and br, and, thus, specify their

characteristic curves (3.12). Second, we evaluate the accuracy of the resulting expressions by com-

paring them with the true characteristic curves, ltr(ρr), identified by simulations for ρr ∈ [ρr,min, 1).

The 100 re-entrant lines satisfying assumptions (i)-(v) are constructed by selecting their pa-

rameters randomly and equiprobably from the following sets:

M ∈ [2, 5], N ∈ [M + 1, 10], e ∈ [0.7, 0.99],

Tdown,0 = Tdown ∈ [1min, 10min],
(3.14)

and, without loss of generality, τ = 1min. For each of these lines, ρr1 is selected randomly and

equiprobably from the interval ρr1 ∈ [0.8, 0.97] and ρr2 is assumed to be 0.9ρr1. To evaluate ltr(ρri),

i = 1, 2, we employ the following simulation procedure (also used in all subsequent sections): In

addition to a warm-up period of 2, 000, 000min, the simulation runs for 22, 000, 000min, and 20

repetitions of this procedure are carried out. This procedure results in a 95% confidence interval
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of ±2.5% of ltr. Using ltr(ρr1) and ltr(ρr2), thus evaluated, the constants ar and br are calculated

according to (3.11). Thus, the characteristic curve l̂tr(ρr) is specified analytically by (3.12) for all

ρr1 ∈ [ρr,min, 1).

To investigate the accuracy of l̂tr(ρr), we simulate the 100 systems discussed above with

ρr ∈ P = {0.8, 0.85, 0.9, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97}, (3.15)

evaluate ltr(ρr), and quantify the relationship between ltr(ρr) and l̂tr(ρr) by

ε = max
ρr∈P

|̂ltr(ρr) − ltr(ρr)|
ltr(ρr)

× 100%. (3.16)

We carry out these analyses under both FBFS and LBFS dispatch policies. As a results, we

obtain:

Observation 3.1 For all 100 re-entrant lines analyzed,

(a) under FBFS dispatch, the smallest and the largest ε’s are 1.45% and 33.10%, respectively;

the average error (over the 100 systems analyzed) is 12.19%;

(b) under LBFS dispatch, the smallest and the largest ε’s are 0.05% and 1.93%, respectively;

the average error is 0.60%.

Typical relationships between l̂tr(ρr) and ltr(ρr) are illustrated in Figures 3.2 and 3.3 for FBFS

and LBFS, respectively, along with the position of the sweet point (calculated using (3.13) with

α = 1/750). Obviously, the accuracy of (3.12) for LBFS is very high, while for FBFS the errors in

some cases are significant. However, recognizing that machine parameters on the factory floor are

rarely known with accuracy better than ±5%, we conclude that the estimate (3.12) is acceptable

for the lead time analysis and control.

15



(a) ρr1 = 0.8378, M = 2,
N = 9, e = 0.7451,
Tdown = 5.54min

(b) ρr1 = 0.8964, M = 3,
N = 4, e = 0.7163,
Tdown = 1.08min

(c) ρr1 = 0.9669, M = 5,
N = 9, e = 0.9685,
Tdown = 5.85min

Figure 3.2: Typical relationships between l̂tr(ρr) and ltr(ρr) under FBFS dispatch

(a) ρr1 = 0.8378, M = 2,
N = 9, e = 0.7451,
Tdown = 5.54min

(b) ρr1 = 0.8964, M = 3,
N = 4, e = 0.7163,
Tdown = 1.08min

(c) ρr1 = 0.9669, M = 5,
N = 9, e = 0.9685,
Tdown = 5.85min

Figure 3.3: Typical relationships between l̂tr(ρr) and ltr(ρr) under LBFS dispatch

3.3 Comparison of lead time under FBFS and LBFS dispatch

To illustrate the utility of (3.12) for analysis of re-entrant lines, we compare their behavior under

two dispatch policies – FBFS and LBFS. Specifically, assume that

M = 3, N = 10, e = 0.9, Tdown,0 = Tdown = 5min, τ = 1min, ρr1 = 0.9 (3.17)

and evaluate the constants involved in (3.12). The results are:

• under FBFS, ar = 2.7526, br = −6.0343;

• under LBFS, ar = 0.3807, br = 0.6366.

The corresponding l̂tr(ρr)’s calculated according to (3.12) are shown in Figure 3.4, along with the

position of the knees (with α = 1/400). Clearly, LBFS outperforms FBFS (since CC of the former

is below CC of the latter). As one can see, operating both systems at the sweet points leads to

T̂P
LBFS

, which is 5.7% larger than T̂P
FBFS

, and l̂t
LBFS
r , which is 52% smaller than l̂t

FBFS
r .

In addition, based on the analysis of 100 systems mentioned in Subsection 3.2, we obtain:
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Figure 3.4: Characteristic curves of system (3.17) under FBFS and LBFS

Observation 3.2 For all 100 re-entrant lines analyzed,

(a) aLBFS
r < aFBFS

r , i.e., ρFBFS
r,knee < ρ

LBFS
r,knee ; in other words, T̂P

LBFS
knee > T̂P

FBFS
knee .

(b) l̂t
FBFS
r (ρr)

l̂t
LBFS
r (ρr)

ρr→1−−−−−→ N, i.e., for high loads, l̂t
FBFS
r is N times larger than l̂t

LBFS
r , where N is the

number of processing stages.

(c) l̂t
FBFS
r (ρr)

l̂t
LBFS
r (ρr)

ρr→0+

−−−−→ 1, i.e., for low loads, the lead times of the system with FBFS and LBFS are

practically the same.

While this subsection shows that LBFS outperforms FBFS, reference [8] arrived at the opposite

conclusion. However, in [8], the perturbation considered was a catastrophic breakdown of all

machines in the BNWC. Under this perturbation, [8] showed that FBFS leads to a faster recovery

than LBFS. Thus, the relative advantages/disadvantages of each dispatch policy depend on the

model of perturbations considered. Assuming that a statistical (e.g., exponential) reliability model

is more prevalent in practice than catastrophic breakdowns, LBFS could be viewed as superior to

FBFS.

4 Synchronous Case with Identical Exponential Producing Ma-

chines: LT Open-loop Control

In this section, we quantify the set of attainable lead times (i.e., feasible set) and derive formu-

las for random job release rates that ensure the desired feasible lead time, while maximizing the

throughput. Then we extend this result to the deterministic job release.
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4.1 Random job release

Expression (3.13) can be used to evaluate job release rate ê0,knee, which ensures the operation at the

sweet point. Indeed, combining (3.13) with the second expression of (3.9), we obtain:

ê0,knee =
Me
N

(1 − √αar). (4.1)

This can be implemented as releasing a job once per machine cycle-time with probability ê0,knee.

The release rate to ensure operation at any point of CC is specified by:

Proposition 4.1 Consider the re-entrant lines defined by assumptions (i)-(v) with M < N.

Then, the set of feasible lead times, Fl̂t, is given by

l̂tr > ar + br. (4.2)

For any feasible desired lead time, ltd ∈ Fl̂t, the corresponding release rate is given by

ê∗0(ltd) =
Me
N

(
1 − ar

ltd − br

)
. (4.3)

With this release rate,

T̂P
∗

=
ê∗0
τ
, ŴIP

∗
= Nê∗0

( Mare
Me − Nê∗0

+ br − 1
)
. (4.4)

Proof: As it follows from (3.12), l̂tr(ρr) is an increasing function of ρr. Since 0 < ρr < 1, this

implies (4.2).

As for the optimal release rate, from (3.12) it follows that

ρ∗r(ltd) = 1 − ar

ltd − br
, (4.5)
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which, using (3.9), leads to (4.3). As far as (4.4) is concerned, clearly, T̂P
∗

=
ê∗0
τ

, and, based on

Little’s law and (3.9), we obtain:

ŴIP
∗

= T̂P
∗
(LTd − Nτ) =

ê∗0
τ

(ltd − 1)Nτ

=
ê∗0
τ

( ar

1 − ρ∗r
+ br − 1

)
Nτ

= Nê∗0
( Mare

Me − Nê∗0
+ br − 1

)
.

(4.6)

�

The behavior of ê∗0 as a function of ltd under both FBFS and LBFS is illustrated in Figure 4.1 for

the re-entrant line (3.17), with black dots indicating (̂ltr,knee, ê∗0(̂ltr,knee)). From this figure follows:

Observation 4.1 Under both FBFS and LBFS, for ltd < l̂tr,knee, the optimal release rate ê∗0

(and, therefore, T̂P
∗
) is a rapidly increasing function of ltd. For ltd > l̂tr,knee, ê∗0 is practically

constant.

Thus, releasing raw material with the rate beyond the knee is not only unnecessary (since T̂P
∗

is practically a constant), but detrimental as well (since ŴIP
∗

grows almost linearly in accordance

with ŴIP
∗

= T̂P
∗
(LTd − Nτ)).

0  20 40 60 80 100
0.675

0.72

0.765

0.81

0.855

0.9

ltd

ê
∗ 0

FBFS
LBFS

Figure 4.1: Release rate, ê∗0, as a function of the desired lead time, ltd

4.2 Deterministic job release

The random, once-per-cycle, job release may be inconvenient for practical implementation. There-

fore, below we use the results of Subsection 4.1 to derive deterministic, e.g., once-per-hour or
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once-per-shift, release policies with guaranteed LT and insignificant losses of the throughput (as

compared with once-per-cycle release).

Let ê∗0(ltd) be the release rate calculated according to (4.3). Then, within a release interval, RI

(in hours), the deterministic release, Ê∗RI (jobs/release interval), is defined as:

Ê∗RI =
⌊
Hê∗0(ltd)

⌋
, (4.7)

where bxc denotes the largest integer not greater than x, and H is the number of cycles in a release

interval, i.e., H = 60RI
τ

.

While the release according to (4.7) results in the obvious inequality

L̂T (Ê∗RI) < L̂T (ê∗0) + 60RI, (4.8)

where L̂T (Ê∗RI) and L̂T (ê∗0) are the lead times under (4.7) and (4.3), respectively, the losses of the

throughput under deterministic release (4.7) are not obvious and must be evaluated. We carry

out this evaluation by simulating re-entrant line (3.17) under both FBFS and LBFS. We ran the

simulations with ê∗0 and Ê∗RI according to (4.3) and (4.7), respectively, and evaluated the resulting

throughputs, TPC and TPRI (both in jobs/min), where the subscripts C and RI denote cycle and

release interval, respectively. Based on these simulations, we quantified losses in TP by

TPloss =
TPC − TPRI

TPC
× 100%. (4.9)

The results are shown in Tables 4.1 and 4.2 for RI = 1hour and for RI = 8hour shift, respectively.

As one can see, under both FBFS and LBFS, throughput losses for once-per-hour release are

significant (due to relatively small Ê∗RI), while for once-per-shift release, the losses are negligible.

Thus, while the deterministic release may increase the lead time (in accordance with (4.8)), it leads

to practically no throughput losses if the release interval is sufficiently large.

Actually, the production loss can be analytically quantified. Since TPC =
ê∗0
τ

and TPRI =
Ê∗RI
60RI ,
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Table 4.1: Throughput losses due to once-per-hour release

(a) FBFS

ltd ê∗0 Ê∗RI TPC TPRI TPloss (%)
6 0.2082 12 0.2083 0.2000 3.97
8 0.2170 13 0.2171 0.2167 0.18
20 0.2415 14 0.2414 0.2333 3.36
50 0.2567 15 0.2567 0.2500 2.61

100 0.2630 15 0.2630 0.2500 4.95

(b) LBFS

ltd ê∗0 Ê∗RI TPC TPRI TPloss (%)
2.4 0.2117 12 0.2117 0.2000 5.54
3.2 0.2299 13 0.2299 0.2167 5.75
8 0.2560 15 0.2560 0.2500 2.35

20 0.2647 15 0.2647 0.2500 5.55
40 0.2674 16 0.2674 0.2667 0.27

Table 4.2: Throughput losses due to once-per-shift release

(a) FBFS

ltd ê∗0 Ê∗RI TPC TPRI TPloss (%)
6 0.2082 99 0.2083 0.2063 0.97
8 0.2170 104 0.2171 0.2167 0.18

20 0.2415 115 0.2414 0.2396 0.77
50 0.2567 123 0.2567 0.2563 0.18
100 0.2630 126 0.2630 0.2625 0.20

(b) LBFS

ltd ê∗0 Ê∗RI TPC TPRI TPloss (%)
2.4 0.2117 101 0.2117 0.2104 0.63
3.2 0.2299 110 0.2299 0.2292 0.31
8 0.2560 122 0.2560 0.2542 0.72

20 0.2647 127 0.2647 0.2646 0.04
40 0.2674 128 0.2674 0.2667 0.27

based on (4.9) and taking into account (4.7), the production loss can be calculated by

TPloss =

(
1 −

⌊ 60ê∗0
τ

RI
⌋

60ê∗0
τ

RI

)
× 100%. (4.10)

In terms of (4.10), we can prove that the production loss for once-per-shift release is always

not larger than that for once-per-hour release. To accomplish this, we establish the following:

Proposition 4.2 Assume RI1 > 0 and RI2 = D · RI1, where D is a positive integer constant.

Then, for all x > 0,
bRI1 · xc

RI1
6
bRI2 · xc

RI2
. (4.11)

Proof of Proposition 4.2: Let

y = RI1 · x − bRI1 · xc. (4.12)

21



Then we have 0 6 y < 1. Thus,

bRI2 · xc
RI2

− bRI1 · xc
RI1

=
bRI2 · xc − DbRI1 · xc

RI2

=
bD · RI1 · xc − DbRI1 · xc

RI2

=

⌊
DbRI1 · xc + Dy

⌋ − DbRI1 · xc
RI2

=
bDyc
RI2
> 0.

(4.13)

In other words, (4.11) holds. �

Based on Proposition 4.2, it is easy to draw the conclusion that the production loss for once-

per-shift release is always not larger than that for once-per-hour release, which can be observed in

Tables 4.1 and 4.2.

5 Synchronous Case with Identical Exponential Producing Ma-

chines: LT Closed-loop Control

5.1 Scenario

The previous section provides methods for estimating job release rates that ensure the desired lead

time, if the parameters of the machines are known precisely. In practice, however, this is seldom

the case – the machine parameters (e.g., their efficiencies or up- and downtimes) are known only

nominally, and their real values may vary. In this situation, the above methods may result in lead

times dramatically different from the expected ones. For instance, if the real machine efficiency,

ereal, is lower than the nominal one, enom, and the desired lead time, ltd, is sufficiently large, it may

happen that

ê∗0(ltd) >
M
N

max
16i6M

ereal,i, (5.1)

resulting in an arbitrarily large lead time.
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To prevent this situation, feedback control may be used to throttle the job release if the work-in-

process in the systems exceeds a certain limit. A number of such control strategies can be utilized.

Here, we investigate the one proposed for serial lines in [2], which is simple enough for factory

floor implementations. Specifically, we consider a relay-type release policy based on the real-

time total work-in-process, WIPtotal: if at the end of the release interval, RI, the WIPtotal is below

WIPnominal, the release takes place; otherwise it does not. In Subsection 5.2 below we formally

introduce this control law and in Subsection 5.3 investigate its performance using simulations.

5.2 Control law

Consider a re-entrant line defined by assumptions (i)-(v) with the nominal breakdown and repair

rates λ and µ. Let LTd be the desired lead time (in min). Based on this information, calculate ê∗0

and Ê∗RI using (4.3) and (4.7), respectively. Also, calculate the nominal total work-in-process using

Little’s law: since T̂P
∗

is given by the first formula in (4.4), and the total waiting time in all buffers

is LTd − Nτ, we obtain:

ŴIPnominal =
ê∗0
τ

(LTd − Nτ). (5.2)

Using these data, introduce the following control law:

E(s + 1) =



Ê∗RI , if WIPtotal(s) 6 ŴIPnominal,

0, otherwise,
(5.3)

where s = 0, 1, . . . , is the index of the release interval; E(s + 1) is the number of jobs released at

the beginning of release interval s + 1; and WIPtotal(s) is the real-time total work-in-process in the

system at the end of release interval s.

5.3 Performance evaluation

To evaluate the performance of feedback law (5.3), we use the re-entrant line (3.17) as the nom-

inal one and form a real one by increasing or decreasing machine up- and downtimes randomly

and equiprobably within ±50% of their nominal values. One realization of the systems, thus con-
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structed, is as follows:

e = [0.9154, 0.7678, 0.8708], Tdown = [3.02, 7.15, 4.09]min. (5.4)

We simulate this system with and without feedback control (5.3) under both FBFS and LBFS. The

desired lead time, ltd, for FBFS is selected 10 times larger than that for LBFS (due to Observation

3.2). Based on these simulations, we evaluate the lead times in open- and closed-loop cases (de-

noted as ltOL and ltCL, respectively). The results are shown in Tables 5.1 and 5.2. Similar results

have been obtained for other realizations of real lines, corresponding to the nominal line (3.17).

Based on these results, we formulate:

Observation 5.1 Under both FBFS and LBFS, closed-loop job release according to (5.3) en-

sures a bounded lt, while the open-loop release (4.7) may result in lt being unbounded.

Table 5.1: Lead time under control law (5.3) with once-per-hour release

(a) FBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

30 0.2494 14 7.09 7.09 0.2333 0.2333
50 0.2567 15 15.57 14.09 0.2500 0.2497
80 0.2614 15 15.53 15.28 0.2500 0.2500
100 0.2630 15 15.52 15.45 0.2500 0.2500
200 0.2664 15 15.53 15.53 0.2500 0.2500
300 0.2676 16 ∞ 288.77 0 0.2553
400 0.2682 16 ∞ 394.55 0 0.2553

(b) LBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

3 0.2265 13 3.59 3.59 0.2167 0.2167
5 0.2464 14 3.86 3.86 0.2333 0.2333
8 0.2560 15 4.87 4.82 0.2500 0.2499

10 0.2590 15 4.87 4.86 0.2500 0.2500
20 0.2647 15 4.87 4.87 0.2500 0.2500
30 0.2665 15 4.87 4.87 0.2500 0.2500
40 0.2674 16 ∞ 41.72 0.2554 0.2554
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Table 5.2: Lead time under control law (5.3) with once-per-shift release

(a) FBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

30 0.2494 119 47.94 47.16 0.2479 0.2455
50 0.2567 123 ∞ 61.26 0 0.2399
80 0.2614 125 ∞ 80.53 0 0.2351

100 0.2630 126 ∞ 91.82 0 0.2347
200 0.2664 127 ∞ 144.68 0 0.2454
300 0.2676 128 ∞ 197.23 0 0.2505
400 0.2682 128 ∞ 250.04 0 0.2543

(b) LBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

3 0.2265 108 22.17 22.17 0.2250 0.2250
5 0.2464 118 24.27 24.26 0.2458 0.2456
8 0.2560 122 29.25 26.51 0.2542 0.2502

10 0.2590 124 ∞ 28.90 0.2554 0.2433
20 0.2647 127 ∞ 35.00 0.2554 0.2445
30 0.2665 127 ∞ 40.27 0.2554 0.2509
40 0.2674 128 ∞ 45.72 0.2554 0.2540

6 Release-asynchronous Case with Identical Exponential Pro-

ducing Machines: LT Analysis and Control

In this section we analyze release-asynchronous lines, i.e., re-entrant lines similar to those consid-

ered in Sections 3-5, but with τ0 , τ. This analysis is used for investigating a more general case –

asynchronous lines – addressed in Section 7.

6.1 LT analysis

The approach to LT analysis in release-asynchronous lines is similar to that of the synchronous

case. The main difference is that the second expression in normalization (3.9), i.e., the relative

load factor, is defined as

ρras
r =

N
M

TPisol,0

TPisol
(6.1)
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and to ensure existence of a steady state it is assumed that

TPisol,0 <
M
N

TPisol, (6.2)

where TPisol,0 and TPisol are the throughputs of the release and producing machines in isolation,

respectively. In terms of normalization (6.1), the CC is defined similar to (3.12), i.e.,

l̂tr(ρras
r ) =

ar

1 − ρras
r

+ br, (6.3)

where ar and br are given in (3.11) (with ρras
r instead of ρr). Then the position of the knee can be

specified by

ρras
r,knee = 1 − √αar, (6.4)

where, as before, α is a scaling factor.

The accuracy of CC (6.3) has been evaluated by simulating the 100 lines used in Section 3,

but with additional parameters τ0 and τ selected randomly and equiprobably from the interval

[0.8min, 1.2min]. The simulation procedure and quantification of the error remain the same as in

Section 3. As a result, we obtained:

Observation 6.1 For all 100 re-entrant lines analyzed,

(a) under FBFS dispatch, the smallest and the largest ε’s are 0.90% and 29.08%, respectively;

the average error (over the 100 systems analyzed) is 11.03%;

(b) under LBFS dispatch, the smallest and the largest ε’s are 0.07% and 1.60%, respectively;

the average error is 0.56%.

Thus, the accuracy of CC (6.3) is similar to that of (3.12).

6.2 LT open- and closed-loop control

The equations for open- and closed-loop control of LT in release-asynchronous lines are general-

izations of those obtained in Sections 4 and 5 for the synchronous case. Specifically, for open-loop

control:
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• The once-per-cycle release rate that ensures the sweet point operation is

ê0,knee =
Mτ0e
Nτ

(1 − √αar). (6.5)

• The once-per-cycle release rate that ensures the desired lead time, ltd ∈ Fl̂t, can be calculated

using

ê∗0(ltd) =
Mτ0e
Nτ

(
1 − ar

ltd − br

)
. (6.6)

With this release rate,

T̂P
∗

=
ê∗0
τ0
, ŴIP

∗
=

Nτê∗0
τ0

( Marτ0e
Mτ0e − Nτê∗0

+ br − 1
)
. (6.7)

• The release per release interval, RI (min), is given by

Ê∗RI =
⌊
Hê∗0(ltd)

⌋
, (6.8)

where H = 60RI
τ0

.

For the closed-loop case, the control law remains the same as in (5.3), but with Ê∗RI defined by

(6.8) and ŴIPnominal given by

ŴIPnominal =
ê∗0
τ0

(LTd − Nτ). (6.9)

These relationships are used in Section 7 for control of asynchronous re-entrant lines.

7 Asynchronous Case with Non-identical Exponential Produc-

ing Machines: LT Analysis and Control

7.1 Approach

While the first normalization of (3.9) does not seem to be possible to generalize to the asynchronous

case (since the total processing time would depend on the machine assignment, which may be
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different for different parts), the second normalization of (3.9) can be extended to the asynchronous

case as

ρra =
(N)(TPisol,0)

M∑
i=1

TPisol,i

, (7.1)

where the subscript “a” stands for “asynchronous” and TPisol,i, denotes the isolation throughput of

machine mi, i = 0, 1, . . . , M.

Based on (7.1) and similarly with the synchronous case, it is possible to postulate the expression

for LT estimate as

L̂T =
Ar

1 − ρra
+ Br, (7.2)

(where constants Ar and Br can be evaluated using equations similar to (3.11)) and show (by sim-

ulations) that L̂T provides a relatively precise estimate for LT . However, we do not pursue this

approach here because it does not lead to an analytical expression for ŴIPnominal necessary for

the closed-loop control (5.2). Therefore, we develop a different approach – based on auxiliary

lines. Specifically, we introduce two auxiliary release-asynchronous lines, which provide a lower-

and upper-bounds of LT in the asynchronous case and use them for analysis and control of LT as

described in Section 6. This development is carried out below.

7.2 Auxiliary lines

Consider the BNWC-based model of asynchronous re-entrant line with non-identical exponential

producing machines defined by assumptions (i)-(v). To ensure the existence of a steady state,

assume

TPisol,0 <
M
N

min
16i6M

ei

max
16i6M

τi
(7.3)

and introduce two auxiliary release-asynchronous re-entrant lines with identical exponential pro-

ducing machines defined as follows:

τ = min
16i6M

τi, e = max
16i6M

ei, µ = max
16i6M

µi (7.4)
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and

τ = max
16i6M

τi, e = min
16i6M

ei, µ = min
16i6M

µi. (7.5)

The parameters of the release machine (i.e., τ0, e0, and Tdown,0) of these auxiliary lines remain the

same as in the original asynchronous line.

The lead time of the original line and its auxiliary lines as a function of e0 can be evaluated by

simulations; we denote these lead times as LT (e0), LT (e0), and LT (e0), respectively. To investigate

the relationship among LT (e0), LT (e0), and LT (e0), we constructed 100 asynchronous re-entrant

lines with the parameters selected randomly and equiprobably from the following sets:

M ∈ [2, 5], N ∈ [M + 1, 10], τi ∈ [0.8min, 1.2min], i = 1, 2, . . . , M, τ0 = min
16i6M

τi,

ei ∈ [0.7, 0.99], i = 1, 2, . . . , M, e0 ∈ [0.8
M
N

min
16i6M

ei

max
16i6M

τi
, 0.97

M
N

min
16i6M

ei

max
16i6M

τi
],

Tdown,0 ∈ [1min, 10min], Tdown,i ∈ [Tdown,0, 1.1Tdown,0], i = 1, 2, . . . , M.

(7.6)

For each of these lines, we formed auxiliary lines according to (7.4) and (7.5) and simulated the

resulting 300 lines under both FBFS and LBFS. As a result, we obtain:

Observation 7.1 For all 100 re-entrant lines and their auxiliary lines analyzed under both

FBFS and LBFS,

LT (e0) 6 LT (e0) 6 LT (e0). (7.7)

Thus, the release-asynchronous lines with identical machines (7.4) and (7.5) indeed provide

lower- and upper-bounds of LT in the original asynchronous line. These bounds can be used to

investigate the issues of CCs, sweet points, and control for asynchronous lines with non-identical

exponential machines. Below, we address one of these issues – the closed-loop control.

7.3 LT closed-loop control

The approach to closed-loop control of asynchronous lines is based on the following:

• For a given asynchronous re-entrant line with non-identical exponential machines, construct

the lower-bound release-asynchronous line with identical producing machines (using (7.4)).
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• For this lower-bound line and the desired LTd, calculate ê∗0, Ê∗RI , and ŴIPnominal (using (6.6),

(6.8), and (6.9), respectively).

• Use these Ê∗RI and ŴIPnominal in the feedback control law (5.3).

The resulting performance has been investigated by simulations. As an example, consider the

asynchronous line defined by the following parameters:

M = 5, N = 10, e0 = 0.2876, e = [0.7989, 0.8549, 0.9109, 0.7897, 0.9432],

Tdown,0 = 4.33min, Tdown = [4.64, 4.57, 4.53, 4.63, 4.60]min,

τ0 = 0.9159min, τ = [1.0580, 1.1272, 1.0641, 0.9368, 0.9159]min.

(7.8)

Carrying out the above calculations, we obtain the release-asynchronous line with the parameters

τ = 0.9159min, e = 0.9432, T down = 4.53min. (7.9)

We simulated system (7.8) with and without feedback control law (5.3) under both FBFS and

LBFS for various LTd. The results, shown in Tables 7.1 and 7.2, indicate that (5.3) is effective in

maintaining bounded LTCL, even when the open-loop control results in LTOL being unbounded.

Table 7.1: Lead time of asynchronous line (7.8) under open- and closed-loop control with once-
per-hour release

(a) FBFS

LTd ê∗0 Ê∗RI LTOL LTCL TPOL TPCL

200 0.4479 29 ∞ 174.64 0 0.3888
400 0.4596 30 ∞ 308.03 0 0.4217
600 0.4636 30 ∞ 578.42 0 0.4242
800 0.4656 30 ∞ 820.97 0 0.4242

(b) LBFS

LTd ê∗0 Ê∗RI LTOL LTCL TPOL TPCL

20 0.3814 24 39.21 39.09 0.4000 0.3987
40 0.4373 28 ∞ 58.54 0.4242 0.4041
60 0.4504 29 ∞ 73.46 0.4242 0.4237
80 0.4563 29 ∞ 97.37 0.4242 0.4242
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Table 7.2: Lead time of asynchronous line (7.8) under open- and closed-loop control with once-
per-shift release

(a) FBFS

LTd ê∗0 Ê∗RI LTOL LTCL TPOL TPCL

200 0.4479 234 ∞ 534.06 0 0.2438
400 0.4596 240 ∞ 547.50 0 0.2500
600 0.4636 242 ∞ 853.92 0 0.3361
800 0.4656 244 ∞ 858.39 0 0.3375

(b) LBFS

LTd ê∗0 Ê∗RI LTOL LTCL TPOL TPCL

20 0.3814 199 246.18 245.31 0.4146 0.4016
40 0.4373 229 ∞ 280.28 0.4242 0.2393
60 0.4504 236 ∞ 290.76 0.4242 0.2514
80 0.4563 239 ∞ 316.85 0.4242 0.2988

8 Synchronous Case with Identical Non-exponential Produc-

ing Machines: LT Analysis and Control

In this section, we show by simulations that:

• CC expression (3.12) holds for re-entrant lines with identical non-exponential producing

machines;

• these curves are practically independent of the up- and downtime distributions involved, as

long as their coefficients of variation are the same;

• the feedback control law (5.3) can be used to ensure a bounded LT for non-exponential re-

entrant lines as well.

8.1 LT analysis

The approach to LT analysis considered here is similar to that of Section 3. Specifically, we use

the re-entrant lines analyzed in Section 3, but with the reliability models being either Weibull, or

gamma, or log-normal and with the coefficient of variation (CV) taking values on {0.01, 0.1, 0.25,

0.5, 0.75, 1}. (We consider CV 6 1 since, as it is indicated in [28], manufacturing equipment on
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the factory floor typically has CV’s limited to (0, 1]; it is shown in [29] that this is due to the fact

that the machine breakdown and repair rates are increasing functions of operating time.) Three

examples of such lines are as follows:

Line 1: M = 3, N = 6, e = 0.9386, e0 = 0.4505, Tdown,0 = Tdown = 7.72min, τ = 1min,

Line 2: M = 2, N = 9, e = 0.8489, e0 = 0.1709, Tdown,0 = Tdown = 3.74min, τ = 1min,

Line 3: M = 2, N = 3, e = 0.7427, e0 = 0.3989, Tdown,0 = Tdown = 2.49min, τ = 1min.

(8.1)

Using (3.11), for each of these lines, we calculated the constants ar and br involved in (3.12). The

results are shown in Tables 8.1-8.3. Based on these ar and br, we have calculated CCs shown in

Figures 8.1-8.6. From these results we conclude:

Observation 8.1 For synchronous re-entrant lines with machines obeying Weibull, gamma,

and log-normal reliability models, the constants ar and br are practically independent of the relia-

bility model and, therefore, CCs are practically the same for all reliability models considered with

any fixed CV.

We hypothesize, that this conclusion holds for all machines with reliability models character-

ized by unimodal probability density functions. Note, however, that the issue of CCs in systems

with multi-modal pdf’s of up- and downtime remains open.

8.2 LT closed-loop control

In this subsection, we demonstrate the closed-loop control of LT in non-exponential re-entrant

lines. As an example, we use the same nominal and real systems as in Subsection 5.3 for exponen-

tial case. Specifically, we assume that the nominal re-entrant line is given by (3.17) and the real

one by (5.4). Since, as it is shown in the previous subsection, machine reliability models do not

have much effect on the systems performance, we assume that the machines (3.17) and (5.4) have

up- and downtimes distributed according to Weibull distribution. As before, we assume that CV

takes value on {0.01, 0.1, 0.25, 0.5, 0.75, 1}.
As for the control law, we assume that it is given by (5.3) with Ê∗RI and ŴIPnominal calculated,

using the nominal line (3.17), according to (4.7) and (5.2).
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Table 8.1: Constants ar and br for Line 1

(a) FBFS

CV
Reliability model

Weibull gamma log-normal
ar br ar br ar br

0.01 0.0465 2.0471 0.0463 2.0473 0.0468 2.0453
0.1 0.0678 1.9938 0.0675 1.9937 0.0675 1.9934

0.25 0.2575 1.2871 0.2583 1.2549 0.2580 1.2465
0.5 1.0020 −0.9454 1.0053 −1.0358 1.0012 −1.1169

0.75 2.2616 −4.3963 2.2504 −4.3515 2.2436 −4.7065
1 3.9905 −8.9382 3.9905 −8.9382 4.0184 −10.0319

(b) LBFS

CV
Reliability model

Weibull gamma log-normal
ar br ar br ar br

0.01 0.0113 1.4504 0.0113 1.4504 0.0113 1.4501
0.1 0.0150 1.4442 0.0150 1.4441 0.0150 1.4440

0.25 0.0480 1.3465 0.0480 1.3388 0.0479 1.3370
0.5 0.1785 1.0844 0.1788 1.0586 0.1778 1.0361

0.75 0.4001 0.7393 0.3981 0.7345 0.3959 0.6340
1 0.7050 0.3273 0.7050 0.3273 0.7074 0.0394

(a) CV = 0.01 (b) CV = 0.1 (c) CV = 0.25

(d) CV = 0.5 (e) CV = 0.75 (f) CV = 1

Figure 8.1: Relationships between l̂tr(ρr) and ltr(ρr) under FBFS dispatch (Line 1)

Simulating system (5.4) with Weibull machines without and with feedback release, we evaluate

ltOL and ltCL. The results are shown in Tables 8.4-8.15. Based on these results, we arrive at the same
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Table 8.2: Constants ar and br for Line 2

(a) FBFS

CV
Reliability model

Weibull gamma log-normal
ar br ar br ar br

0.01 0.0306 1.2812 0.0307 1.2815 0.0308 1.2806
0.1 0.0414 1.2451 0.0410 1.2461 0.0410 1.2463

0.25 0.1541 0.8692 0.1547 0.8592 0.1540 0.8598
0.5 0.6177 −0.4439 0.6182 −0.4608 0.6147 −0.4761

0.75 1.3939 −2.5036 1.3958 −2.5400 1.3931 −2.6326
1 2.4873 −5.3954 2.4873 −5.3954 2.4685 −5.5514

(b) LBFS

CV
Reliability model

Weibull gamma log-normal
ar br ar br ar br

0.01 0.0084 1.1534 0.0084 1.1537 0.0085 1.1534
0.1 0.0100 1.1516 0.0100 1.1516 0.0099 1.1516

0.25 0.0259 1.1156 0.0259 1.1132 0.0258 1.1131
0.5 0.0935 1.0015 0.0933 0.9949 0.0926 0.9886

0.75 0.2079 0.8515 0.2080 0.8406 0.2065 0.8105
1 0.3691 0.6512 0.3691 0.6512 0.3639 0.5851

(a) CV = 0.01 (b) CV = 0.1 (c) CV = 0.25

(d) CV = 0.5 (e) CV = 0.75 (f) CV = 1

Figure 8.2: Relationships between l̂tr(ρr) and ltr(ρr) under LBFS dispatch (Line 1)

conclusion as in Subsection 5.3: The feedback raw material release according to (5.3) maintains

finite lead time, while the open-loop release may result in lt being unbounded.
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Table 8.3: Constants ar and br for Line 3

(a) FBFS

CV
Reliability model

Weibull gamma log-normal
ar br ar br ar br

0.01 0.0867 1.3274 0.0868 1.3271 0.0872 1.3247
0.1 0.0901 1.3244 0.0895 1.3261 0.0894 1.3265

0.25 0.1368 1.2415 0.1351 1.2405 0.1344 1.2414
0.5 0.3897 0.8128 0.3872 0.7963 0.3795 0.7958

0.75 0.8414 0.1550 0.8417 0.1250 0.8182 0.0945
1 1.4836 −0.7392 1.4836 −0.7392 1.4279 −0.8219

(b) LBFS

CV
Reliability model

Weibull gamma log-normal
ar br ar br ar br

0.01 0.0353 1.1745 0.0353 1.1743 0.0356 1.1730
0.1 0.0368 1.1735 0.0366 1.1741 0.0365 1.1742

0.25 0.0533 1.1484 0.0527 1.1478 0.0524 1.1480
0.5 0.1418 1.0152 0.1406 1.0082 0.1377 1.0068

0.75 0.3009 0.8163 0.3007 0.8033 0.2915 0.7868
1 0.5278 0.5500 0.5278 0.5500 0.5059 0.5047

(a) CV = 0.01 (b) CV = 0.1 (c) CV = 0.25

(d) CV = 0.5 (e) CV = 0.75 (f) CV = 1

Figure 8.3: Relationships between l̂tr(ρr) and ltr(ρr) under FBFS dispatch (Line 2)

Thus, the results of this section indicate that non-exponential re-entrant lines can be analyzed

and controlled using the same techniques as those for the exponential case.
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(a) CV = 0.01 (b) CV = 0.1 (c) CV = 0.25

(d) CV = 0.5 (e) CV = 0.75 (f) CV = 1

Figure 8.4: Relationships between l̂tr(ρr) and ltr(ρr) under LBFS dispatch (Line 2)

(a) CV = 0.01 (b) CV = 0.1 (c) CV = 0.25

(d) CV = 0.5 (e) CV = 0.75 (f) CV = 1

Figure 8.5: Relationships between l̂tr(ρr) and ltr(ρr) under FBFS dispatch (Line 3)

9 Conclusions and Future Work

Results reported in this paper lead to the following conclusions concerning re-entrant lines de-

scribed by the bottleneck workcenter model:

• The characteristic curves (CCs) of re-entrant lines with exponential machines can be quan-

tified analytically by expression (3.12) for the synchronous case and (6.3) for the release-

asynchronous case. These expressions contain two constants, which are evaluated empiri-
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(a) CV = 0.01 (b) CV = 0.1 (c) CV = 0.25

(d) CV = 0.5 (e) CV = 0.75 (f) CV = 1

Figure 8.6: Relationships between l̂tr(ρr) and ltr(ρr) under LBFS dispatch (Line 3)

Table 8.4: Lead time of non-exponential re-entrant lines under control law (5.3) with once-per-hour
release (CV = 0.01)

(a) FBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

12 0.2690 16 ∞ 12.07 0 0.2226
24 0.2695 16 ∞ 18.24 0 0.2415
48 0.2698 16 ∞ 30.74 0 0.2534
96 0.2699 16 ∞ 77.32 0 0.2554

(b) LBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

1.2 0.2065 12 3.36 3.36 0.2000 0.2000
2.4 0.2679 16 ∞ 4.81 0.2554 0.2290
4.8 0.2693 16 ∞ 6.08 0.2554 0.2506
9.6 0.2697 16 ∞ 10.21 0.2554 0.2554

cally. While for the asynchronous case similar expressions have not been derived, the lower-

and upper-bounds, introduced in the paper, can be used to quantify their CCs.

• Using the expressions (or bounds) for CCs, the positions of the sweet points are quantified

by (3.13) and (6.4).

• The job release rates, which ensure system operation at the sweet point, are defined by

expressions (4.1) and (6.5). Similar expressions for operating at desired point of CC (and,
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Table 8.5: Lead time of non-exponential re-entrant lines under control law (5.3) with once-per-shift
release (CV = 0.01)

(a) FBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

12 0.2690 129 ∞ 48.97 0 0.1344
24 0.2695 129 ∞ 55.58 0 0.1564
48 0.2698 129 ∞ 68.24 0 0.1905
96 0.2699 129 ∞ 93.41 0 0.2199

(b) LBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

1.2 0.2065 99 20.39 20.39 0.2062 0.2062
2.4 0.2679 128 ∞ 26.06 0.2554 0.1333
4.8 0.2693 129 ∞ 27.51 0.2554 0.1792
9.6 0.2697 129 ∞ 30.02 0.2554 0.2150

Table 8.6: Lead time of non-exponential re-entrant lines under control law (5.3) with once-per-hour
release (CV = 0.1)

(a) FBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

13 0.2688 16 ∞ 12.51 0 0.2246
26 0.2694 16 ∞ 19.38 0 0.2435
52 0.2697 16 ∞ 33.12 0 0.2545

104 0.2699 16 ∞ 85.75 0 0.2554

(b) LBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

1.3 0.2484 14 3.75 3.75 0.2333 0.2333
2.6 0.2679 16 ∞ 4.90 0.2554 0.2328
5.2 0.2692 16 ∞ 6.28 0.2554 0.2521

10.4 0.2697 16 ∞ 11.05 0.2554 0.2554

thus, ensuring any feasible lead time) are (4.3) and (6.6). These release rates assume that the

parameters of the machines are known precisely.

• If the machine parameters are not known precisely, feedback control law (5.3) can be used

to enforce the system behavior close to the desired.

• All methods of lead time analysis and control developed for exponential models can be used

for re-entrant lines with Weibull, gamma, and log-normal machine reliability.
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Table 8.7: Lead time of non-exponential re-entrant lines under control law (5.3) with once-per-shift
release (CV = 0.1)

(a) FBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

13 0.2688 129 ∞ 48.97 0 0.1344
26 0.2694 129 ∞ 59.41 0 0.1713
52 0.2697 129 ∞ 73.37 0 0.2005

104 0.2699 129 ∞ 99.00 0 0.2239

(b) LBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

1.3 0.2484 119 24.30 24.30 0.2479 0.2479
2.6 0.2679 128 ∞ 26.08 0.2554 0.1340
5.2 0.2692 129 ∞ 27.53 0.2554 0.1794
10.4 0.2697 129 ∞ 30.52 0.2554 0.2186

Table 8.8: Lead time of non-exponential re-entrant lines under control law (5.3) with once-per-hour
release (CV = 0.25)

(a) FBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

14 0.2665 15 6.92 6.92 0.2500 0.2500
28 0.2683 16 ∞ 20.25 0 0.2451
56 0.2692 16 ∞ 35.37 0 0.2552

112 0.2696 16 ∞ 94.03 0 0.2554

(b) LBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

1.4 0.2431 14 3.75 3.75 0.2333 0.2333
2.8 0.2655 15 3.98 3.98 0.2500 0.2500
5.6 0.2683 16 ∞ 6.47 0.2554 0.2532

11.2 0.2693 16 ∞ 11.88 0.2554 0.2554

• For non-exponential machines, the variability of LT as a function of job release rate is de-

creasing with the coefficient of variation of up- and downtimes. Thus, the importance of

sweet point operation becomes less prominent when the variability of up- and downtimes is

small (e.g., CV 6 0.1).

A number of issues related to the topic of this paper, however, remain open. These include:

• Investigation of CCs, sweet points, and release control policies in re-entrant lines with mul-
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Table 8.9: Lead time of non-exponential re-entrant lines under control law (5.3) with once-per-shift
release (CV = 0.25)

(a) FBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

14 0.2665 127 ∞ 50.01 0 0.1434
28 0.2683 128 ∞ 58.83 0 0.1769
56 0.2692 129 ∞ 73.11 0 0.2003

112 0.2696 129 ∞ 100.98 0 0.2251

(b) LBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

1.4 0.2431 116 23.72 23.72 0.2417 0.2417
2.8 0.2655 127 ∞ 26.45 0.2554 0.1644
5.6 0.2683 128 ∞ 28.04 0.2554 0.1977
11.2 0.2693 129 ∞ 31.07 0.2554 0.2227

Table 8.10: Lead time of non-exponential re-entrant lines under control law (5.3) with once-per-
hour release (CV = 0.5)

(a) FBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

15 0.2582 15 8.37 8.16 0.2500 0.2496
30 0.2640 15 8.37 8.36 0.2500 0.2500
60 0.2670 16 ∞ 38.38 0 0.2554

120 0.2685 16 ∞ 101.68 0 0.2554

(b) LBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

1.5 0.2170 13 3.56 3.56 0.2167 0.2167
3 0.2568 15 4.13 4.13 0.2500 0.2500
6 0.2647 15 4.13 4.13 0.2500 0.2500

12 0.2676 16 ∞ 12.62 0.2554 0.2554

tiple bottleneck workcenters.

• Investigation of re-entrant lines under dispatch policies other than FBFS and LBFS.

• Investigation of CCs in re-entrant lines with batch processing equipment.

• Investigation of re-entrant lines producing multiple job-types.

• Further investigation of a possibility of analytical evaluation of the two constants involved
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Table 8.11: Lead time of non-exponential re-entrant lines under control law (5.3) with once-per-
shift release (CV = 0.5)

(a) FBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

15 0.2582 123 ∞ 50.39 0 0.2211
30 0.2640 126 ∞ 58.95 0 0.1952
60 0.2670 128 ∞ 73.89 0 0.2072

120 0.2685 128 ∞ 105.38 0 0.2310

(b) LBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

1.5 0.2170 104 21.37 21.37 0.2167 0.2167
3 0.2568 123 ∞ 25.69 0.2554 0.2309
6 0.2647 127 ∞ 27.99 0.2554 0.2070

12 0.2676 128 ∞ 31.26 0.2554 0.2286

Table 8.12: Lead time of non-exponential re-entrant lines under control law (5.3) with once-per-
hour release (CV = 0.75)

(a) FBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

30 0.2575 15 11.15 10.52 0.2500 0.2497
60 0.2635 15 11.16 11.14 0.2500 0.2500
120 0.2667 15 11.14 11.14 0.2500 0.2500
240 0.2683 16 ∞ 227.13 0 0.2554

(b) LBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

3 0.2431 14 3.80 3.80 0.2333 0.2333
6 0.2587 15 4.43 4.42 0.2500 0.2500

12 0.2648 15 4.43 4.43 0.2500 0.2500
24 0.2675 16 ∞ 25.10 0.2554 0.2554

in the expressions (3.12) and (6.3).

Solution of these problems will result in a relatively complete theory of lead time analysis and

control in re-entrant lines.
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Table 8.13: Lead time of non-exponential re-entrant lines under control law (5.3) with once-per-
shift release (CV = 0.75)

(a) FBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

30 0.2575 123 ∞ 54.97 0 0.2334
60 0.2635 126 ∞ 73.00 0 0.2209

120 0.2667 127 ∞ 104.44 0 0.2349
240 0.2683 128 ∞ 167.41 0 0.2469

(b) LBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

3 0.2431 116 23.73 23.73 0.2417 0.2416
6 0.2587 124 ∞ 27.24 0.2554 0.2339

12 0.2648 127 ∞ 30.99 0.2554 0.2326
24 0.2675 128 ∞ 37.46 0.2554 0.2462

Table 8.14: Lead time of non-exponential re-entrant lines under control law (5.3) with once-per-
hour release (CV = 1)

(a) FBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

50 0.2569 15 15.16 13.85 0.2500 0.2497
100 0.2631 15 15.18 15.12 0.2500 0.2500
200 0.2664 15 15.14 15.14 0.2500 0.2500
400 0.2682 16 ∞ 394.35 0 0.2554

(b) LBFS

ltd ê∗0 Ê∗RI ltOL ltCL TPOL TPCL

5 0.2464 14 3.86 3.86 0.2333 0.2333
10 0.2590 15 4.87 4.85 0.2500 0.2500
20 0.2647 15 4.86 4.86 0.2500 0.2500
40 0.2674 16 ∞ 41.72 0.2554 0.2554
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