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Abstract: This paper is intended to explore how many measurements of machine up- and
downtimes are necessary to calculate reliable estimates of MTBF and MTTR, and what would
be the resulting effect on the machine efficiency evaluation. This issue is addressed by introducing
the notion of (α, β)-precise estimate, where α characterizes the accuracy of the estimate and β its
likelihood (probability). Based on this notion, the smallest number of measurements, n∗(α, β),
which leads to the desired estimate, is evaluated and utilized for investigation of the induced
machine efficiency estimate.
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1. INTRODUCTION

The mean time between failures (MTBF) and mean time
to repair (MTTR) are of fundamental importance for
production systems analysis, continuous improvement, and
design. Indeed, MTBF and MTTR are used in practically
every method for evaluating throughput and other per-
formance metrics of production systems analytically (see,
for instance, Askin and Standridge (1993); Buzacott and
Shanthikumar (1993); Papadopolous et al. (1993); Gersh-
win (1994); Altiok (1997); Papadopoulos et al. (2009); Li
and Meerkov (2009)) and by discrete event simulations
(see Law et al. (1991); Jerry (2005); Altiok and Melamed
(2010)). In this situation, it is remarkable that the litera-
ture offers very little guidance on how many measurements
of up- and downtime occurrences are necessary before
reliable estimates of MTBF and MTTR can be calculated.
In fact, we were able to identify only two papers discussing
this issue. The first one, reporting on Ford’s experience
(see Williams (1994)), lists questions to be asked before
MTTR can be evaluated. The second, based on GM’s
research (see Inman (1999)), mentions the number of up-
and downtime occurrences, which has been used to esti-
mate up- and downtime probability distributions, without
going into specifics of why one or another number has been
selected.

The current paper is intended to provide guidance for
selecting the number of measurements necessary for calcu-
lating reliable estimates of MTBF and MTTR. The term
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“reliable estimate” is used here to indicate an estimate,
which has the desired accuracy with the desired probabil-
ity. Denoting the accuracy by α and the probability by β
(see Section 2 for formalization), the goal of this paper is
two-fold:

• Evaluate how many realizations of machine up- and
downtimes are necessary and sufficient to obtain
reliable estimates of MTBF and MTTR.

• Investigate how the uncertainty of these estimates
(i.e., α and β) propagates into uncertainty of the
machine efficiency evaluation.

Accordingly, the outline of this paper is as follows: Section
2 presents the definition of (α, β)-precise estimates and
formulates problems addressed in the paper. In Section
3, a method for calculating the smallest number of up-
and downtime measurements necessary and sufficient for
the desired precision of MTBF and MTTR estimates is
developed. The induced precision of machine efficiency
estimate is analyzed in Section 4. Based on these results,
recommendations for selecting the “right” number of up-
and downtime measurements are discussed in Section 5.
The conclusions and topics for future research are included
in Section 6. Due to space limitations, some of the proofs
are omitted and can be found in Alavian et al. (2018).

2. DEFINITIONS AND PROBLEMS FORMULATION

Consider an unreliable machine with up- and downtime
being random variables with expected values Tup and
Tdown, respectively. Obviously, these expected values are
the exact values of MTBF and MTTR; we use these two



types of notations interchangeably − depending on the
issue at hand.

Let tup,i and tdown,i be the durations of the i-th occurrence
of up- and downtime, i = 1, 2, . . . . Then, the estimates of
MTBF and MTTR, based on n observations (measure-
ments), are the following random variables:

T̂up(n) :=

∑n
i=1 tup,i
n

, T̂down(n) :=

∑n
i=1 tdown,i

n
. (1)

Definition 1. The estimates T̂up(n) and T̂down(n) are re-
ferred to as (α, β)-precise if

P

{
|Tup−T̂up(n)|

Tup
≤ α

}
≥ β,

P

{
|Tdown−T̂down(n)|

Tdown
≤ α

}
≥ β,

(2)

or, equivalently,

P
{

(1− α)Tup ≤ T̂up(n) ≤ (1 + α)Tup

}
≥ β,

P
{

(1− α)Tdown ≤ T̂down(n) ≤ (1 + α)Tdown

}
≥ β.

(3)

Clearly, this definition implies that the accuracy of the
estimates is quantified by α and their likelihood by β. For
instance, if α = 0.1 and β = 0.9, the appropriately selected

value of n guarantees that T̂up(n) and T̂down(n) are within
±10% of Tup and Tdown, respectively, and this event takes
place with the probability at least 0.9.

Definition 2. The smallest integer n, for which (2) takes
place, is called the critical number n∗(α, β).

The first problem addressed in this paper consists of two
parts:

Problem 1a: Evaluate n∗(α, β) for machines with ex-
ponential reliability model (i.e., with up- and downtime
distributed exponentially with parameters λ and µ, respec-
tively). Note that this problem can be viewed as an inverse
of the confidence interval problem (see, for instance, Mont-
gomery and Runger (2010)), where, for a given n and β,
the value of α is calculated.

Problem 1b: Generalize the results of Problem 1a to
machines with non-exponential reliability models, having
the coefficient of variation (CV ) less than 1. Note that,
as it is shown in Li and Meerkov (2009), if the machine
breakdown rate (respectively, repair rate) is an increasing
function of time, the resulting distribution of uptime
(respectively, downtime) has CV < 1. Empirical evidence
supporting this conclusion can be found in Inman (1999).

Consider now the efficiency of an unreliable machine
defined by

e =
Tup

Tup + Tdown
, (4)

and its estimate

ê(n) =
T̂up(n)

T̂up(n) + T̂down(n)
, (5)

where T̂up(n) and T̂down(n) are (α, β)-precise estimates
of Tup and Tdown. The precision of ê(n) is induced by

the precision of T̂up(n) and T̂down(n). The former can be
specified as

P

{
|e− ê(n)|

e
≤ αe

}
≥ βe (6)

or, equivalently,

P {(1− αe)e ≤ ê(n) ≤ (1 + αe)e} ≥ βe, (7)

where αe and βe are functions of α and β.

The second problem addressed in this paper is:

Problem 2: Calculate αe and βe for exponential machines
and generalize the results obtained for non-exponential
machines with CV < 1.

3. EVALUATION OF CRITICAL NUMBER

3.1 Exponential Machines

Theorem 1. The critical number, n∗(α, β), for the case of
machines with exponential reliability model is the smallest
integer n, which satisfies the following inequality:

β ≤
∑n−1
i=0

1
i!e
−(1−α)n((1− α)n)i

−
∑n−1
i=0

1
i!e
−(1+α)n((1 + α)n)i.

(8)

Proof. See Appendix A.

Note that since the right-hand side of (8) does not depend
on the parameter of the exponential distribution, the
critical number n∗(α, β) is the same for both MTBF and
MTTR.

The value of n∗(α, β) can be obtained by monotonically
increasing n in (8) until the inequality is satisfied. Based
on this calculation, the behavior of n∗(α, β) is illustrated
in Fig. 1. As expected, this function is monotonically
increasing in β and monotonically decreasing in α.
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Fig. 1. Critical number n∗ as a function of β and α

Example. Let α = 0.1 and β = 0.9. Then, as it follows
from Fig. 1, n∗ = 270. If one wants to decrease α to 0.05
(keeping the same β), n∗ = 1082. On the other hand, if one
wants to increase β to 0.95 (keeping the same α), n∗ = 385.

Along with (8), it would be desirable to have an analytical
expression for n∗(α, β). Such an expression can be derived
using the fact that the numerators of the expressions in (1),
being sums of iid exponential random variables, have the
Erlang distribution of order n, which can be approximated
by Gaussian distribution when n is sufficiently large. Based
on this approximation, the following is obtained:



Theorem 2. The Gaussian approximation of the critical
number, n∗G(α, β), is given by:

n∗G(α, β) =

⌈
2

(
erf−1(β)

α

)2
⌉
, (9)

where dxe denotes the smallest integer larger than x and
erf−1(y) is the inverse of the error function, erf(y) =
1√
π

∫ y
−y e

−t2dt.

Proof. See Appendix B.

A comparison of n∗(α, β) and n∗G(α, β) is given in Tables
1 and 2, indicating that they are practically the same for
all α and β considered. Note that (9) allows for orders of
magnitude faster evaluation of critical numbers than (8).

Table 1. Critical number n∗(α, β)

α
β

0.7 0.8 0.85 0.9 0.95

0.02 2686 4106 5181 6764 9604
0.04 672 1026 1295 1691 2401
0.06 299 456 576 751 1067
0.08 168 257 324 423 600
0.10 108 164 207 270 384

Table 2. Critical number n∗G(α, β)

α
β

0.7 0.8 0.85 0.9 0.95

0.02 2686 4106 5181 6764 9604
0.04 672 1027 1296 1691 2401
0.06 299 457 576 752 1068
0.08 168 257 324 423 601
0.10 108 165 208 271 385

Using (9), the contour lines for critical number n∗G(α, β),
have been calculated and shown in Fig. 2. These contour
lines offer guidance for selecting n∗G for the desired α and
β.
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Fig. 2. Contour plot of n∗ as a function of α and β

Example. If α = 0.05 and β = 0.9, from Fig. 2 we obtain
n∗G(α, β) ≈ 1000. On the other hand, if α = 0.15 and
β = 0.7, n∗G(α, β) ≈ 50. In some cases, practical number
of observations that one can collect during two weeks
of measurements on the factory floor is about 50. Thus,
in such situations only relatively inaccurate estimates of
MTBF and MTTR could be obtained.

3.2 Non-exponential Machines

To investigate the critical number in the non-exponential
case, we considered machines obeying Weibull, gamma
and log-normal reliability models with MTBF = 10 and
CV ∈ {0.1, 0.25, 0.5, 0.75} and evaluated by simulations
n∗non-exp(α, β) for α = 0.1 and β ∈ {0.65, 0.70, . . . , 0.95}.
The results are summarized in Fig. 3, where n∗(α, β) for
exponential distribution is shown as well for comparison.
From this figure, we conclude:

Observation 1. For all non-exponential machines ana-
lyzed:

• n∗non-exp(α, β) < n∗(α, β);
• n∗non-exp(α, β) is independent of the machine up- and

downtime distribution as long as CV is the same;
• n∗non-exp(α, β) approaches n∗(α, β) when CV → 1.
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Fig. 3. Critical numbers n∗non-exp(α, β) and n∗(α, β) as
functions of β



Thus, the number of measurements, selected based on
exponential assumption, can be used for non-exponential
machines as well, provided CV < 1.

We hypothesize that Observation 1 holds not only for the
distributions analyzed, but for any unimodal distribution
of up- and downtime.

4. PRECISION OF MACHINE EFFICIENCY
ESTIMATE

4.1 Exponential Machines

Consider an exponential machine with its efficiency esti-
mate (5) and induced precision (6), characterized by αe
and βe. The relationship between (α, β)-precise estimates
of Tup and Tdown and (αe, βe)-precise estimate of e is
investigated next.

Lemma 1. The smallest αe, which satisfies |e−ê(n
∗(α,β))|
e ≤

αe, is given by

αinducede = 2α(1− ê(n∗(α, β))) +O(α2). (10)

Proof. See Appendix C.

Thus, αinducede depends explicitly on α and implicitly on

β (through n∗(α, β)); it also depends on T̂up and T̂down
(through ê). Note that αe < α if ê > 0.5.

Below, we neglect the O(α2) term in (10) and consider

αe = 2α(1− ê(n∗(α, β))). (11)

Theorem 3. If the machine obeys the exponential reliabil-
ity model and αe in (6) is selected as (11), the resulting
βe is given by

βe =
∑n∗−1
i=0

(2n∗−2−i)!
(n∗−1−i)!(n∗−1)!

[
(1 + 2α)n

∗

×(2 + 2α)−2n
∗+i+1 − (1− 2α)n

∗
(2− 2α)−2n

∗+i+1
]
,

(12)
where n∗ denotes n∗(α, β).

Proof. Omitted due to space limitation and can be found
in Alavian et al. (2018).

Thus, βe depends explicitly on α, implicitly on β (through
n∗(α, β)), and does not depend on Tup and Tdown and,
therefore, on e.

The values of βe for various pairs (α, β) are illustrated in
Table 3. As one can see, for all (α, β) investigated, βe > β.
Thus, αe in (6) is smaller than α in (2) (if ê > 0.5) and
βe in (6) is larger than β in (2). In other words, (αe, βe)-
precise estimate of e is better than (α, β)-precise estimates
of Tup and Tdown.

Table 3. Values of βe as a function of α and β

α
β

0.7 0.8 0.85 0.9 0.95

0.02 0.8573 0.9300 0.9582 0.9799 0.9944
0.04 0.8575 0.9299 0.9580 0.9797 0.9942
0.06 0.8578 0.9298 0.9576 0.9794 0.9940
0.08 0.8576 0.9294 0.9571 0.9788 0.9937
0.10 0.8585 0.9294 0.9568 0.9782 0.9933

Example. Assume α = 0.1 and β = 0.9. Assume also
that ê(n∗(α, β)) = 0.8. Then, according to (11) and (12),
αe = 0.044 and βe = 0.9782. Thus, the structure of (5)

induces a significantly more precise estimate of e than that
of Tup and Tdown.

Similar to β, the value of βe can be calculated using
Gaussian approximation.

Proposition 1. The Gaussian approximation of βe, de-
noted as βe,G, is given by

βe,G = erf(α
√
n∗(α, β)). (13)

Justification. See Alavian et al. (2018). Note that this
statement is termed a proposition, rather than a theorem,
because one of the statements involved in its justification,
is proved numerically, rather than analytically.

A comparison of βe and βe,G is given in Tables 3 and 4.
As one can see, these values are almost always the same.

Table 4. Values of βe,G as a function of α and β

α
β

0.7 0.8 0.85 0.9 0.95

0.02 0.8573 0.9301 0.9582 0.9800 0.9944
0.04 0.8575 0.9300 0.9582 0.9800 0.9944
0.06 0.8577 0.9300 0.9583 0.9799 0.9944
0.08 0.8575 0.9303 0.9583 0.9800 0.9944
0.10 0.8584 0.9299 0.9581 0.9799 0.9944

4.2 Non-exponential Machines

To investigate the behavior of βe in (6) for non-exponential
machines (with αe given in (11)), we use simulations
similar to those of Subsection 3.2. Specifically, consider
machines obeying either Weibull or gamma or log-normal
reliability model with Tdown = 2, e ∈ {0.7, 0.75, . . . , 0.9},
α = 0.1 and CV ∈ {0.1, 0.25, 0.5, 0.75}. For each of these
cases, we evaluated βe,non-exp(n∗(α, β)) by simulations as a
function of β. The results are summarized in Fig. 4, where
βe is shown as well for comparison. From this figure, we
conclude:

Observation 2. For all non-exponential machines ana-
lyzed:

• βe,non-exp(n∗(α, β)) > βe(n
∗(α, β));

• βe,non-exp(n∗(α, β)) is independent of machine effi-
ciency;

• βe,non-exp(n∗(α, β)) is independent of machine relia-
bility model as long as CV is the same;

• βe,non-exp(n∗(α, β)) approaches βe(n
∗(α, β)) when

CV → 1.

Therefore, βe,non-exp(n∗(α, β)) is at least as large as
βe(n

∗(α, β)), if CV of up- and downtime is less than 1.

5. DISCUSSION AND RECOMMENDATIONS

The purpose of this section is to pose and answer several
questions concerning practical issues of MTBF and MTTR
evaluation, as well as evaluation of e.

• How many measurements of tup,i and tdown,i are
necessary to obtain reliable estimates of Tup and
Tdown, e.g., with α = 0.04 and β = 0.9? As it
follows from Section 3 (see Table 1), the answer is
n∗(0.04, 0.9) = 1691.
• How many measurements of tup,i and tdown,i are

necessary to obtain an estimate of e at least as precise
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Fig. 4. βe,non-exp(n∗(α, β)) and βe(n
∗(α, β)) as functions

of β

as those of Tup and Tdown? Assuming ê ≥ 0.8 and
utilizing (11) with αe = 0.04, we obtain α ≥ 0.1.
Then, from Table 3 with α = 0.1, we obtain that
β = 0.8 results in βe > 0.9. Finally, from Table 1 with
α = 0.1 and β = 0.8, we conclude that n∗ = 164.

Thus, sufficiently accurate evaluation of e may require,
somewhat surprisingly, a much smaller number of measure-
ments than evaluation of Tup and Tdown; in this example,
order of magnitude smaller.

Another practical issue of importance is the time necessary
to collect the required number of measurements. We define
this time as:

Teval = (Tup + Tdown)n∗(α, β),

where Tup and Tdown are the average values of up- and
downtime, and n∗(α, β) is the number of measurements
necessary to obtain (α, β)-precise estimates of Tup and
Tdown. Obviously, Teval depends on the duration of what

can be called the “up/downtime cycle”, Tup + Tdown. If
this cycle is very long, say, one month, the observation
period will be quite long for any number of required
measurements. Such breakdowns are referred to as catas-
trophic. They are not considered in the standard methods
of Production Systems Engineering. What is considered,
are up/downtime cycles, which occur several times during
a shift, e.g., 5-10 times per eight hours. In this case, to
collect a reasonable number of measurements, one would
have to wait 1-2 weeks. Such breakdowns are referred to as
regular, and this is what Production Systems Engineering
is based on.

Thus, this work shows that, in practical terms, one would
have to wait one or two weeks before relatively reliable
estimates of Tup and Tdown can be obtained. This con-
clusion coincides with our practical experience, according
to which reliable evaluation of system’s “health” can be
obtained using a two-week observation period.

6. CONCLUSIONS AND FUTURE WORK

This paper provides a method for calculating the small-
est number of measurements necessary and sufficient for
evaluating MTBF and MTTR of unreliable machines with
the desired accuracy. It turns out that, in most cases, this
number is quite large (in practical scenarios, ranging in
hundreds). Collecting such a large number of measure-
ments in a relatively short period time when they would
be useful for decision-making, is often impossible. This
leads to the conclusion that MTBF and MTTR are hardly
available in practice with a high precision.

On the other hand, it is shown that induced estimates of
the machines efficiency are, in many cases, much higher
than the accuracy of MTBF and MTTR used for their
calculation. This is a fortunate situation, where a perfor-
mance index may be calculated with a higher precision
than the data used in its evaluation. Based on this phe-
nomenon, this paper shows how a smaller number of up-
and downtime measurements can be determined to obtain
the desired accuracy of machine efficiency estimate. As in
turns out, in practical cases this number may be in dozens
rather than in hundreds.

Several problems in this area remain, however, open. The
main one is to evaluate the induced precision of the
throughput and other performance metrics of production
systems with unreliable machines. Solving this problem
for serial lines and assembly operations will provide a
relatively complete methodology for collecting data on
the factory floor necessary and sufficient for performance
analysis of production systems using either analytical or
numerical tools.
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Appendix A. PROOF OF THEOREM 1

First, we prove the statement of this theorem for T̂up, and

then address the issue for T̂down.

Rewrite the first expression in (3) as follows:

P
{

(1− α)Tup ≤ T̂up(n) ≤ (1 + α)Tup

}
= P

{
T̂up(n) ≤ (1 + α)Tup

}
−P

{
T̂up(n) ≤ (1− α)Tup

}
≥ β.

(A1)

To evaluate this probability, observe that the numerator of
the first expression in (1) for a machine with exponential
reliability model is a sum of iid exponential random
variables, and, thus, obeys Erlang distribution with shape
parameter n and scale parameter Tup = 1

λ . Therefore, the
cdf of Y (n) =

∑n
i=1 tup,i is

FY (n)(y) = P{Y (n) ≤ y} = 1−
n−1∑
i=0

1

i!
e−λy(λy)i. (A2)

Substituting this expression in (A1), we obtain

P
{
T̂up(n) ≤ (1 + α)Tup

}
− P

{
T̂up(n) ≤ (1− α)Tup

}
=P {Y (n) ≤ (1 + α)nTup} − P {Y (n) ≤ (1− α)nTup}
=FY (n) ((1 + α)nTup)− FY (n) ((1− α)nTup)

=1−
n−1∑
i=0

1

i!
e−λ(1+α)nTup (λ(1 + α)nTup)

i
(A3)

− 1 +

n−1∑
i=0

1

i!
e−λ(1−α)nTup (λ(1− α)nTup)

i

=

n−1∑
i=0

1

i!
e−(1−α)n((1− α)n)i

−
n−1∑
i=0

1

i!
e−(1+α)n((1 + α)n)i ≥ β.

Thus, the critical number n∗(α, β) is the smallest integer
n that satisfies the following inequality:

β ≤
∑n−1
i=0

1
i!e
−(1−α)n((1− α)n)i

−
∑n−1
i=0

1
i!e
−(1+α)n((1 + α)n)i.

(A4)

Since the last expression is independent of λ, it takes place
for any exponential distribution, i.e., for downtime as well.

2

Appendix B. PROOF OF THEOREM 2

For large n, Y (n) can be approximated by the Gaussian
distribution, with mean M = n/λ = nTup and variance
V = n/λ2 = nT 2

up.

Therefore we have:
P {(1− α)nTup ≤ Y (n) ≤ (1 + α)nTup}

= P
{
−α
√
n ≤ Y (n)−nTup√

nTup
≤ α
√
n
}

≈ P {|Z| ≤ α
√
n}

(B1)

where Z ∼ N(0, 1) denotes a Gaussian random variable
with mean 0 and variance 1. Therefore, the Gaussian
approximation of β, denoted as βG, is:

β ≈ βG ≤
∫ α
√
n

−α
√
n

fZ(z)dz = erf

(
α
√
n√
2

)
. (B2)

Thus, n∗G =
⌈
2
( erf−1(β)

α

)2⌉
. 2

Appendix C. PROOF OF LEMMA 1

Denote ρ = Tdown

Tup
and ρ̂ = T̂down

T̂up

. Since (1−α)Tup ≤ T̂up ≤

(1+α)Tup, and 0 < (1−α)Tdown ≤ T̂down ≤ (1+α)Tdown,
we have:

(1−α)Tup

(1+α)Tdown
≤ T̂up

T̂down

≤ (1+α)Tup

(1−α)Tdown

⇔ 1−α
1+α

1
ρ ≤

1

ρ̂
≤ 1+α

1−α
1
ρ

⇔ 1−α
1+α ρ̂ ≤ ρ ≤

1+α
1−α ρ̂

⇔ −2α
1+α ρ̂ ≤ ρ− ρ̂ ≤

2α
1−α ρ̂.

(C1)

Dividing (C1) by (1+ρ)(1+ ρ̂), and substituting 1
1+ρ with

e, and 1

1+ρ̂
with ê, we obtain:

−2α

1 + α
e(1− ê) ≤ ê− e ≤ 2α

1− α
e(1− ê). (C2)

For small α, using Taylor expansion we have:

−2αe(1− ê) +O(α2) ≤ ê− e ≤ 2αe(1− ê) +O(α2). (C3)

Therefore, we obtain:

|e− ê|
e
≤ αe = 2(1− ê)α+O(α2). (C4)
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