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Abstract

Resilient monitoring systems are sensor networks that degrade gracefully under malicious attacks on their

sensors, causing them to project misleading information. The goal of this paper is to design, analyze,

and evaluate the performance of a resilient monitoring system intended to monitor plant conditions

(normal or anomalous). The architecture developed consists of four layers: data quality assessment,

process variable assessment, plant condition assessment,and sensor network adaptation. Each of these

layers is analyzed by either analytical or numerical tools,and the performance of the overall system

is evaluated using simulations. The measure of resiliency of the resulting system is evaluated using

Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.

I. INTRODUCTION

This paper is devoted to the design, analysis, and performance evaluation of an autonomous decentralized

monitoring system that degrades gracefully under malicious attacks on its sensors. We refer to such a

system asresilient.

The sensor network addressed in this paper is intended to measure process variables, e.g., temperature,

pressure, flow rate, etc., at various parts of a plant (e.g., power plant), and assess the plant’s condition,

e.g., normal or anomalous. When sensors are under attack, the sensor network must restructure itself,

either by re-assigning some sensors or discounting measurements of others, or both, so that the best plant

condition assessment is ascertained.

If the sensor malfunctioning were statistical, e.g., only the variance of the sensor measurement were
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maliciously changed, numerous statistical tools could be applied to evaluate the process variables and

use them for plant assessment and subsequent sensor networkadaptation. We assume, however, that the

attacker may force a sensor to project misleading data, i.e., data, which are statistically unrelated to

the process variable, and characterize the level of discrepancy by a scalar parameter referred to as data

quality (DQ). In this situation, statistical methods become insufficient for process variable assessment,

and, therefore, models of the attacker,DQ, and the effect ofDQ on process variable identification must

be introduced. This leads to a four-layer resilient monitoring system, designed and analyzed in this paper:

data quality assessment layer; process variable assessment layer; plant condition assessment layer; and

sensor network adaptation layer.

While the first three layers are based on the models and techniques introduced in this paper, the last one

uses the so-called rational controllers developed in [1]–[3], which intend to select the sensor network state

so that the plant assessment is optimized (as quantified by the entropy of the probability mass function

(pmf) identified in the plant condition assessment layer). With the exception of our preliminary results

reported in [4]–[6], and a different approach developed in [7] and [8], to the best of our knowledge, such

systems are not described in the current literature.

The outline of the paper is as follows: Section II is devoted to modeling issues and problem formulation.

The four layers mentioned above are described in Sections III-VI, respectively. Results of numerical

evaluation of the resulting system are reported in Section VII. Finally, the conclusions and directions for

future work are given in Section VIII. The proofs are included in the Appendix.

II. M ODELING AND PROBLEMS ADDRESSED

This section presents models of all components of the resilient monitoring system addressed in this paper,

namely, process variables, sensors, attacker, plant, and sensor network. In addition, it describes problems

addressed in the design and analysis of all the four layers ofthe monitoring system architecture. Finally,

it introduces a measure of resiliency that quantifies the efficacy of monitoring systems under malicious

attacks.

A. Process variable

Model: Let V denote a process variable, andṼ be a continuous random variable that represents the

values it takes according to the probability density function (pdf) fṼ (ṽ). In operations, process variables

are often characterized as being normal or anomalous, for instance, low or high. To model this situation,

introduce a discrete random variableV with outcomes Low (L), Normal (N), and High (H) defined by



3

the following probabilities:

P V
L =

R1
∫

Vmin

fṼ (ṽ)dṽ, P
V
N =

R2
∫

R1

fṼ (ṽ)dṽ,

P V
H =

Vmax
∫

R2

fṼ (ṽ)dṽ,

(1)

whereVmin and Vmax are the minimum and maximum values ofV, respectively, andR1 and R2 are

defined by technological considerations so thatVmin < R1 < R2 < Vmax. Thus,V is represented by a

discrete random variable,V , with the universal set

Σ = {L,N,H} (2)

and the probability mass function (pmf),P (V ), given in (1).

The dynamics ofV in each of its regions, L, N, and H, are characterized by transfer functions denoted

asGV
L (s), G

V
N (s), andGV

H(s). In the simplest case, d.c. gains of these transfer functions, i.e.,

αL
△
= GV

L (0), αN
△
= GV

N (0), αH
△
= GV

H(0), (3)

can be used to characterize the statics ofV in regions L, N, and H.

Thus, the model of a process variable is defined by the pdf ofṼ , pmf of V , and the transfer functions

GV
L (s), G

V
N (s), andGV

H(s).

B. Sensor

Model: Let S be a sensor assigned to monitor process variableV, andS̃ a continuous random variable

representing its projected data; the pdf ofS̃ is denoted asfS̃(s̃). As in the case of the process variable,

the sensor measurements can be represented by a discrete random variable,S, with the outcomes low

(L), normal (N), or high (H), and the pmf,P (S), defined by

PS
L =

R1
∫

Vmin

fS̃(s̃)ds̃, P
S
N =

R2
∫

R1

fS̃(s̃)ds̃,

PS
H =

Vmax
∫

R2

fS̃(s̃)ds̃,

(4)

whereR1 and R2 are the same as in (1). Thus,S has the same universal set asV , but possibly a

different pmf (given by (4)). The pmf’sP (V ) andP (S), may differ due to natural or malicious causes.

For example, they may have different variances and/or expected values. We quantify the measure of

discrepancy betweenP (V ) and P (S) by a parameter referred to as Data Quality (DQ), which takes

values on the interval[0, 1], with DQ = 0 implying that the sensor is not trustworthy at all, and

DQ = 1 indicating that it is perfectly trustworthy. While the issue of DQ assignment is addressed in
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Section III, we use it below to further define the sensor model.

SinceDQ is not a statistical quantity, a model of its effect on the relationship between random variables

V andS must be introduced. To accomplish this, define the quantity

B =
2

3
DQ+

1

3
, (5)

referred to as the sensorbelievability. WhenDQ is close to 1,B is also close to1; whenDQ is close

to 0, B is close to1
3 , implying that each outcome ofV is equally plausible. Using the believability, we

define the conditional pmf ofV givenS as follows:

P{V = σ |S = σ} = B,

P{V 6= σ |S = σ} = 1−B
2 ,

(6)

whereσ ∈ Σ (defined in (2)). Clearly, this implies thatV has the same outcome asS with probability

B, and two other outcomes with equal probabilities.

Thus, the model of a sensor is defined by the pdf ofS̃, pmf of S, data qualityDQ, believabilityB,

and the coupling (6).

Problems:

1) Based on the models of the process variable and the sensor introduced above, develop a method for

DQ assignment. This is carried out in Section III.

2) Given the sensor measurementss1, s2, ..., sn, ...,, and its data qualityDQ, develop a method for

calculating an estimate ofP (V ), denoted aŝP (V = σ), σ ∈ Σ, and specified by

lim
n→∞

P (V = σ|s1, s2, ..., sn;DQ). (7)

3) If multiple sensors, e.g.,S1 andS2, monitor a process variableV, develop a method to identify

lim
n→∞

P (V = σ|s11, ..., s
1
n;DQ1; s

2
1, ..., s

2
n;DQ2). (8)

This and the previous problem are considered in Section IV.

C. Attacker

Model: The attacker modifies sensor measurements in order to project misleading information. In formal

terms, this implies that the attacker modifiesfS̃(s̃) by changing its variance or expected value, or both.

Our preliminary investigation indicates that modifying expected values is more damaging for resilient
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monitoring than modifying variances. Therefore, the modelof the attacker considered in this paper is

that for a sensor under attack,

E[S̃] 6= E[Ṽ ], (9)

whereE[.] denotes the expected value. This implies, for example, that, while process variableV is in

state N, sensorS may project a signal testifying thatV is in state H or L.

The attacker model (9) is considered throughout this paper.In particular, it is used in Section III for

data quality identification. We note, however, that other models of the attacker could be considered using

the approach developed in this paper.

D. Plant

Model: Let G denote the monitored plant, andG be the discrete random variable representing its

condition, which can be either normal,NG, or anomalous,A1,A2, ...,Ak. However, to make the presentation

more transparent, we assume that the anomalous states of theplant are analogous to those of the process

variables, i.e., low (LG) and high (HG). Thus, the universal set ofG is

G ∈ ΣG = {LG,NG,HG}. (10)

As far as the plant model is concerned, we assume that in the case of a single process variable it is

specified by the conditional pmf ofV givenG, i.e.,

G : P (V |G), V ∈ Σ, G ∈ ΣG. (11)

In the case of multiple process variables,V1,V2, ...,VM , the plant model is given either by a vector of

conditional pmf’s

G : [P (V1|G), P (V2|G), ..., P (VM |G)], Vi ∈ Σ, G ∈ ΣG, (12)

or by a joint conditional pmf

G : P (V1, V2, ..., VM |G), Vi ∈ Σ, G ∈ ΣG. (13)

Problem: In the case of a single process variable monitored by a single or multiple sensors, given

conditional pmf(s) (7) and the plant model (11), estimate the pmf of the plant state,̂P (G), G ∈ ΣG. In

the case ofM process variables,̂P (G) must be identified based on either plant models (12) or (13) and

the estimates of process variable pmf’s,P̂ (V1), ..., P̂ (VM ). This problem is solved in Section V.
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E. Sensor network

Model: Consider plantG with process variablesV1, ...,VM . Assume that the sensor network, which

monitorsG, consists of two types of sensors:dedicated and free. Each dedicated sensor monitors a

specific process variable; in this situation, the only decision to be made in the framework of resilient

monitoring is whether to use the measurements of this sensorfor P̂ (V ) identification or not. Each free

sensor is wired so that it can monitor any of the process variables to which it is connected. For example,

thermocouples can be wired so that they could measure the temperature at either of two points on a boiler

at a power plant. In this situation, the decision to be made isnot only whether to use the measurements

of a free sensor, but also which process variable this sensorshould be monitoring.

The first of the above situations is referred to asnon-contentious and the second ascontentious. An

example of each of these situations is given in Figure1. Note that in the contentious case, the subscript

of the free sensor lists all process variables to which it is connected.

The state of a dedicated sensor is denoted as either1 or 0, with 1 implying that its measurements

are used for the process variable pmf evaluation, and 0, thatthey are not. The state of a free sensor is

denoted by a vector with elements1 and0, indicating to which process variable it is assigned to, if at

all. For instance, the free sensor of Figure1(b) has the states(1, 0), (0, 1), and(0, 0), implying that it

is assigned toV1, V2, and to neither, respectively.

(a) Non-contentious

(1,0)

(0,0)

(0,1)

(b) Contentious

Fig. 1. Types of monitoring systems

Let X denote the state space of the sensor network andx a particular state inX. Let P̂x(G = σ), σ ∈

ΣG, be the estimate of plant pmf when the network is in statex and let Îx(G) be the entropy of this

pmf, i.e.,

Îx(G) = −
∑

σ∈ΣG

P̂x(G = σ) log3 P̂x(G = σ). (14)
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Clearly, Îx(G) quantifies the measure of uncertainty in plant assessment− the smallerÎx(G), the more

certain the assessment is. UsingÎx(G), the problem of resilient monitoring can be defined as follows:

Problem: Autonomously (i.e., without any external interference) and in a decentralized manner (i.e.,

without communication among the sensors) determine the state of the network at whichÎx(G) is

minimized, i.e., findx∗ ∈ X such that

Îx∗(G) = min
x∈X

Îx(G), (15)

and have the network operate in this state with the largest probability. An approach to solving this problem

is outlined next.

F. Adaptation and measure of resiliency

Model: As mentioned above, in the non-contentious case, the decision to be made with regard to each

sensor is whether to use its measurements for pmf (7) identification or not. In addition, in the contentious

case, a decision must be made as to which process variable a free sensor should be assigned. In this

work, these decisions are made by the so-called rational controllers.

The theory of rational behavior and rational controllers has been developed in [1] and further extended

in [2], [3]. While the properties and behavior of rational controllers are described in Section VI, we note

here that they are used in the current work to force the network to operate in the statex∗ (i.e., the state

resulting in the smallest entropŷIx∗(G)) with the largest probability.

To characterize the efficacy of this adaptation procedure, we introduce the notion ofmeasure of

resiliency. Let P̂x(G) be the estimate of the plant pmf when the network is in statex ∈ X. Let the

probability of the network operating in statex be τx. Then, introduce the expected value ofP̂x(G),

x ∈ X, given by

¯̂
P (G) =

∑

x∈X

τxP̂x(G). (16)

To quantify the measure of resiliency, we analyze the “distance” of ¯̂
P (G) from the true pmf of the

plant,P (G). This is accomplished using the Kullback-Leibler divergence [10]:

D
(

P (G)||
¯̂
P (G)

)

=
∑

σ∈ΣG

P{G = σ} log3
P{G = σ}
¯̂
P{G = σ}

. (17)

Based on this expression, we introduce the following measure of resiliency (MR):

MR =
D
(

P (G)||P̂nr(G)
)

−D
(

P (G)||
¯̂
P (G)

)

D
(

P (G)||P̂nr(G)
) , (18)
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where P̂nr(G) is the estimated plant pmf of the non-resilient system, i.e., when the monitoring system

continuously operates assuming thatDQi = 1, ∀i. Clearly,MR ≤ 1, and the value1 is attained when
¯̂
P (G) = P (G).

Based on the above, we formulate the following resilient adaptation problems:

Problems:

1) Design the structure and select the parameters of rational controllers appropriate for the resilient

monitoring system.

2) For the system, thus designed, evaluate its performance as quantified by the measure of resiliency

(18).

The first of these problems is solved in Section VI and the second one in Section VII.

III. D ATA QUALITY ASSESSMENTLAYER

A. Approach

In the case of the mean-based attacker introduced in Subsection II-C, it could happen that a compromised

sensor produces more self-consistent data (i.e., data withsmaller entropy) than non-compromised ones.

Since the resilient monitoring system uses entropy to quantify desirable sensor network states, this may

lead to erroneous decisions as to which sensors should and which should not be taken into account.

Clearly, this problem cannot be avoided by using traditional statistical tools, and non-statistical methods

are necessary. In the current paper, this is accomplished using active identification based onprobing tests:

the process variable is probed by a rectangular signal, and the observed sensor responses are analyzed

from the point of view of their consistency with the d.c. gains of the process variable, introduced in (3).

The sensors with larger consistency are viewed as more trustworthy, and theirDQ is assigned accordingly.

This is the approach toDQ assignment developed in this section.

B. Probing signal

In general, any type of deterministic or random probing signals could be used. We utilize here the

simplest probe− a rectangular pulse of amplitudeA0 and durationT , applied at the time instantt0, i.e.,

u(t) = A0rectT(t− t0). (19)

The value ofA0 should be selected sufficiently small so that the process variable remains in the same

state (L, N, or H) before and during the probe. The value ofT should be selected so that the process

variable reaches a small vicinity of its steady state definedby the probe.
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C. Probing inconsistency

Let i ∈ {1, 2, ..., NS}, whereNS denotes the total number of sensors monitoring a given process variable

V. Further, let the mean value,E[S̃i], of the measurements of sensorSi before the probe beµSi , and

at the end of the probe bẽµSi . Clearly, the difference between these two values should beequal to the

d.c. gain of the process variable transfer function, which corresponds to its region (i.e., L, N, or H),

multiplied by the amplitude of the probe, i.e.,

µ̃Si − µSi = A0ki(µSi
), (20)

where

ki(µSi) =



















αL , if µSi
∈ L

αN, if µSi
∈ N

αH, if µSi
∈ H

(21)

andαL , αN, αH are defined in (3). So, if a sensor is not attacked, the quantity (µ̃Si −µSi)−A0ki (µSi) is

zero. If a sensor is attacked, it may be large. To discriminate between these two situations, we introduce

the notion ofprobing inconsistency (PIC) of a sensor, as follows:

PICi
△
= |(µ̃Si

− µSi)−A0ki (µSi)| , (22)

where,ki(µSi
) is given in (21). When the attacker, being unaware of the probing signal, maintains the

same average values of its signals before and during the probe, PICi = A0ki(µSi
). When the attacker

is anticipating the probe, but does not exactly knowA0 or t0, PICi again can be large. Only when the

attacker is anticipating the probe and knowsA0 andt0 exactly,PICi is small, and, thus, a sensor under

attack may erroneously be recognized as a non-attacked one.To prevent this, a randomA0 can be used

for each probing signal, although, in this paper, we do not address the issue of anticipating attackers with

complete knowledge of the probe.

D. Data quality assignment

While various functions ofPICi could be used forDQ assignment (see [5]), in this paper we assign it

according to

DQi = e−F (PICi), (23)

whereF (PICi) is a non-negative monotonically increasing function ofPICi. Again, various types of

such functions may be utilized. Our preliminary investigation indicates that a good choice ofF (PICi)
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is

F (PICi) = γiPIC2
i , γi > 0. (24)

Selecting an appropriate value ofγi is of importance. Indeed, if this constant were too small, even

sensors with largePICi would have relatively largeDQi, which is undesirable; if it is too large, even

sensors with smallPICi would have relatively smallDQi. Thus, this constant should be selected so that

the largest tolerablePICi, denoted byPICMi
, results in the smallestDQi, which is a design parameter.

If this parameter is selected asǫ << 1, the considerations based on (23) and (24) lead to the following

γi:

γi = γi(µSi
) = −

ln ǫ

PIC2
Mi

, (25)

wherePICMi
(µSi

) is


















|A0(αL − αH)|, if µSi ∈ L

|A0|max{|(αN − αL)|, |(αN − αH)|}, if µSi ∈ N

|A0(αH − αL)|, if µSi ∈ H.

(26)

Equations (20)-(26) constitute the data quality assignment layer of the resilient monitoring system

designed in this paper.

IV. PROCESSVARIABLE ASSESSMENTLAYER

As indicated in Subsection II-B, the purpose of this layer iscalculatingP̂ (V ), i.e., the estimate of

P (V ) based on sensor measurementss1, ..., sn, ... and its data quality,DQ (see (7)). Below, we first

carry this out for a single sensor and then for multiple sensors.

A. Process variable pmf estimation using data from a single sensor

Consider the process variableV monitored by sensorS with data qualityDQ. Let P̂n(V = σ), σ ∈ Σ

(see (2)), be the estimate ofP (V = σ) based onn sensor measurements andDQ, i.e.,

P̂n(V = σ)
△
= P (V = σ|s1, ..., sn;DQ). (27)

For convenience, denotêPn(V = σ) as hσ(n), σ ∈ Σ, n ∈ N, and introduce the following recursive

procedure for calculation ofhσ(n):

hσ(n+ 1) = hσ(n) + ǫh(n) [h
∗
σ(sn+1)− hσ(n)] , (28)
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with initial conditions

hσ(0) =
1

3
,∀σ. (29)

In equation (28),ǫh is either a small parameter, i.e.,

0 < ǫh << 1 (30)

or a monotonically decreasing sequence,ǫh = ǫh(n), given by

ǫh =
1

n+ 1
, wheren = 0, 1, 2, .... (31)

As for the set point of (28), i.e.,h∗σ(sn+1), it is defined, based on the sensor believability (5), as follows:

h∗σ(sn+1)
△
=







B, if sn+1 = σ

1−B
2 , if sn+1 6= σ.

(32)

Thus, the dynamical system (28)-(32) defines the evolution of P̂n(V ) based on sensorS measurements

and itsDQ. The limit of this evolution is characterized as follows:

Theorem 4.1: 1) Under Assumption (30), there exists0 < ǫ0 << 1, such that for all0 < ǫh < ǫ0,

the recursive procedure (28), (29), (32) converges in probability as n → ∞ to the following limit:

hσ(n)
P
→ DQ ·P (S = σ) +

1−DQ

3
. (33)

2) Under Assumption (31), convergence to the same limit takes place with probability1.

Proof: See the Appendix. 2

Thus, according to this theorem,̂P (V ) depends not only on sensorS measurements, but also onDQ.

Observe that ifDQ is close to1, the estimated pmf ofV is close to the pmf ofS, which is identical to

what is postulated by classical statistics. However, ifDQ is close to0, the same measurements result in

P̂ (V ) being practically uniform and independent of the sensor measurements. For all intermediate values

of DQ, P̂ (V ) is an affine function ofDQ.

The recursive procedure (28)-(32), referred to as theh-procedure, is the basis of the process variable

assessment layer using data from a single sensor.

B. Process variable pmf estimation using data from multiple sensors

Consider process variableV monitored by two sensors,S1 andS2, with data qualityDQ1 andDQ2,

respectively. Let̂PSi(V ), i ∈ {1, 2}, be the estimate of the pmf ofV obtained from sensorSi measurements
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and the recursive procedure (28), (29), (30), (32), i.e.,

P̂S1(V = σ)
△
= lim

n→∞
P (V = σ|s11, ..., s

1
n;DQ1),

P̂S2(V = σ)
△
= lim

n→∞
P (V = σ|s21, ..., s

2
n;DQ2).

(34)

The question addressed here is: How can one obtain an estimate of the pmf of V , based on the

measurements of both sensors,S1 andS2, simultaneously? To answer this question, we use the so-called

Dempster-Shafer combination rule [11]. Namely, letP̂S1S2(V = σ), σ ∈ Σ, denote the sought estimate,

i.e.,

lim
n→∞

P (V = σ|s11, ..., s
1
n;DQ1; s

2
1, ..., s

2
n;DQ2).

Then, according to the Dempster-Shafer rule,

P̂S1S2(V = σ) =
P̂S1(V = σ)P̂S2(V = σ)

∑

σ

P̂S1(V = σ)P̂S2(V = σ)
, σ ∈ Σ. (35)

Clearly, rule (35) can be used for more than two process variables (by combining all pmf’s simultaneously

and normalizing by their sum). Note that the entropy ofP̂S1S2(V ) is not necessarily smaller than that

of P̂S1(V ) and P̂S2(V ). So, the pmf with the smallest of three entropies should be used in the plant

assessment layer.

V. PLANT ASSESSMENTLAYER

The purpose of this layer is to estimate the pmf ofG, i.e., P̂ (G), G ∈ ΣG, using the process variable pmf

estimates,̂P (V1), ..., P̂ (VM ), and either plant model,G : [P (V1|G), ...., P (VM |G)] orG : P (V1, V2, ..., VM |G),

Vi ∈ Σ, G ∈ ΣG (see Subsection II-D). With either of these models,P̂ (G) is evaluated based on Jeffrey

rule [9] and Dempster-Shafer rule [11], using the followingprocedure:

(a) Given[P (V1|G), P (V2|G), ..., P (VM |G)], assign the initial plant pmf as

P0(G) =

[

1

3
,
1

3
,
1

3

]

. (36)

(b) Calculate the initial joint pmf ofVi andG,

P0(Vi, G) = P0(G)P (Vi|G), i = 1, 2, ...,M. (37)

(c) Calculate the marginal probability

P0(Vi) =
∑

G∈ΣG

P0(Vi, G), i = 1, 2, ...,M. (38)
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(d) Apply Jeffrey’s rule:

P̂ (Vi, G) = P0(Vi, G)
P̂ (Vi)

P0(Vi)
, i = 1, 2, ...,M. (39)

(e) Marginalize (39) to obtain the plant pmf estimate

P̂ Vi(G) =
∑

Vi∈Σ

P̂ (Vi, G), i = 1, 2, ..,M. (40)

(f) If M > 1, combine the pmf’s obtained in (40) using Dempster-Shafer rule, as follows:

P̂ (G = σG) =

M
∏

i=1

P̂ Vi(G = σG)

∑

σG

M
∏

i=1

P̂ Vi(G = σG)

, σG ∈ ΣG. (41)

If the plant model is given asP (V1, V2, ..., VM |G), marginalize it to obtain

P (Vi|G) =
∑

Vj 6=i∈Σ

P (V1, V2, ..., VM |G), (42)

i, j ∈ {1, 2, ...,M}. Then, follow steps (a)-(f) above.

VI. SENSORNETWORK ADAPTATION LAYER

The sensor network adaptation layer is based on rational controllers and temporal properties described

in this section.

A. Rational Controller

Rational controllers, introduced in [1], are decision making devices that possess two properties:ergodicity

and rationality. The ergodicity property implies that all states in the decision space are visited with a

non-zero probability. The rationality property implies that the residence time in states with a smaller

penalty function is larger than in those with a larger one. The degree to which this distinction is made

is referred to as thelevel of rationality.

In the current work, we use the rational controller defined bythe following residence time in state

x ∈ X:

Tx =







Tmax, if Îx(G) ≤ β
(

β

Îx(G)

)N

Tmax, if Îx(G) > β,
(43)

whereβ > 0 is a small number (design parameter),Tmax is the largest residence time (also a design

parameter), and̂Ix(G) is, as before, the entropy of plant assessment pmf in sensor network statex. Thus,
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this controller resides in states with small entropy for at most Tmax and less than that in other states.

To ensure ergodicity, the rational controller defined by (43) visits all states of the sensor network in a

deterministic, round-robin manner.

Let τx, defined as

τx =
Tx

∑

x∈X

Tx

, (44)

be the relative residence time in statex ∈ X, and letP̂x(G) be the plant assessment pmf associated with

this state. Then, the plant assessment pmf to be reported to the plant operator, is evaluated as

¯̂
P (G) =

∑

x∈X

τxP̂x(G). (45)

The rational controller, described in this subsection and the pmf ¯̂
P (G) are used in Section VII for

numerical performance evaluation of the resilient monitoring system designed in this work.

B. Temporal properties of adaptation

From the temporal point of view, the adaptation layer consists of epochs; K epochs (whereK is the

number of states in the sensor network) comprise acycle; at the end of each cycle,¯̂P (G) is reported to

the plant operator.

For eachx ∈ X, the epoch consists of three periods:

• DQ evaluation period,TDQ

• Process variable(s) and plant pmf evaluation period,Teval

• Residence period in statex, Tx.

Assuming that the sensor measurements are provided every0.01 seconds, and using the procedure

described in Section III,TDQ is evaluated to be5 seconds. Using the procedures described in Sections

IV and V, the duration of process variable and plant assessment, Teval, is about6 seconds. The maximum

residence period,Tmax, can be selected as desired. IfTmax is selected to be1 second, the duration of each

epoch is less than or equal to12 seconds.

As mentioned above,K epochs constitute a cycle, wherein each ofK states of the sensor network is

visited. So, the cycle duration is, at most,12K seconds. Thus, the resilient monitoring system designed

in this paper provides the plant assessment pmf,¯̂
P (G), within at most12K seconds. This temporal

organization is used in the next section to test the performance of the resilient monitoring system designed

in this work.
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VII. PERFORMANCEEVALUATION OF THE FOUR-LAYER RESILIENT MONITORING SYSTEM

This section presents the performance evaluation of the designed resilient monitoring system for two

sensor network configurations, namely, non-contentious and contentious. The systems considered and

their parameters are described in the following subsection.

A. Systems considered

Non-contentious sensor network: This system is shown in Figure 1(a). The plantG consists of two

process variables,V1 andV2. Each process variable has two dedicated sensors, i.e., sensorSij , i, j ∈

{1, 2}, monitors process variableVi. The random variablẽVi, i ∈ {1, 2}, that characterizesVi, takes

values on[0, 10]. This interval is divided into three regions,[0, 10/3), (10/3, 20/3], and (20/3, 10],

where the process variable is viewed as L, N, and H, respectively. Moreover,Ṽi is assumed to be a

Gaussian random variable, whose distribution is specified as N (µVi
, σVi

), with the standard deviation

being sufficiently small so that any realizations ofṼi outside[0, 10] can be ignored. Similarly, the values

taken by sensorSij is described by the random variablẽSij, whose distribution is given byN (µSij , σSij ).

All the sensors are assumed to possess a sampling periodTS = 0.01 seconds.

The d.c. gains (3) of the process variables areαV1

L = 2, αV1

N = 1.8, αV1

H = 1.62, αV2

L = 1.5, αV2

N = 1.3,

andαV2

H = 1.1. Each process variable,Vi, is probed by a rectangular signal (19). The magnitudes of the

probe signals areAV1

0 = 0.05 andAV2

0 = 0.1. The parameter,ǫ, associated with theDQ assessment layer

(see (25)), is assigned as0.02.

Regarding the h-procedure, we chooseǫh to be 0.01. The stopping rule of this procedure is defined

as follows: |hσ(n+ 1)− hσ(n)| < 10−4. For the assumed sensor sampling period and stopping rule,

convergence of the h-procedure is achieved in approximately 6 seconds.

The plant models are assumed to be

P (V1|G) =











0.9 0.045 0.055

0.05 0.91 0.055

0.05 0.045 0.89











,

P (V2|G) =











0.8 0.095 0.0975

0.1 0.81 0.0975

0.1 0.095 0.805











.

(46)

With respect to the sensor network adaptation layer, the measure of rationality of the rational controller

is assigned asN = 2. The parameterβ (see (43)) is chosen as0.01, which is the entropy of a pmf wherein
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the largest element is approximately0.998, and the remaining two elements are equal. The maximum

residence time,Tmax, is chosen as1 second. Given the parameters introduced above, it turns outthat

for all scenarios considered, the plant assessment pmf,¯̂
P (G), is reported to the operator in roughly165

seconds.

Contentious sensor network: This system is shown in Figure 1(b). Each process variable has one

dedicated sensor. Additionally, a free sensor is wired to monitor either of the two process variables. Sensor

Si refers to the dedicated sensor that monitorsVi, i ∈ {1, 2}, while S1,2 denotes the free sensor. The

sensor measurements are distributed according toN (µSi , σSi
) andN (µS1,2

, σS1,2
), respectively. All other

parameters of this system remain the same as in the non-contentious case. For all scenarios considered,

the pmf ¯̂P (G) is reported in approximately121 seconds.

B. Performance analysis in the non-contentious case

The performance of the resilient monitoring system, under various scenarios, is described below:

Scenario 1: The plant is actually in the low state, i.e.,P (G) = [1, 0, 0], with µV1
= 1.6, µV2

= 1.7, and

σVi
= 0.01, i ∈ {1, 2}. SensorsS21 andS22 are captured, and their mean shifted to show normal. The

statistics of the sensors are characterized byµS11
= 1.5, µS12

= 1.6, µS21 = 6.0, µS22 = 5.8, σS11
= 0.1,

σS12
= 0.13, σS21 = 0.15, andσS22

= 0.11. Based on these data, theDQ’s of the sensors are evaluated

asDQ11 = DQ12 = 1.0, DQ21 = DQ22 = 0.02.

The resulting performance of the monitoring system is illustrated in Figure 2. As one can see, the

rational controller forces the captured sensors to be disregarded. The plant assessment pmf,¯̂
P (G), is

[0.8807, 0.0559, 0.0634], which indicates that the plant is, indeed, in the low state.

For the non-resilient system, the plant assessment pmf,P̂nr(G), is [0.6828, 0.2765, 0.0407]. This leads

to the measure of resiliency beingMR = 0.6671, which testifies to the efficacy of the designed resilient

monitoring system.
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Fig. 2. Relative residence time for Scenario1
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Scenario 2: The plant and process variables are actually in the low state, and all four sensors are captured,

with their means shifted to indicate high. The following statistics are assumed:µV1
= 1.2, µV2

= 1.3,

σVi
= 0.01, i ∈ {1, 2}, µS11 = 8.2, µS12

= 8.3, µS21 = 9.1, µS22 = 9.2, σS11
= 0.1, σS12

= 0.15, σS21
=

0.12, andσS22
= 0.11. The sensorsDQ’s are identified asDQ11 = DQ12 = DQ21 = DQ22 = 0.02.

In this scenario, the rational controller resides in each state of the sensor network for roughly the same

duration of time. The plant assessment pmf,¯̂
P (G), is [0.3235, 0.3173, 0.3592], which implies that all

plant states are almost equally plausible.

The non-resilient system obtainŝPnr(G) = [0.0069, 0.0059, 0.9872], which indicates erroneously that

the plant is in the high state. The measure of resiliency is calculated to beMR = 0.7733, which, once

again, reflects the advantages of the resilient monitoring system presented in this paper.

C. Performance analysis in the contentious case

Scenario 3: The process variables are actually high due to a plant anomaly, i.e., P (G) = [0, 0, 1].

The statistics of the process variables are assumed to be characterized byµV1
= 9.1, µV2

= 9.0, and

σVi
= 0.01, i ∈ {1, 2}. The sensorS1 is captured, and its mean shifted to show normal. The statistics

of the sensors are characterized byµS1
= 5.2, µS2

= 9.2, µS1,2 = 9.1, σS1 = 0.1, σS2 = 0.11, and

σS1,2
= 0.15. Based on these data, we calculate sensorDQ’s to beDQ1 = 0.0433, DQ2 = 1.0, and

DQ1,2 = 1.0.

The most preferred states of the sensor network, with equal probability, are(1(10)1) and (0(10)1).

The plant assessment obtained is¯̂P (G) = [0.0130, 0.0120, 0.9750].

The non-resilient system reports

P̂nr(G) = 0.5

(

P̂(1(10)1)(G) + P̂(1(01)1)(G)
∣

∣

∣

DQ=1

)

. (47)

Using (47), we obtainP̂nr(G) = [0.0219, 0.3214, 0.6567], which results in the measure of resiliency

MR = 0.94.

Scenario 4: The plant is actually in the low state, i.e.,P (G) = [1, 0, 0], with µV1
= 1.5, µV2

= 1.6,

and σVi
= 0.01, i ∈ {1, 2}. The free sensor is captured, and its mean shifted to show high. When

measuringV1, the statistics ofS1,2 is characterized byµS1,2 = 8.5 and σS1,2
= 0.1. When measuring

V2, its mean and standard deviation are given byµS1,2
= 8.7 andσS1,2 = 0.1, respectively. Moreover, the

attacker’s actions are such that sensorS1,2 does not reflect any shift in its expected value due to the probe

signals, i.e.,̃µS1,2 = µS1,2 . The statistics of the other sensors are characterized byµS1 = 1.4, µS2 = 1.7,

σS1
= 0.13, andσS2

= 0.1. Based on these data, the sensorsDQ’s are identified asDQ1 = DQ2 = 1.0,
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andDQ1,2 ≈ 0.

The resulting performance of the monitoring system is illustrated in Figure 3. The residence time

is largest in states of the sensor network where both the dedicated sensors are active. The plant pmf
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Fig. 3. Relative residence time for Scenario4

assessment,¯̂P (G), is [0.9786, 0.0097, 0.0117].

The non-resilient system obtainŝPnr(G) = [0.4931, 0.4662, 0.0407]. The question arises as to why

this pmf takes place, given that the dedicated sensors indicate low, while the free sensor indicates high.

This phenomenon can be explained as a manifestation of theZadeh counterexample (see [12]): Assume

we have two candidate pmf’s ofV , given byP1(V ) = [0.95, 0.05, 0] andP2(V ) = [0, 0.05, 0.95], i.e.,

indicating low and high, respectively. Combining them using Dempster-Shafer rule results inP12(V ) =

[0, 1, 0], which indicates normal. This conclusion was not obtained from eitherP1(V ) or P2(V ), which is

paradoxical. In Scenario4, the relatively large value of̂Pnr(G = N) is precisely due to this phenomenon.

Note that the resilient system prevents this aberration by appropriately assigningDQ, and adapting the

sensor network according to the plant pmf’s entropy in each state.

The measure of resiliency in this scenario isMR = 0.97, which, again, testifies to the efficacy of the

resilient monitoring system designed in this work.

VIII. C ONCLUSIONS AND FUTURE RESEARCH

This paper shows that the four-layer architecture developed is a viable approach to the design of resilient

monitoring systems. Numerous problems, however, remain open. Some of them are as follows:

• Improving models of process variable, plant, and attacker by making them more general and practical.

For example, attackers other than mean-based should be introduced and analyzed.

• Novel methods of active data quality assessment, which would be more effective and simpler than

the probing technique developed in this paper.
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• Improving the speed of convergence to the desirable sensor network state. This may be accomplished

by using recursive versions of process variable and plant assessment estimates.

• Developing novel types of rational controllers that would lead to faster network adaptation.

• Fighting the “curse of dimensionality”. An approach to combating this problem could be based on

decomposition of the overall sensor network into smaller subsystems and adapting each of them

separately.

• Most importantly, practical application of the developed resilient monitoring systems is a challenging

task for future research.

Solutions to these problems will lead to a relatively complete and useful theory of resilient monitoring

systems.
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APPENDIX

Proof of Theorem 4.1, Part 1: The proof consists of the following five steps:

Step 1: Calculate the expected value of the set pointh∗σ(sn+1):

Since the sensor measurements are stationary, the expectedvalue ofh∗σ(sn+1) is independent ofn ∈ N,

and can be denoted asE (h∗σ(sn+1)) = µh∗

σ , σ ∈ Σ. This quantity is calculated from (32) in the following

manner:

µh∗

σ = B ·P (S = σ) +
1−B

2
(1− P (S = σ)) , σ ∈ Σ. (48)

Then, from (5),

µh∗

σ = DQ ·P (S = σ) +
1−DQ

3
, σ ∈ Σ. (49)

Step 2: Evaluate lim
n→∞

E (hσ(n)):

First, using (28), expresshσ(n) in terms of the initial condition,hσ(0), and the sequence of set points,

h∗σ(sn), n = 1, 2, ..., n, as follows:

hσ(n) = (1− ǫ0)
nhσ(0) + ǫ0

n
∑

i=1

(1− ǫ0)
n−ih∗σ(si). (50)

Next, take the expected value of both sides of (50) to obtain

E (hσ(n)) = (1− ǫ0)
nhσ(0) + µh∗

σ ǫ0

n
∑

i=1

(1− ǫ0)
n−i

= (1− ǫ0)
nhσ(0) + µh∗

σ ǫ0
(

1 + 1− ǫ0 + (1− ǫ0)
2 + ...+ (1− ǫ0)

n−1
)

.

(51)

Sinceǫ0 is sufficiently small, lim
n→∞

(1− ǫ0)
n = 0, and the limit of (51) whenn → ∞ is given by

lim
n→∞

E (hσ(n)) = µh∗

σ ǫ0
1

1−(1−ǫ0)

= µh∗

σ .
(52)

Step 3: Evaluate lim
n→∞

E
(

h2σ(n)
)

:
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Using (50), we obtain

(hσ(n))
2 =

(

(1− ǫ0)
nhσ(0) + ǫ0

n
∑

i=1

(1− ǫ0)
n−ih∗σ(si)

)2

= (1− ǫ0)
2nh2σ(0) + ǫ20

(

n
∑

i=1

(1− ǫ0)
n−ih∗σ(si)

)2

+2(1− ǫ0)
nǫ0hσ(0)

n
∑

i=1

(1− ǫ0)
n−ih∗σ(si).

(53)

Taking the expected value of both sides of (53), and applyingthe limit asn → ∞, we obtain

lim
n→∞

E
(

h2σ(n)
)

= lim
n→∞

ǫ20E







(

n
∑

i=1

(1− ǫ0)
n−ih∗σ(si)

)2






. (54)

Further, (54) can be rewritten as

lim
n→∞

E
(

h2σ(n)
)

= lim
n→∞

{

ǫ20(v
h∗

σ − (µh∗

σ )2)
1− (1− ǫ0)

2n

1− (1− ǫ0)2
+ (µh∗

σ )2(1− (1− ǫ0)
n)2
}

, (55)

wherevh
∗

σ denotes the second moment ofh∗σ(sn), i.e., vh
∗

σ

△
= E

{

(h∗σ(sn))
2
}

, ∀n. The limit in (55) is

evaluated as

lim
n→∞

E
(

h2σ(n)
)

= (vh
∗

σ − (µh∗

σ )2) ǫ2
0

1−(1−ǫ0)2
+ (µh∗

σ )2. (56)

Now, sinceǫ0 is sufficiently small, ǫ2
0

1−(1−ǫ0)2
= ǫ0

2−ǫo
≈ 0. Therefore,

lim
n→∞

E
(

h2σ(n)
)

≈ (µh∗

σ )2. (57)

Step 4: Evaluate lim
n→∞

E

{

(

hσ(n)− µh∗

σ

)2
}

:

This quantity can be expressed aslim
n→∞

E
{

h2σ(n)− (µh∗

σ )2
}

, which, from (57), is close to zero.

Therefore,

lim
n→∞

E

{

(

hσ(n)− µh∗

σ

)2
}

≈ 0. (58)

Step 5: Use Chebyshev’s inequality to obtain the desired result:

From Chebyshev’s inequality,

lim
n→∞

P
(∣

∣

∣
hσ(n)− µh∗

σ

∣

∣

∣
> α

)

< lim
n→∞

E
{

(

hσ(n)− µh∗

σ

)2
}

α2
, ∀α > 0. (59)

However, from (58), we can conclude that the right hand side of (59) is close to zero. Therefore,

lim
n→∞

P
(∣

∣

∣
hσ(n)− µh∗

σ

∣

∣

∣
> α

)

≈ 0. Moreover, if the recursive state,hσ(n), is expressed ashσ(n; ǫ0),

whereǫ0 is treated as a parameter, the following can be concluded using the steps described above:

lim
ǫ0→0

lim
n→∞

P
(∣

∣

∣
hσ(n; ǫ0)− µh∗

σ

∣

∣

∣
> α

)

= 0, ∀α > 0. (60)
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This completes the proof. 2

Proof of Theorem 4.1, Part 2: Sinceǫh(n) = 1
n+1 , the recursive state,hσ(n), σ ∈ Σ, can be expressed

as

hσ(n) =
1

n

n
∑

i=1

h∗σ(i), n ∈ {1, 2, 3, ...}. (61)

For convenience, denote1
n

n
∑

i=1

h∗σ(i) asMh∗

σ (n). From the strong law of large numbers,

P
(

lim
n→∞

|Mh∗

σ (n)− µh∗

σ | ≥ ǫ
)

= 0, ∀ǫ > 0, (62)

whereµh∗

σ is defined in (49). Using (61), (62) is represented as

P
(

lim
n→∞

|hσ(n)− µh∗

σ | ≥ ǫ
)

= 0, ∀ǫ > 0, (63)

which completes the proof. 2


