
Production Systems with Cycle Overrun: Modeling, Analysis,

Improvability, and Bottlenecks

Yongsoon Euna, Kang Liub and Semyon M. Meerkovb∗

aDepartment of Information and Communication Engineering, DGIST, Daegu 42988,
Republic of Korea; bDepartment of Electrical Engineering and Computer Science,
Univ. of Michigan, Ann Arbor, MI, USA.

ABSTRACT
Production systems literature usually attributes throughput losses to two reasons:
unreliable equipment and random part processing time (also referred to as machine
cycle time). In practice, however, one more reason for throughput losses is observed:
cycle overrun. The specificity of cycle overrun is that not all parts may require
more time than allotted by a fixed cycle time and, if the overrun does occur, its
duration is coupled with the part processing time: typically, it is a fraction or a
small multiple of the cycle time. This paper is indented to develop methods for
analysis and improvement of production systems with unreliable machines and cycle
overrun. Specifically, it introduces a mathematical model of an unreliable machine
with cycle overrun, develops its simplified version, explores the efficacy of machines’
improvability by reducing either downtime or cycle overrun, and discusses the issue
of bottleneck identification. The results obtained are illustrated by a case study
based on an automotive transmission case machining line.

KEYWORDS
Production systems; Unreliable machines; Cycle overrun; Machine improvability;
Bottleneck analysis; Continuous improvement.

1. Introduction

1.1. Background and Motivation

Throughput losses in production systems are usually attributed to two reasons: un-
reliable equipment and random part processing time (also referred to as the machine
cycle time). The former is typically considered in system-theoretic literature devoted
to production systems, where the machine up- and downtime are assumed to be ran-
dom variables (often, exponentially distributed), while the cycle time is viewed as a
constant (see for instance, Viswanadham and Narahari (1992), Askin and Standridge
(1993), Gershwin (1994), Altiok (1997), Li and Meerkov (2009), Curry and Feldman
(2010)). The latter is typically used in queuing-theoretic literature, where the pro-
cessing time is assumed to be a random variable (often, also exponential), while up-
and downtimes are not explicitly considered and may be viewed as “embedded” in
the random processing time (see, for instance, Buzacott and Shanthikumar (1993),
Papadopolous et al. (1993), Papadopoulos et al. (2009)).

In practice, however, one more reason for throughput losses is observed: cycle over-
run. This term implies that the part processing time, τ , which is supposed to be
constant, may, in fact, require additional time (i.e., overrun), τOR, leading to the total

∗Corresponding author. Email: smm@umich.edu

machine processing time given by

τtotal = τ + τOR. (1)

Such situations occur, for instance, in automated operations with a constant cy-
cle time, τ , and manual loading/unloading operations, which may have a random
component in their duration. This scenario takes place in numerous machining and
welding operations. Another scenario is typical in assembly operations, where a fixed
cycle time, τ , is imposed by operational conveyors, and the overrun, τOR, is enabled
by push-buttons, offering the operator a possibility to occasionally stop the conveyor
in order to complete the job with the desired quality. This scenario takes place, for
example, in automotive paint shops and general assembly.

Two main features characterize the cycle overrun. The first one is that it may or
may not take place at every cycle time; this implies that overruns occur with a certain
probability. The second feature is that, given that the overrun occurs, the conditional
pdf of its duration is related to the part processing time, τ . Indeed, in most cases
the overrun duration is either a fraction or a small multiple of τ . These features,
exacerbated by the fact that the machines with cycle overrun may have equipment-
dependent up- and downtimes, make the queuing-theoretic approach inapplicable to
systems with cycle overrun. The system-theoretic approach is not applicable as well:
while it does consider machine reliability models in terms of up- and downtime, the
cycle time is assumed to be constant.

Given that the current literature offers no analytical methods for analysis and im-
provement of production systems with unreliable machines and cycle overrun and
taking into account that these systems are often encountered in practice, developing
such methods is of importance. This is carried out in the current paper.

1.2. Paper Contribution

Specific novel results reported here are:

• A mathematical model of an unreliable machine with cycle overrun is developed.
• A simplified version of this model is proposed, which enables analytical perfor-

mance investigation.
• The relative effectiveness of a stand-alone machine throughput improvement by

reducing its average downtime vs. its average overrun is investigated.
• The effect of cycle overrun on the performance of serial production line is ana-

lyzed.
• The bottleneck identification and throughput improvability in production sys-

tems with cycle overrun is investigated, and effectiveness of throughput improve-
ment by downtime reduction vs. cycle overrun reduction is analyzed.
• The results obtained are illustrated by a case study based on an automotive

transmission case machining line.

1.3. Related Literature

Concluding this section, it should be pointed out that, although the literature offers no
analytical methods for analysis and improvement of systems with unreliable machines
and cycle overrun, some of the related issues have been discussed in manufacturing and
automation engineering literature. Specifically, Morrison and Martin (2007) developed

2

practical methods for approximating random cycle time of manufacturing systems
modeled by a G/G/M-queue. Nadarajah and Kotz (2008) provided the cycle time
distribution formula to characterize the cycle underrun and overrun, where the cycle
time was modeled as a sum of production busy time and idle time of Pareto and
gamma distributions. Kuo, Chien, and Chen (2011) proposed to use neural networks to
exploit the production data and tool data of the semiconductor production systems, in
order to predict and reduce the production cycle time. Millstein and Martinich (2014)
developed Takt Time Grouping method to implement kanban-flow manufacturing in a
production process with cycle underrun and overrun, where the variations of cycle time
were due to manual operation and set-up time randomness. Kacar, Mönch, and Uzsoy
(2016) et al. presented methods in non-integer linear programming to model the cycle
time variation in production planning problems. Larco et al. (2017) provided methods
to estimate the warehouse workers’ discomfort and optimize the job assignment, in
order to prevent long cycle overrun realizations. Casalino et al. (2019) proposed a
scheduling method for human-robot collaborative assembly based on the cycle time
duration data collected at runtime, adapting to the cycle time underrun and overrun
of manufacturing processes. Ben-Ammar, Bettayeb, and Dolgui (2020) studied the
integrated production planning and quality control strategies for serial production
systems with machines having variable probability distributions of the cycle time.
Roshani et al. (2020) proposed a hybrid adaptive neighborhood search approach to
minimize cycle time variability in multi-sided assembly lines. Touzani et al. (2021)
proposed methods for multi-robot task sequencing and automatic path planning to
reduce cycle times of automotive production lines.

1.4. Paper Outline

The outline of this paper is as follows: Section 2 presents a mathematical model of an
unreliable machine with cycle overrun. Section 3 investigates two avenues for reducing
this model to that considered in the system-theoretic approach: either by embedding
the average overrun time into the machine’s downtime or into machine’s cycle time.
In Section 4, analysis of performance improvement of stand-alone machines with cycle
overrun is carried out. In Section 5, a method for performance analysis of serial lines
with unreliable machines and cycle overrun is investigated. In Section 6, a bottleneck
identification technique for serial lines with unreliable machines and cycle overrun is
discussed and the issue of improvability is investigated. A case study is described in
Section 7. Finally, the conclusions and topics for future research are given in Section
8. The proofs are included in the Appendix. The list of abbreviations and notations is
placed after Section 8.

2. Mathematical Model of Unreliable Machines with Cycle Overrun

This model is defined by the following three groups of parameters/assumptions:

(a) Nominal parameters:

• Machine cycle time (τ) – the nominal time necessary to process a part by a machine.
The term “nominal” is used to imply that the machine operates in the ideal regime,
e.g., with no overruns. In large volume manufacturing, τ is practically always constant
or almost constant (i.e., random, but with a small coefficient of variation). If manual

3

loading and unloading operations are involved, their nominal durations are included
in τ .

• Machine capacity (c) – the nominal number of parts a stand-alone machine pro-
duces per unit of time in the ideal regime, e.g., without breakdowns and cycle overruns.
If the unit of time is an hour and the cycle time is in seconds, the machine capacity is

c =
3600

τ
parts/hour. (2)

(b) Reliability assumption:

• Exponential reliability model – machine breakdown and repair rates, λ and µ are
constant, implying that up- and downtime of the machine are distributed exponentially
with parameters λ and µ, respectively. The inverses of λ and µ are average up- and
downtime, Tup and Tdown.

While the above machine characteristics are widely used in system-theoretic litera-
ture, the ones below are novel.

(c) Cycle overrun parameters/assumptions:

• Overrun probability (pOR) – the probability that a cycle has an overrun. The com-
plementary probability, 1 − pOR, is the probability that this cycle does not have an
overrun.

• Overrun distribution (fOR(t)) – the (conditional) pdf of the overrun duration, given
that the cycle has an overrun. This distribution is assumed to be exponential with the
expected value denoted as TOR. To reflect the practical meaning of the overrun, it is
assumed that TOR is either a fraction or a small multiple of τ . Specifically, we assume
that TOR = kORτ , where kOR ∈ (0, 2].

Based on the above, the conditional and unconditional pdf’s of the overrun as well
as its unconditional expected value (T ucOR) are:

fOR(t) =
1

kτ
exp(− t

kτ
), t ≥ 0, (3)

fucOR(t) = pOR

(
1

kτ
exp(− t

kτ
)

)
+ (1− pOR)δ(t), t ≥ 0, (4)

T ucOR = pORkORτ = pORTOR. (5)

Thus, according to the above model, an exponential unreliable machine with cycle
overrun is defined by five independent parameters {τ, Tup, Tdown, pOR, kOR}.

Note that model (a)-(c) can be extended to non-exponential distributions of uptime,
downtime, and cycle overrun; initial results in this direction are mentioned in Section
8. Note also that, according to the above formulation, τOR in expression (1) is exactly
T ucOR.

4

3. Simplified Mathematical Model of Unreliable Machines with Cycle
Overrun

In the system-theoretic literature, a machine is usually characterized by three inde-
pendent parameters {τ, Tup, Tdown}. They are used to evaluate machine’s efficiency, e,
and stand-alone throughput, SAT , as follows:

e =
Tup

Tup + Tdown
,

SAT =
3600

τ

Tup
Tup + Tdown

parts/hour.

(6)

To simplify the description and performance analysis of a machine with cycle over-
run, two avenues are possible: either embedding the unconditional expected value of
the overrun, pORTOR, into Tdown or into τ . The former leads to

e1 =
Tup

Tup + Tdown + pORTOR
,

SAT1 =
3600

τ

Tup
Tup + Tdown + pORTOR

parts/hour.

(7)

The latter results in

e2 = e =
Tup

Tup + Tdown
,

SAT2 =
3600

τ + pORTOR

Tup
Tup + Tdown

parts/hour.

(8)

Which one of these simplifications is more precise from the point of view of approx-
imating the stand-alone throughput (SAT)?

To answer this question, we evaluate SAT of the exact stochastic model of Section
2 and compare it with (7) and (8).

Theorem 3.1. The stand-alone throughput of an unreliable machine with cycle over-
run, defined by assumptions (a)-(c), is given by

SATexact =
3600

τ + pORTOR

Tup
Tup + Tdown

parts/hour. (9)

Proof. See the Appendix.

In other words, SATexact = SAT2, i.e., no error is introduced by embedding overruns
into the machine cycle time.

To quantify the accuracy of SAT1, consider an example of a machine defined by
τ = 1, Tup = 8, Tdown = 2, pOR ∈ {0.1, 0.2, . . . , 0.9}, TOR = 0.5τ , and calculate SAT1
and SATexact. The result is shown in Figure 1. As one can see, the error, defined by

ε1 =
|SATexact − SAT1|

SATexact
· 100%, (10)

5

varies as a function of pOR between 4% and 27%.

0 0.2 0.4 0.6 0.8 1

0.55

0.6

0.65

0.7

0.75

0.8

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

30

Figure 1. Accuracy of stand-alone throughput evaluation with cycle overrun embedded
into downtime.

Based on the above, we conclude that from the point of view of stand-alone through-
put, embedding the overrun into the cycle time is preferable. Thus, we define the sim-
plified model of a machine with cycle overrun by a triple {τ + pORTOR, Tup, Tdown}.
Similar to {τ, Tup, Tdown}, which is the parametric model of a machine without over-
runs, {τ + pORTOR, Tup, Tdown} is referred to as the simplified parametric model of
unreliable machine with cycle overrun.

4. Improvability of Stand-alone Unreliable Machine with Cycle Overrun

Production losses of an unreliable machine with cycle overrun can be decreased by
either decreasing its downtime or cycle overrun. Which one of these options is prefer-
able?

To formalize this question, consider a simplified model of unreliable machine defined
by {τ + pORTOR, Tup, Tdown}. Assume that its downtime is reduced to become rTdown,
where the r ∈ (0, 1) is the reduction coefficient. In this case, the machine is charac-
terized by {τ + pORTOR, Tup, rTdown} and referred to as downtime-reduced machine.
Alternatively, assume that the unconditional mean of the overrun is reduced by the
same fraction. This results in a machine defined by {τ + rpORTOR, Tup, Tdown} and is
referred to as overrun-reduced machine. The statement below specifies which of these
machines has a larger SAT .

Theorem 4.1. For any value of the reduction coefficient, if

Tdown
Tup

<
pORTOR

τ
, (11)

the overrun-reduced machine has a larger SAT than the downtime-reduced machine.
If this inequality is reversed, the downtime-reduced machine is more productive than
the overrun-reduced one.

Proof. See the Appendix.

Condition (11), which we refer to as the SAT Improvability Indicator, can be inter-
preted as follows: Small Tdown

Tup
implies that the efficiency of a machine if no overruns are

taking into account, is high. Thus, in this situation, the best way of SAT improvement
is by decreasing the overruns. On the other hand, if Tdown

Tup
is large, the overruns play a

6

minor role in systems’ performance, and the best way to increase SAT is by decreas-
ing machine’s downtime. In fact, our research in systems with cycle overrun has been
motivated by a continuous improvement project at the underbody assembly system of
an automotive assembly plant, where no useful results have been obtained until the
cycle overruns were taken into account. By the way, in that project, the overrun time
has been embedded into the downtime, which, as it is follows from Section 3, is not
the best way to approach the problem.

5. Performance Analysis of Serial Lines with Unreliable Machines and
Cycle Overrun Based on their Simplified Parametric Model

While the simplified parametric model of an unreliable machine with cycle overrun
precisely predicts its performance in terms of the stand-alone throughput, in a multi-
machine production system with finite buffers this may not be the case. Therefore, in
this section we investigate the accuracy of serial lines performance evaluation using the
simplified parametric model of Section 3 viz-a-viz the exact stochastic model of Section
2. In addition to the throughput (TP), we investigate the accuracy of work-in-process
(WIP) and probabilities of blockages (BL) and starvations (ST). First we address
the case of two-machine lines (where closed formulas for all performance metrics are
available in Li and Meerkov (2009)) and then the general case of (M > 2)-machines
(using the aggregation procedure of Bai et al. (2020)). In both cases, the accuracy of
using the simplified model is evaluated in terms of the errors defined by:

εTP =
|TP − TPsim|

TPsim
· 100%,

εWIP =
1

M − 1

M−1∑
i=1

|WIPi −WIPi,sim|
Ni

· 100%,

εBL =
1

M − 1

M−1∑
i=1

|BLi −BLi,sim|,

εST =
1

M − 1

M∑
i=2

|STi − STi,sim|,

(12)

where the symbols with subscript ‘sim’ refer to the performance metrics evaluated
by simulations, and the symbols without the subscript refer to the same performance
metrics calculated analytically (either by formulas or by aggregation). Note that in
the case of two-machine lines the summation signs in (12) should be omitted.

5.1. Two-machine Lines

In the two-machine case, we generate 100 lines, with machine and buffer parameters
selected randomly and equiprobably from the following sets:

Tdown,i ∈ [3, 10], ei ∈ [0.6, 0.95], ci ∈ [1, 2], pOR,i ∈ [0, 1], TOR = kOR,iτi, where
kOR,i ∈ [0.2, 2], i = 1, 2; N = dhmax(c1Tdown,1, c2Tdown,2)e, where h ∈ [2, 4], denotes
the level of buffering, which protects a machine against job losses during the adjacent
machine’s downtime.

7

The analytical calculations for each of these lines have been carried out using expres-
sions (11.13)-(11.17) of Li and Meerkov (2009). The results obtained are summarized
in Tables 1. Based on these results, we conclude that the simplified parametric machine
model is acceptable for two-machine systems evaluation.

Table 1. Accuracy of performance metrics evaluation using the simplified parametric
model in two-machine lines.

(a) Accuracy of TP evaluation.

Mean values

TPsim 40.7941

TP 40.8795

εTP 0.29%

(b) Accuracy of WIP evaluation.

Mean values

WIPsim 17.8947

WIP 17.8821

εWIP 1.72%

(c) Accuracy of BL evaluation.

Mean values

BL1,sim 0.1140

BL1 0.1120

εBL 0.0021

(d) Accuracy of ST evaluation.

Mean values

ST2,sim 0.1140

ST2 0.1122

εST 0.0021

5.2. (M > 2)-machine Lines

In the (M > 2) case, we consider M ∈ {3, 5, 10, 15, 20}, and for each M generate 100
lines, with machine and buffer parameters selected randomly and equiprobably from
the following sets:

Tdown,i ∈ [3, 10], ei ∈ [0.6, 0.95], ci ∈ [1, 2], pOR,i ∈ [0, 1], TOR = kOR,iτi, where kOR,i ∈
[0.2, 2], i = 1, . . . ,M ; Nj = dhj max(cjTdown,j , cj+1Tdown,j+1)e, where hj ∈ [2, 4], and
j = 1, . . . ,M − 1.

The results obtained are presented in Tables 2. From these results, we observe that
the accuracy of performance metrics evaluation is decreasing as a function of M , and
for large M the errors become relatively large. This is because in the former case the
errors are not only due to the reduction of the exact model to a simplified one, but
also due to the errors introduced by the aggregation procedure of Bai et al. (2020).
Nevertheless, since in most practical cases the data of machine parameters is rarely
available with high precision, we conclude that the simplified machine reliability model
is still acceptable in most practical systems evaluations with M ≤ 20.

6. Bottleneck Identification and Improvability of Serial Lines with
Unreliable Machines and Cycle Overrun

6.1. Bottleneck Identification

The notion of bottlenecks in serial lines is formulated in Li and Meerkov (2009) as
follows:

8

Table 2. Accuracy of performance metrics evaluation using the simplified parametric
model in (M > 2)-machine lines.

(a) Accuracy of TP evaluation.

Mean values M = 3 M = 5 M = 10 M = 15 M = 20

TPsim 34.374 30.426 26.514 23.906 23.262

TP 34.414 30.484 26.797 24.588 24.119

εTP 0.39% 0.53% 1.44% 3.32% 4.26%

(b) Accuracy of WIP evaluation.

Mean values M = 3 M = 5 M = 10 M = 15 M = 20
1

M−1
∑M−1

i=1 WIPi,sim 19.209 18.609 16.856 17.315 17.970
1

M−1
∑M−1

i=1 WIPi 19.164 18.904 18.026 21.433 23.091

εWIP 2.08% 2.13% 4.80% 11.68% 14.37%

(c) Accuracy of BL evaluation.

Mean values M = 3 M = 5 M = 10 M = 15 M = 20
1

M−1
∑M−1

i=1 BLi,sim 0.1620 0.1661 0.1630 0.1811 0.1869
1

M−1
∑M−1

i=1 BLi 0.1627 0.1681 0.1765 0.2254 0.2436

εBL 0.0041 0.0058 0.0163 0.0452 0.0564

(d) Accuracy of ST evaluation.

Mean values M = 3 M = 5 M = 10 M = 15 M = 20
1

M−1
∑M

i=2 STi,sim 0.1234 0.1509 0.1841 0.1973 0.1997
1

M−1
∑M

i=2 STi 0.1231 0.1501 0.1697 0.1447 0.1319

εST 0.0036 0.0050 0.0185 0.0546 0.0686

Definition 6.1. Machine mi is the bottleneck (BN) of a serial line with M unreliable
machines if

∂TP

∂ci
>
∂TP

∂cj
, ∀j 6= i, (13)

where ck is the capacity of the k-th machine, k = 1, . . . ,M .

Since evaluating analytically the partial derivatives involved in (13) is all but im-
possible, Li and Meerkov (2009) provide the following:

BN Identification Procedure:

• Evaluate BL and ST of all machines in the system (either by calculation or by
measurements on the factory floor.)
• Assign arrows in each pair of consecutive machines according to the rule:

◦ if BLi < STi+1, assign the arrow pointing from mi to mi+1;
◦ if BLi > STi+1, assign the arrow pointing from mi+1 to mi;

• Then,
◦ if there is a single machine with no emanating arrows, it is the BN in the

sense of (13);

9

◦ if there are multiple machines with no emanating arrows, the one with the
largest severity is the Primary BN (P-BN), where the severity is defined by

Sj = |STj+1 −BLj |+ |STj −BTj−1|, j = 2, . . . ,M − 1,

S1 = |ST2 −BL1|,
SM = |STM −BLM−1|.

(14)

It is shown in Li and Meerkov (2009) that this identification procedure determines
the BNs in systems with machines having no overruns with high accuracy. In this
subsection, we verify by simulations whether this approach works for serial lines with
machines having overruns, modeled by the simplified parametric model. This is carried
out as follows:

We consider (M > 2)-machine serial lines with cycle overrun for M ∈
{3, 5, 10, 15, 20}. For each M , we generate 20 lines, with parameters selected randomly
and equiprobably from the following sets:

Tdown ∈ [3, 10], ei ∈ [0.6, 0.95], ci ∈ [1, 2], pOR,i ∈ [0, 0.6], TOR,i = kiτi, where ki ∈
[0.2, 2], i = 1, . . . ,M ; Nj = dhj max(cjTdown,j , cj+1Tdown,j+1)e, where hj ∈ [2, 4],
j = 1, . . . ,M − 1.

For each of the 100 lines obtained, we identify the BN using BN Identification Pro-
cedure, and assess its accuracy by comparing it with that identified using numerical
evaluation of the derivatives involved in (13). As it turns out, in all 100 lines consid-
ered, the BN identified numerically is one of the BN’s identified by BN Identification
Procedure. Table 3 shows the number of lines, where P-BN identified by BN Identifi-
cation Procedure is the same as the one identified numerically.

Based on the above, we conclude that the BN Identification Procedure has an accept-
able accuracy in serial lines with cycle overrun modeled by the simplified parametric
model.

Table 3. The number of lines where P-BN identified by BN Identification Procedure
is the same as the one identified numerically.

M = 3 M = 5 M = 10 M = 15 M = 20
20 19 18 18 18

6.2. Throughput Improvability

Section 4 provided the SAT Improvability Indicator for a single machine with overruns.
Will this indicator hod in serial lines for BN machine improvement?

We answer this question by simulations. In the above-mentioned 100 lines, we reduce
either downtime or unconditional mean overrun of the BN by 10% using the SAT
Improvability Indicator. Table 4 shows the number of lines for each M , where the
SAT Improvability Indicator turned out to be optimal in the framework of serial
lines as well. Based on this result, we conclude that this indicator may be used for
improvement of serial lines with overruns described by the simplified parametric model
of the machines.

10

Table 4. The number of cases, where SAT Improvability Indicator leads to the largest
serial line improvement.

M = 3 M = 5 M = 10 M = 15 M = 20
18 19 18 20 20

7. Case Study

7.1. Preliminaries

In this case study, we consider a production system motivated by an automotive trans-
mission case machining line. Due to confidentiality reasons, all machine and buffer
parameters have been modified, preserving, however, qualitative features of the sys-
tem performance. Due to these modifications, the system throughput that has been
measured on the factory floor, cannot be used for validating the mathematical model
of this system. Therefore, we have created what is currently referred to as a “digital
twin” of the system at hand, populated it by the modified data, and used it as the
“real system” in this case study.

The system at hand has been modeled as a serial line consisting of 12 operations
separated by finite buffers (see Figure 2, where the numbers in the rectangles represent
the modified buffers capacity). Since the original data have been available to us for a
period of eight weeks, the case study was carried out using eight weeks of modified
data (discussed in Subsection 7.2 below).

Figure 2. Structural model of the modified production line.

7.2. Raw Data and Model Validation

This subsection presents the modified data (referred to thereafter as raw data) and
uses it to validate the mathematical model of the system at hand.

For each week, the raw data (shown in Table 5) provides the values of machines τ ,
Tup, Tdown, pOR, and kOR. Based on these data, e and T ucOR have been calculated and
included in the raw data tables. As on can see:

• machine cycle time varies from 105sec to 120sec;
• machine efficiency is in the range of 0.61 to 0.97;
• the smallest machine efficiency is that of OP30;
• seven machines experience cycle overruns;
• the longest overruns are in OP60 and OP10.

Using the raw data and the aggregation procedure of Bai et al. (2020), we have
calculated the system throughput for all eight weeks (denoted as TP) and compared
it with that evaluated by simulations using the digital twin populated by respective
week raw data (denoted as TPsim). The results, shown in Table 6, indicate that the
mathematical model can be considered as validated.

11

Table 5. Weekly raw data.

(a) Week 1.

Tup (min) Tdown (min) e τ (sec) pOR kOR T ucOR (sec)

OP10 8.3406 3.024 0.7339 120 0.3563 0.6215 26.5723

OP20 24.9552 4.5164 0.8468 119 0 0 0

OP30 49.9567 4.1475 0.9233 120 0.3592 0.1651 7.1172

OP40 19.9509 3.3174 0.8574 120 0.1644 0.0994 1.9621

OP50 50.0429 3.6922 0.9313 106 0 0 0

OP60 16.6674 3.5635 0.8239 120 0.3318 0.2778 11.0585

OP70 49.9549 3.4369 0.9356 120 0.2762 0.3389 11.2307

OP80 8.3601 2.57 0.7649 120 0.2529 0.0108 0.3268

OP90 24.9889 2.826 0.8984 120 0 0 0

OP100 14.286 3.0102 0.826 113 0 0 0

OP110 19.9701 2.4306 0.8915 120 0.3136 0.1366 5.1407

OP120 50.0198 4.1669 0.9231 105 0 0 0

(b) Week 2.

Tup (min) Tdown (min) e τ (sec) pOR kOR T ucOR (sec)

OP10 16.683 3.5742 0.8236 120 0.6169 0.6012 44.5056

OP20 33.3561 4.3471 0.8847 119 0 0 0

OP30 16.6831 3.5722 0.8236 120 0.3214 0.1227 4.7307

OP40 16.6979 3.3335 0.8336 120 0.1818 0.4583 9.9947

OP50 49.9756 2.3848 0.9545 106 0 0 0

OP60 33.3354 3.4229 0.9069 120 0.3356 0.4993 20.1068

OP70 100.0144 3.7587 0.9638 120 0.2784 0.37 12.3582

OP80 20.0006 2.1139 0.9044 120 0.2557 0.0135 0.4154

OP90 25.0173 2.8394 0.8981 120 0 0 0

OP100 25.0066 3.5459 0.8758 113 0 0 0

OP110 25.013 2.1959 0.9193 120 0.2976 0.4032 14.3994

OP120 50.0034 4.1134 0.924 105 0 0 0

(c) Week 3.

Tup (min) Tdown (min) e τ (sec) pOR kOR T ucOR (sec)

OP10 8.3052 3.109 0.7276 120 0.417 0.5691 28.4766

OP20 16.6606 3.6998 0.8183 119 0 0 0

OP30 19.995 3.3221 0.8575 120 0.3581 0.141 6.0611

OP40 20.0183 3.1142 0.8654 120 0.152 0.1147 2.0931

OP50 19.9967 4.3187 0.8224 106 0 0 0

OP60 25.0236 3.8374 0.8670 120 0.4213 0.38 19.2123

OP70 20.0048 3.4488 0.8530 120 0.266 0.4015 12.8192

OP80 20.0148 3.6823 0.8446 120 0.2989 0.1561 5.5977

OP90 33.3934 3.1262 0.9144 120 0 0 0

OP100 20.0199 3.3236 0.8576 113 0 0 0

OP110 24.9656 2.6729 0.9033 120 0.3389 0.1745 7.0953

OP120 33.397 6.6547 0.8338 105 0 0 0

12

(d) Week 4.

Tup (min) Tdown (min) e τ (sec) pOR kOR T ucOR (sec)

OP10 7.6206 3.1877 0.7051 120 0.3697 0.6626 29.3931

OP20 6.5843 2.8958 0.6945 119 0 0 0

OP30 19.999 2.8337 0.8759 120 0.3317 0.1905 7.5803

OP40 20.0329 2.6112 0.8847 120 0.1607 0.1539 2.9673

OP50 11.1021 2.9251 0.7915 106 0 0 0

OP60 19.9859 2.8353 0.8758 120 0.4195 0.2644 13.3123

OP70 50.0824 3.2984 0.9382 120 0.2298 0.5568 15.3532

OP80 20.0935 3.7012 0.8445 120 0.3224 0.4793 18.5469

OP90 33.3307 3.1948 0.9125 120 0 0 0

OP100 20.0855 3.321 0.8581 113 0 0 0

OP110 33.3265 2.6876 0.9254 120 0.3454 0.192 7.9598

OP120 99.9323 5.8691 0.9445 105 0 0 0

(e) Week 5.

Tup (min) Tdown (min) e τ (sec) pOR kOR T ucOR (sec)

OP10 14.2714 4.7327 0.7510 120 0.4465 0.5577 29.8829

OP20 7.6328 3.6655 0.6756 119 0 0 0

OP30 8.3027 1.7795 0.8235 120 0.3367 0.1548 6.2526

OP40 14.2686 4.7353 0.7508 120 0.1717 0.1309 2.6987

OP50 16.6899 2.7667 0.8578 106 0 0 0

OP60 24.9749 3.9629 0.8631 120 0.4232 0.5553 28.197

OP70 49.9563 5.252 0.9049 120 0.2733 0.4473 14.6694

OP80 16.7332 4.001 0.807 120 0.259 0.0371 1.1517

OP90 33.3859 4.1533 0.8894 120 0 0 0

OP100 25.0217 3.8278 0.8673 113 0 0 0

OP110 25.0765 4.1712 0.8574 120 0.323 0.1853 7.183

OP120 99.9755 7.6868 0.9286 105 0 0 0

(f) Week 6.

Tup (min) Tdown (min) e τ (sec) pOR kOR T ucOR (sec)

OP10 10.0586 3.7924 0.7262 120 0.4133 0.4509 22.3628

OP20 14.3617 3.3406 0.8113 119 0 0 0

OP30 5.8879 3.6987 0.6142 120 0.3322 0.0682 2.7178

OP40 12.4703 3.3201 0.7897 120 0.1734 0.1725 3.5902

OP50 20.0145 2.8557 0.8751 106 0 0 0

OP60 25.0407 3.8424 0.867 120 0.3954 0.5403 25.6384

OP70 50.0236 3.5653 0.9335 120 0.2965 0.4262 15.1605

OP80 20.0894 3.0354 0.8687 120 0.3154 0.3272 12.3836

OP90 33.2873 4.9632 0.8702 120 0 0 0

OP100 12.4909 2.7645 0.8188 113 0 0 0

OP110 33.3266 2.9013 0.9199 120 0.3151 0.2117 8.0047

OP120 99.9662 7.6247 0.9291 105 0 0 0

13

(g) Week 7.

Tup (min) Tdown (min) e τ (sec) pOR kOR T ucOR (sec)

OP10 6.6949 2.2091 0.7519 120 0.5653 0.9904 67.1901

OP20 12.5163 3.5632 0.7784 119 0 0 0

OP30 5.8558 2.2167 0.7254 120 0.3218 0.1063 4.1054

OP40 16.6304 3.0973 0.843 120 0.1695 0.1131 2.2999

OP50 33.2742 3.4126 0.907 106 0 0 0

OP60 24.9705 3.8251 0.8672 120 0.3981 0.4726 22.5791

OP70 99.9469 3.1556 0.9694 120 0.3125 0.3861 14.4802

OP80 14.2309 2.9193 0.8298 120 0.2843 0.1452 4.9556

OP90 24.9441 3.1127 0.8891 120 0 0 0

OP100 24.9722 3.6785 0.8716 113 0 0 0

OP110 33.3025 3.8017 0.8975 120 0.3 0.1983 7.1391

OP120 100.0185 9.001 0.9174 105 0 0 0

(h) Week 8.

Tup (min) Tdown (min) e τ (sec) pOR kOR T ucOR (sec)

OP10 7.7444 2.7936 0.7349 120 0.3993 0.6681 32.0122

OP20 19.9792 7.6559 0.7230 119 0 0 0

OP30 7.136 2.4903 0.7413 120 0.3354 0.0917 3.6886

OP40 33.3248 3.8121 0.8974 120 0.1654 0.1311 2.6033

OP50 33.2792 2.8491 0.9211 106 0 0 0

OP60 14.3036 2.2152 0.8659 120 0.5069 0.9835 59.8269

OP70 33.3474 6.6485 0.8338 120 0.2851 0.3096 10.5952

OP80 20.0423 3.4521 0.8531 120 0.2603 0.1068 3.3357

OP90 25.0204 4.3444 0.8521 120 0 0 0

OP100 50.0636 3.6599 0.9319 113 0 0 0

OP110 16.6557 3.1142 0.8425 120 0.2919 0.1568 5.4932

OP120 100.0047 8.3081 0.9233 105 0 0 0

Table 6. Model validation.

Throughput
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8

(JPH)

TPsim 16.4970 16.9290 15.7003 15.2434 14.5075 14.4710 13.8117 13.8078

TP 16.6910 17.0372 16.0725 15.3409 14.9029 14.6863 13.7300 14.1172

εTP 1.18% 0.64% 2.37% 0.64% 2.73% 1.49% 0.59% 2.24%

7.3. Weekly Performance Analysis

The weekly performance analysis has been carried out based on the weekly raw data
and the aggregation procedure developed in Bai et al. (2020). The results are shown
in Figure 3 for Weeks 1 to 8. As one can see:

• in Weeks 2, 3, 4, 5, and 7, OP10 has the smallest SAT and is the system’s BN;

14

• in Week 1, OP80 is the P-BN due to its small SAT and buffering;
• in Week 6, OP30 has the smallest e and SAT value and is the system’s BN;
• in Week 8, OP60 is the P-BN, although its e is relatively high, its SAT is small

due to the large overruns;
• in all eight weeks, TP is substantially below the smallest SAT .

7.4. Data for Continuous Improvement Project Design

The weekly raw data exhibit substantial variability. This is obvious from Tables 5 and is
supported by the coefficients of variation of e and T ucOR calculated using all eight weeks
data and shown in the first column of Tables 7. This observation makes it necessary
to “pre-process” the raw data in order to decrease its variability and use the less
variable data for the continuous improvement project design. This is accomplished by
averaging machine parameters using two or four weeks’ data. The resulting coefficients
of variation are shown in Tables 7. Clearly, the averaging over four weeks results in a
relatively low variability of machine parameters, and this data (shown in Table 8) is
used for continuous improvement project design. (Note that averaging over all eight
weeks, i.e., over two months, might not be desirable, since machine parameters are not
stationary and evolve in time.)

Table 7. Coefficients of variation the original and averaged raw data.

(a) Data for e.

CVe,0 CVe,2 CVe,4
OP10 0.0444 0.0300 0.0044

OP20 0.0900 0.0645 0.0411

OP30 0.1163 0.0905 0.0902

OP40 0.0545 0.0499 0.0238

OP50 0.0597 0.0584 0.0087

OP60 0.0243 0.0029 0.0015

OP70 0.0506 0.0230 0.0067

OP80 0.0462 0.0044 < 0.0001

OP90 0.0220 0.0186 0.0172

OP100 0.0375 0.0264 0.0104

OP110 0.0316 0.0189 0.0171

OP120 0.0347 0.0169 0.0100

(b) Data for Tuc
OR.

CVTuc
OR,0 CVTuc

OR,2 CVTuc
OR,4

OP10 0.3863 0.2588 0.0802

OP30 0.3068 0.2186 0.2065

OP40 0.7068 0.4087 0.2065

OP60 0.569 0.4155 0.3629

OP70 0.129 0.0924 0.0295

OP80 1.0368 0.729 0.0655

OP110 0.3431 0.1596 0.1085

15

(a) Week 1.

(b) Week 2.

(c) Week 3.

(d) Week 4.

16

(e) Week 5.

(f) Week 6.

(g) Week 7.

(h) Week 8.

Figure 3. Performance analysis based on weekly data.

17

Table 8. Averaged raw data for Weeks 5-8.

Tup (min) Tdown (min) e τ (sec) pOR kOR T ucOR (sec)

OP10 9.6923 3.382 0.7413 120 0.4561 0.6668 36.495

OP20 13.6225 4.5563 0.7494 119 0 0 0

OP30 6.7956 2.5463 0.7274 120 0.3315 0.1052 4.1861

OP40 19.1735 3.7412 0.8367 120 0.17 0.1369 2.7935

OP50 25.8145 2.971 0.8968 106 0 0 0

OP60 22.3224 3.4614 0.8658 120 0.4309 0.6379 32.9867

OP70 58.3186 4.6553 0.9261 120 0.2918 0.3923 13.7395

OP80 17.774 3.352 0.8413 120 0.2798 0.1541 5.1724

OP90 29.1594 4.1434 0.8756 120 0 0 0

OP100 28.1371 3.4827 0.8899 113 0 0 0

OP110 27.0904 3.4971 0.8857 120 0.3075 0.188 6.9386

OP120 99.9912 8.1551 0.9246 105 0 0 0

7.5. System Performance Analysis Using Four-weeks Averaged Data
and Project Goal

The performance of the system at hand has been evaluated using the averaged data
of Table 8 and the aggregation procedure of Bai et al. (2020). The result is shown in
Figure 4. As one can see the bottleneck is OP10 and TP = 14.66JPH. Since the nominal
throughput (defined by the longest cycle time (τ = 120sec) under the assumption that
there are no machine breakdowns or cycle overruns) is 30JPH, i.e., the throughput
losses are over 50%.

Figure 4. Performance analysis based on the averaged data.

It is of interest to evaluate what fraction of these losses are due to machine downtime
and due to cycle overrun. The former can be calculated assuming that Tdown of each
machine in Table 8 is zero, and the latter assuming that pOR is zero. The throughputs
in the first case turns out to be 23.00JPH and in the second 17.26JPH. Thus, the
production losses due to machine downtimes are 8.34JPH and due to cycle overrun
2.60JPH. Recovering these losses is the goal of this case study. More precisely, the goal
is to design four options for a continuous improvement project leading to 5%, 10%,
20% and 30% of throughput improvement.

18

7.6. Designing Continuous Improvement Projects

Based on the results described in Section 4-6, we formulate:

Procedure for Continuous Improvement Projects Design:

(a) Using the BN Identification Procedure, determine the system’s BN or P-BN.
(b) Using the SAT Improvability Indicator, decrease either Tdown or T ucOR of the

bottleneck.
(c) Calculate TP of the improved system (using, for instance, the aggregation pro-

cedure of Bai et al. (2020)).
(d) If TPimp ≥ TPdes, stop; else go to (a).

Applying this procedure to the production system at hand, we obtain steps for
continuous improvement resulting up to 30% TP increase, i.e., TPimp = 19.05JPH
(see Table 9). Based on these steps, we specify the activities related to each machine
leading to the desired throughput improvement. This results in continuous improve-
ment project to ensure 5%, 10%, 20% and 30% TP improvement shown in Table 10.
Note that for 5% improvement, only one machine must be improvement; for 10% im-
provement, parameters of three machines should be modified; for 20% improvement,
five machines must be modified; and for 30% improvement, eight machines must be
improved.

This information is intended to allow the Operations Manager to decide which of
these continuous improvement projects should be implemented on the factory floor.

Table 9. Improvement steps.

Improvement steps TP ∆TP
Percentage

increase
0 initial state 14.6557 0 0%

1
reduce OP10 downtime by 35%,

cycle overrun by 20%
15.6961 1.0404 6.63%

2 reduce OP60 overrun by 20% 15.7960 1.1403 7.22%
3 reduce OP10 downtime by 10% 15.9698 1.3141 8.23%
4 reduce OP20 downtime by 10% 16.2481 1.5924 9.80%
5 reduce OP60 cycle overrun by 20% 16.3311 1.6754 10.26%
6 reduce OP10 cycle overrun by 20% 16.5204 1.8647 11.29%
7 reduce OP30 downtime by 10% 16.7583 2.1026 12.55%

8
reduce OP60 downtime by 10%,

cycle overrun by 20%
17.3995 2.7438 15.77%

9 reduce OP20 downtime by 10% 17.1351 2.4794 14.47%
10 reduce OP30 downtime by 10% 17.3457 2.6900 15.51%

11
reduce OP60 cycle downtime by 10%,

cycle overrun by 20%
17.4619 2.8062 16.07%

12 reduce OP80 downtime by 10% 17.5078 2.8521 16.29%
13 reduce OP10 downtime by 10% 17.6579 3.0022 17.00%
14 reduce OP30 downtime by 10% 17.8537 3.1980 17.91%
15 reduce OP60 downtime by 10% 17.91 3.26 18.18%
16 reduce OP10 downtime by 10% 18.0441 3.3884 18.78%
17 reduce OP80 downtime by 10% 18.0959 3.4402 19.01%
18 reduce OP20 downtime by 10% 18.3165 3.6608 19.99%
19 reduce OP30 downtime by 10% 18.4906 3.8349 20.74%

19

20 reduce OP80 downtime by 10% 18.5484 3.8927 20.99%
21 reduce OP60 downtime by 10% 18.6059 3.9502 21.23%
22 reduce OP10 cycle overrun by 20% 18.7783 4.1226 21.95%
23 reduce OP30 downtime by 10% 18.9232 4.2675 22.55%
24 reduce OP80 downtime by 10% 18.9832 4.3275 22.80%
25 reduce OP60 cycle overrun by 20% 19.0356 4.3799 23.01%
26 reduce OP20 downtime by 10% 19.2177 4.5620 23.74%
27 reduce OP40 downtime by 10% 19.3518 4.6961 24.27%
28 reduce OP80 downtime by 10% 19.4144 4.7587 24.51%
29 reduce OP30 downtime by 10% 19.5501 4.8944 25.04%
30 reduce OP40 downtime by 10% 19.6622 5.0065 25.46%
31 reduce OP80 downtime by 10% 19.7181 5.0624 25.67%
32 reduce OP10 downtime by 10% 19.8333 5.1776 26.11%
33 reduce OP80 downtime by 10% 19.8883 5.2326 26.31%
34 reduce OP60 downtime by 10% 19.9476 5.2919 26.53%
35 reduce OP10 downtime by 10% 20.0497 5.3940 26.90%
36 reduce OP70 cycle overrun by 20% 20.0506 5.3949 26.91%
37 reduce OP80 downtime by 10% 20.0979 5.4422 27.08%

38
reduce OP60 downtime by 10%,

cycle overrun by 20%
20.1957 5.5400 27.43%

39 reduce OP80 downtime by 10% 20.2315 5.5758 27.56%
40 reduce OP10 cycle overrun by 20% 20.3683 5.7126 28.05%
41 reduce OP30 downtime by 10% 20.4985 5.8428 28.50%
42 reduce OP40 downtime by 10% 20.6070 5.9513 28.88%
43 reduce OP90 downtime by 10% 20.6884 6.0327 29.16%
44 reduce OP20 downtime by 10% 20.8385 6.1828 29.67%
45 reduce OP40 downtime by 10% 20.9336 6.2779 29.99%
46 reduce OP90 downtime by 10% 21.0197 6.3640 30.28%

8. Conclusions and Future Work

This paper provides analytical methods for analysis and improvement of serial lines
with unreliable machines and cycle overrun. These methods offer the analytics for
modelling, analysis and improvement for a relatively large class of real-world serial
lines, which has not been thus far explored in production systems literature.

Results reported here can be extended in at least two directions. The first one is
to develop similar methods for assembly systems. The second is to extend the current
results to systems with non-exponential machine reliability and overrun models. To-
date, we have obtained a few results in this direction. Specifically, we have shown that
Theorems 3.1 and 4.1 hold for Weibull, gamma and log-normal distributions of Tup,
Tdown, and cycle overrun. However, many other issues remain so far unexplored. In
addition to these two areas of future research, a very important one is the application
of the methods developed to systems on the factory floor.

20

Table 10. Continuous improvement projects.

(a) For 5% throughput improvement (resulting, in fact, in 6%).

Machine Machine improvement

OP10 Reduce downtime by 35%, reduce cycle overrun by 20%.

(b) For 10% throughput improvement, i.e., TPimp = 16.12JPH.

Machine Machine improvement

OP10 Reduce downtime by 35%, reduce cycle overrun by 20%.

OP20 Reduce downtime by 10%.

OP60 Reduce cycle overrun by 36%.

(c) For 20% throughput improvement, i.e., TPimp = 17.59JPH.

Machine Machine improvement

OP10 Reduce downtime by 47%, reduce cycle overrun by 36%.

OP20 Reduce downtime by 27%.

OP30 Reduce downtime by 35%.

OP60 Reduce downtime by 27%, reduce cycle overrun by 59%.

OP80 Reduce downtime by 19%.

(d) For 30% throughput improvement, i.e., TPimp = 19.05JPH.

Machine Machine improvement

OP10 Reduce downtime by 57%, reduce cycle overrun by 59%.

OP20 Reduce downtime by 41%.

OP30 Reduce downtime by 52%.

OP40 Reduce downtime by 27%.

OP60 Reduce downtime by 47%, reduce cycle overrun by 74%.

OP70 Reduce cycle overrun by 20%.

OP80 Reduce downtime by 61%.

OP90 Reduce downtime by 10%.

Abbreviations and Notations

ε error
λ machine breakdown rate
µ machine repair rate
τ cycle time
τOR cycle overrun
τtotal part processing time
BL blockage
BN bottleneck
c machine capacity
CV coefficient of variation
des desired
e machine efficiency
exp(·) exponential function

21

fOR(t) overrun distribution
h level of buffering
imp improved
kOR overrun multiple
M number of machine
N buffer capacity
OP operation
pOR overrun probability
P-BN primary bottleneck
r reduction coefficient
sim simulated
SAT stand-alone throughput
ST starvation
TOR mean time of overrun
Tup average uptime
Tdown average downtime
tup,i i-th realization of uptime
tdown,i i-th realization of downtime
TP throughput
uc unconditional
WIP work-in-process

Funding

This work has been supported in part by the DGIST RD Program of the Ministry of
Science and ICT (18-EE-00).

References

Altiok, T. 1997. Performance Analysis of Manufacturing Systems. Springer-Verlag, New York,
NY.

Askin, R. G., and C. R. Standridge. 1993. Modeling and Analysis of Manufacturing Systems.
Vol. 29. Wiley New York.

Bai, Yishu, Jiachen Tu, Mengzhuo Yang, Liang Zhang, and Peter Denno. 2020. “A new aggrega-
tion algorithm for performance metric calculation in serial production lines with exponential
machines: design, accuracy and robustness.” International Journal of Production Research
1–18.

Ben-Ammar, Oussama, Belgacem Bettayeb, and Alexandre Dolgui. 2020. “Integrated produc-
tion planning and quality control for linear production systems under uncertainties of cycle
time and finished product quality.” International Journal of Production Research 58 (4):
1144–1160.

Buzacott, J. A., and J. G. Shanthikumar. 1993. Stochastic Models of Manufacturing Systems.
Vol. 4. Prentice Hall Englewood Cliffs, NJ.

Casalino, Andrea, Andrea Maria Zanchettin, Luigi Piroddi, and Paolo Rocco. 2019. “Optimal
scheduling of human-robot collaborative assembly operations with time petri nets.” IEEE
Transactions on Automation Science and Engineering 18 (1): 70–84.

Curry, G. L., and R. M. Feldman. 2010. Manufacturing systems modeling and analysis. Springer
Science & Business Media.

Gershwin, S. B. 1994. Manufacturing Systems Engineering. Prentice Hall, Englewood Cliff,
NJ.

22

Kacar, Necip Baris, Lars Mönch, and Reha Uzsoy. 2016. “Modeling cycle times in production
planning models for wafer fabrication.” IEEE Transactions on Semiconductor Manufactur-
ing 29 (2): 153–167.

Kuo, Chung-Jen, Chen-Fu Chien, and Jan-Daw Chen. 2011. “Manufacturing intelligence to
exploit the value of production and tool data to reduce cycle time.” IEEE Transactions on
Automation Science and Engineering 8 (1): 103–111.

Larco, José Antonio, Rene De Koster, Kees Jan Roodbergen, and Jan Dul. 2017. “Managing
warehouse efficiency and worker discomfort through enhanced storage assignment decisions.”
International Journal of Production Research 55 (21): 6407–6422.

Li, J., and S. M. Meerkov. 2009. Production Systems Engineering. Springer. (Chinese transla-
tion, 2012).

Millstein, Mitchell A, and Joseph S Martinich. 2014. “Takt Time Grouping: implementing
kanban-flow manufacturing in an unbalanced, high variation cycle-time process with moving
constraints.” International Journal of Production Research 52 (23): 6863–6877.

Morrison, James R, and Donald P Martin. 2007. “Practical extensions to cycle time approxi-
mations for the g/g/m-queue with applications.” IEEE Transactions on Automation Science
and Engineering 4 (4): 523–532.

Nadarajah, Saralees, and Samuel Kotz. 2008. “The cycle time distribution.” International
Journal of Production Research 46 (11): 3133–3141.

Papadopolous, H. T., C. Heavey, J. Browne, and B. A. 1993. Queueing Theory in Manufac-
turing Systems Analysis and Design. Springer Science & Business Media.

Papadopoulos, H. T., Michael E. J. O’Kelly, M. J. Vidalis, and D. Spinellis. 2009. Analysis
and Design of Discrete Part Production Lines. Springer.

Roshani, Abdolreza, Massimo Paolucci, Davide Giglio, and Flavio Tonelli. 2020. “A hybrid
adaptive variable neighbourhood search approach for multi-sided assembly line balancing
problem to minimise the cycle time.” International Journal of Production Research DOI:
10.1080/00207543.2020.1749958.

Touzani, Hicham, Hicham Hadj-Abdelkader, Nicolas Seguy, and Samia Bouchafa. 2021. “Multi-
Robot Task Sequencing & Automatic Path Planning for Cycle Time Optimization: Appli-
cation for Car Production Line.” IEEE Robotics and Automation Letters 6 (2): 1335–1342.

Viswanadham, N., and Y. Narahari. 1992. Performance Modeling of Automated Manufacturing
Systems. Prentice Hall, Englewood Cliff, NJ.

Appendix A. Proof of Theorem 3.1

Consider an unreliable machine with cycle overrun defined by {τ, Tup, Tdown, pOR, TOR}
at the end of the N -th up- and downtime realization. Denote the number of parts
produced during this time period as K. This time period equals to

∑N
i=1(tup,i+tdown,i),

and the machine’s total uptime is
∑N

i=1 tup,i. Denote the duration of the processing
time of k-th part as τtotal,k = τ+τOR,k, where τOR has mean value pORTOR. Since there

are K parts produced,
∑N

i=1 tup,i ≥
∑K

k=1 τtotal,k. Let
∑N

i=1 tup,i =
∑K

k=1 τtotal,k + τ̌ ,
where τ̌ < τtotal,K+1.

Assume K →∞, then, obviously, N →∞ as well. Hence, the stand-alone through-

23

put of the machine can be evaluated as follows:

SATexact = lim
K→∞

K∑N
i=1(tup,i + tdown,i)

= lim
K→∞

(
K∑K

k=1 τtotal,k + τ̌

)(∑N
i=1 tup,i∑N

i=1(tup,i + tdown,i)

)

= lim
K→∞

(
K∑K

k=1 τtotal,k + τ̌

)(
lim
N→∞

∑N
i=1 tup,i∑N

i=1(tup,i + tdown,i)

)
.

(A1)

Clearly, for the first of the above limits, the following bounds hold:

lim
K→∞

K∑K+1
k=1 τtotal,k

≡ lim
K→∞

K

K + 1

K + 1∑K+1
k=1 τtotal,k

< lim
K→∞

K∑K
k=1 τtotal,k + τ̌

≤ lim
K→∞

K∑K
k=1 τtotal,k

,

(A2)

Then, by the law of large numbers, the following takes place with probability 1:

lim
K→∞

K + 1∑K+1
k=1 τtotal,k

= lim
K→∞

K∑K
k=1 τtotal,k

= lim
K→∞

K∑K
k=1 τtotal,k + τ̌

=
1

τ + pORTOR
.

(A3)
As far as the second term in (11) is concerned, by the law of large numbers we have:

lim
N→∞

∑N
i=1 tup,i∑N

i=1(tup,i + tdown,i)
=

lim
N→∞

∑N
i=1 tup,i

N

lim
N→∞

∑N
i=1 tup,i

N + lim
N→∞

∑N
i=1 tdown,i

N

=
Tup

Tup + Tdown
.

(A4)
Thus, combining (A3) and (A4), and assuming Tup and Tdown are in seconds, we obtain:

SATexact =
1

τ + pORTOR

Tup
Tup + Tdown

parts/second

=
3600

τ + pORTOR

Tup
Tup + Tdown

parts/hour.

(A5)

Appendix B. Proof of Theorem 4.1

In the following, we prove that Tdown

Tup
< pORTOR

τ is a necessary and sufficient condition

for the overrun-reduced machine having a larger SAT than that of the downtime-
reduced one.

To show necessity, assume that the overrun-reduced machine has a larger SAT than

24

that of the downtime-reduced one. In this case, we have:

3600

τ + rpORTOR

Tup
Tup + Tdown

>
3600

τ + pORTOR

Tup
Tup + rTdown

⇔ (τ + rpORTOR)(Tup + Tdown) < (τ + pORTOR)(Tup + rTdown)

⇔ (1− r)τTdown < (1− r)pORTORTup

⇔ Tdown
Tup

<
pORTOR

τ
.

(B1)

Note that the chain of inequalities in (B1) is bi-directional, thus, Tdown

Tup
< pORTOR

τ is

both necessary and sufficient.
Similarly, it can be shown that the downtime-reduced machine has a larger SAT

than that of the overrun-reduced one, i.e., 3600
τ+rpORTOR

Tup

Tup+Tdown
< 3600

τ+pORTOR

Tup

Tup+rTdown

if and only if Tdown

Tup
> pORTOR

τ holds.

25

