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Abstract

This paper is intended to explore how many measurements of machine
up- and downtimes are necessary to calculate reliable estimates of MTBF
and MTTR, and what would be the resulting effect on the machine ef-
ficiency evaluation. This issue is addressed by introducing the notion
of (α, β)-precise estimate, where α characterizes the accuracy of the esti-
mate and β its likelihood (probability). Based on this notion, the smallest
number of measurements, n∗(α, β), which leads to the desired estimate, is
evaluated and utilized for investigation of the induced machine efficiency
estimate.

Keywords: MTBF and MTTR estimates, factory floor measurements, induced
machine efficiency estimate, critical number of measurements for desired esti-
mates accuracy.

1 Introduction

The mean time between failures (MTBF) and mean time to repair (MTTR)
are of fundamental importance for production systems analysis, continuous im-
provement, and design. Indeed, MTBF and MTTR are used in practically every
method for evaluating throughput and other performance metrics of production
systems analytically (see, for instance, [1, 3–5, 9, 11, 12]) and by discrete event

∗This work was supported by the DGIST R&D Program of the Ministry of Science, ICT
and Future Planning (18-EE-01).
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simulations (see [2, 7, 8]). In this situation, it is remarkable that the literature
offers very little guidance on how many measurements of up- and downtime
occurrences are necessary before reliable estimates of MTBF and MTTR can
be calculated. In fact, we were able to identify only two papers discussing this
issue. The first one, reporting on Ford’s experience (see [13]), lists questions to
be asked before MTTR can be evaluated. The second, based on GM’s research
(see [6]), mentions the number of up- and downtime occurrences, which has been
used to estimate up- and downtime probability distributions, without going into
specifics of why one or another number has been selected.

The current paper is intended to provide guidance for selecting the number of
measurements necessary for calculating reliable estimates of MTBF and MTTR.
The term “reliable estimate” is used here to indicate an estimate, which has the
desired accuracy with the desired probability. Denoting the accuracy by α and
the probability by β (see Section 2 for formalization), the goal of this paper is
two-fold:

• Evaluate how many realizations of machine up- and downtimes are neces-
sary and sufficient to obtain reliable estimates of MTBF and MTTR.

• Investigate how the uncertainty of these estimates (i.e., α and β) propa-
gates into uncertainty of the machine efficiency evaluation.

Accordingly, the outline of this paper is as follows: Section 2 presents the
definition of (α, β)-precise estimates and formulates problems addressed in the
paper. In Section 3, a method for calculating the smallest number of up- and
downtime measurements necessary and sufficient for the desired precision of
MTBF and MTTR estimates is developed. The induced precision of machine
efficiency estimate is analyzed in Section 4. Based on these results, recommen-
dations for selecting the “right” number of up- and downtime measurements
are discussed in Section 5. The conclusions and topics for future research are
included in Section 6. All proofs are given in Appendices A-E.

2 Definitions and Problems Formulation

Consider an unreliable machine with up- and downtime being random variables
with expected values Tup and Tdown, respectively. Obviously, these expected
values are the exact values of MTBF and MTTR; we use these two types of
notations interchangeably − depending on the issue at hand.

Let tup,i and tdown,i be the durations of the i-th occurrence of up- and
downtime, i = 1, 2, . . . . Then, the estimates of MTBF and MTTR, based on n
observations (measurements), are the following random variables:

T̂up(n) :=

∑n
i=1 tup,i
n

, T̂down(n) :=

∑n
i=1 tdown,i

n
. (1)
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Definition 1. The estimates T̂up(n) and T̂down(n) are referred to as (α, β)-
precise if

P
{
|Tup−T̂up(n)|

Tup
≤ α

}
≥ β,

P
{
|Tdown−T̂down(n)|

Tdown
≤ α

}
≥ β,

(2)

or, equivalently,

P
{

(1− α)Tup ≤ T̂up(n) ≤ (1 + α)Tup

}
≥ β,

P
{

(1− α)Tdown ≤ T̂down(n) ≤ (1 + α)Tdown

}
≥ β.

(3)

Clearly, this definition implies that the accuracy of the estimates is quan-
tified by α and their likelihood by β. For instance, if α = 0.1 and β = 0.9,
the appropriately selected value of n guarantees that T̂up(n) and T̂down(n) are
within ±10% of Tup and Tdown, respectively, and this event takes place with the
probability at least 0.9.

Definition 2. The smallest integer n, for which (2) takes place, is called the
critical number n∗(α, β).

The first problem addressed in this paper consists of two parts:
Problem 1a: Evaluate n∗(α, β) for machines with exponential reliability

model (i.e., with up- and downtime distributed exponentially with parameters
λ and µ, respectively). Note that this problem can be viewed as an inverse of
the confidence interval problem (see, for instance, [10]), where, for a given n
and β, the value of α is calculated.

Problem 1b: Generalize the results of Problem 1a to machines with non-
exponential reliability models, having the coefficient of variation (CV ) less than
1. Note that, as it is shown in [9], if the machine breakdown rate (respectively,
repair rate) is an increasing function of time, the resulting distribution of up-
time (respectively, downtime) has CV < 1. Empirical evidence supporting this
conclusion can be found in [6].

Consider now the efficiency of an unreliable machine defined by

e =
Tup

Tup + Tdown
, (4)

and its estimate

ê(n) =
T̂up(n)

T̂up(n) + T̂down(n)
, (5)

where T̂up(n) and T̂down(n) are (α, β)-precise estimates of Tup and Tdown. The

precision of ê(n) is induced by the precision of T̂up(n) and T̂down(n). The former
can be specified as

P

{
|e− ê(n)|

e
≤ αe

}
≥ βe (6)
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or, equivalently,

P {(1− αe)e ≤ ê(n) ≤ (1 + αe)e} ≥ βe, (7)

where αe and βe are functions of α and β.
The second problem addressed in this paper is:
Problem 2: Calculate αe and βe for exponential machines and generalize

the results obtained for non-exponential machines with CV < 1.

3 Evaluation of Critical Number

3.1 Exponential Machines

Theorem 1. The critical number, n∗(α, β), for the case of machines with ex-
ponential reliability model is the smallest integer n, which satisfies the following
inequality:

β ≤
∑n−1
i=0

1
i!e
−(1−α)n((1− α)n)i −

∑n−1
i=0

1
i!e
−(1+α)n((1 + α)n)i. (8)

Proof. See Appendix A.

Note that since the right-hand side of (8) does not depend on the parameter
of the exponential distribution, the critical number n∗(α, β) is the same for both
MTBF and MTTR.

The value of n∗(α, β) can be obtained by monotonically increasing n in
(8) until the inequality is satisfied. Based on this calculation, the behavior of
n∗(α, β) is illustrated in Fig. 1. As expected, this function is monotonically
increasing in β and monotonically decreasing in α.
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0

500

1000

1500

Figure 1: Critical number n∗ as a function of β and α
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Example 1. Let α = 0.1 and β = 0.9. Then, as it follows from Fig. 1, n∗ = 270.
If one wants to decrease α to 0.05 (keeping the same β), n∗ = 1082. On the
other hand, if one wants to increase β to 0.95 (keeping the same α), n∗ = 385.

Along with (8), it would be desirable to have an analytical expression for
n∗(α, β). Such an expression can be derived using the fact that the numerators
of the expressions in (1), being sums of iid exponential random variables, have
the Erlang distribution of order n, which can be approximated by Gaussian
distribution when n is sufficiently large. Based on this approximation, the
following is obtained:

Theorem 2. The Gaussian approximation of the critical number, n∗G(α, β), is
given by:

n∗G(α, β) =

⌈
2

(
erf−1(β)

α

)2
⌉
, (9)

where dxe denotes the smallest integer larger than x and erf−1(y) is the inverse

of the error function, erf(y) = 1√
π

∫ y
−y e

−t2dt.

Proof. See Appendix B.

A comparison of n∗(α, β) and n∗G(α, β) is given in Tables 1 and 2, indicating
that they are practically the same for all α and β considered. Note that (9)
allows for orders of magnitude faster evaluation of critical numbers than (8).

Table 1: Critical number n∗(α, β)

α
β

0.7 0.8 0.85 0.9 0.95

0.02 2686 4106 5181 6764 9604
0.04 672 1026 1295 1691 2401
0.06 299 456 576 751 1067
0.08 168 257 324 423 600
0.10 108 164 207 270 384

Table 2: Critical number n∗G(α, β)

α
β

0.7 0.8 0.85 0.9 0.95

0.02 2686 4106 5181 6764 9604
0.04 672 1027 1296 1691 2401
0.06 299 457 576 752 1068
0.08 168 257 324 423 601
0.10 108 165 208 271 385

Using (9), the contour lines for critical number n∗G(α, β), have been calcu-
lated and shown in Fig. 2. These contour lines offer guidance for selecting n∗G
for the desired α and β.
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Figure 2: Contour plot of n∗ as a function of α and β

Example 2. If α = 0.05 and β = 0.9, from Fig. 2 we obtain n∗G(α, β) ≈
1000. On the other hand, if α = 0.15 and β = 0.7, n∗G(α, β) ≈ 50. In some
cases, practical number of observations that one can collect during two weeks
of measurements on the factory floor is about 50. Thus, in such situations only
relatively inaccurate estimates of MTBF and MTTR could be obtained.

3.2 Non-exponential Machines

To investigate the critical number in the non-exponential case, we considered
machines obeying Weibull, gamma and log-normal reliability models withMTBF =
10 and CV ∈ {0.1, 0.25, 0.5, 0.75} and evaluated by simulations n∗non-exp(α, β)
for α = 0.1 and β ∈ {0.65, 0.70, . . . , 0.95}. The results are summarized in Fig.
3, where n∗(α, β) for exponential distribution is shown as well for comparison.
From this figure, we conclude:

Observation 1. For all non-exponential machines analyzed:

• n∗non-exp(α, β) < n∗(α, β);

• n∗non-exp(α, β) is independent of the machine up- and downtime distribu-
tion as long as CV is the same;

• n∗non-exp(α, β) approaches n∗(α, β) when CV → 1.

Thus, the number of measurements, selected based on exponential assump-
tion, can be used for non-exponential machines as well, provided CV < 1.

We hypothesize that Observation 1 holds not only for the distributions an-
alyzed, but for any unimodal distribution of up- and downtime.
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Figure 3: Critical numbers n∗non-exp(α, β) and n∗(α, β) as func-
tions of β
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4 Precision of Machine Efficiency Estimate

4.1 Exponential Machines

Consider an exponential machine with its efficiency estimate (5) and induced
precision (6), characterized by αe and βe. The relationship between (α, β)-
precise estimates of Tup and Tdown and (αe, βe)-precise estimate of e is investi-
gated next.

Lemma 1. Given
|Tup−T̂up(n)|

Tup
≤ α and |Tdown−T̂down(n)|

Tdown
≤ α, the smallest αe,

which satisfies |e−ê(n
∗(α,β))|
e ≤ αe, is given by

αinducede = 2α(1− ê(n∗(α, β))) +O(α2). (10)

Proof. See Appendix C.

Thus, αinducede depends explicitly on α and implicitly on β (through n∗(α, β));

it also depends on T̂up and T̂down (through ê). Note that αe < α if ê > 0.5.
Below, we neglect the O(α2) term in (10) and consider

αe = 2α(1− ê(n∗(α, β))). (11)

Theorem 3. If the machine obeys the exponential reliability model and αe in
(6) is selected as (11), the resulting βe is given by

βe =
∑n∗−1
i=0

(2n∗−2−i)!
(n∗−1−i)!(n∗−1)!

[
(1 + 2α)n

∗×

(2 + 2α)−2n
∗+i+1 − (1− 2α)n

∗
(2− 2α)−2n

∗+i+1
]
,

(12)

where n∗ denotes n∗(α, β).

Proof. See Appendix D.

Thus, βe depends explicitly on α, implicitly on β (through n∗(α, β)), and
does not depend on Tup and Tdown and, therefore, on e.

The values of βe for various pairs (α, β) are illustrated in Table 3. As one can
see, for all (α, β) investigated, βe > β. Thus, αe in (6) is smaller than α in (2)
(if ê > 0.5) and βe in (6) is larger than β in (2). In other words, (αe, βe)-precise
estimate of e is better than (α, β)-precise estimates of Tup and Tdown.

Example 3. Assume α = 0.1 and β = 0.9. Assume also that ê(n∗(α, β)) = 0.8.
Then, according to (11) and (12), αe = 0.044 and βe = 0.9782. Thus, the
structure of (5) induces a significantly more precise estimate of e than that of
Tup and Tdown.

Similar to β, the value of βe can be calculated using Gaussian approximation.

Proposition 1. The Gaussian approximation of βe, denoted as βe,G, is given
by

βe,G = erf(α
√
n∗(α, β)). (13)

Justification. See Appendix E.

A comparison of βe and βe,G is given in Tables 3 and 4. As one can see,
these values are almost always the same.
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Table 3: Values of βe as a function of α and β

α
β

0.7 0.8 0.85 0.9 0.95

0.02 0.8573 0.9300 0.9582 0.9799 0.9944
0.04 0.8575 0.9299 0.9580 0.9797 0.9942
0.06 0.8578 0.9298 0.9576 0.9794 0.9940
0.08 0.8576 0.9294 0.9571 0.9788 0.9937
0.10 0.8585 0.9294 0.9568 0.9782 0.9933

Table 4: Values of βe,G as a function of α and β

α
β

0.7 0.8 0.85 0.9 0.95

0.02 0.8573 0.9301 0.9582 0.9800 0.9944
0.04 0.8575 0.9300 0.9582 0.9800 0.9944
0.06 0.8577 0.9300 0.9583 0.9799 0.9944
0.08 0.8575 0.9303 0.9583 0.9800 0.9944
0.10 0.8584 0.9299 0.9581 0.9799 0.9944

4.2 Non-exponential Machines

To investigate the behavior of βe in (6) for non-exponential machines (with αe
given in (11)), we use simulations similar to those of Subsection 3.2. Specif-
ically, consider machines obeying either Weibull or gamma or log-normal re-
liability model with Tdown = 2, e ∈ {0.7, 0.75, . . . , 0.9}, α = 0.1 and CV ∈
{0.1, 0.25, 0.5, 0.75}. For each of these cases, we evaluated βe,non-exp(n∗(α, β))
by simulations as a function of β. The results are summarized in Fig. 4, where
βe is shown as well for comparison. From this figure, we conclude:

Observation 2. For all non-exponential machines analyzed:

• βe,non-exp(n∗(α, β)) > βe(n
∗(α, β));

• βe,non-exp(n∗(α, β)) is independent of machine efficiency;

• βe,non-exp(n∗(α, β)) is independent of machine reliability model as long as
CV is the same;

• βe,non-exp(n∗(α, β)) approaches βe(n
∗(α, β)) when CV → 1.
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Figure 4: βe,non-exp(n∗(α, β)) and βe(n
∗(α, β)) as functions of β

Therefore, βe,non-exp(n∗(α, β)) is at least as large as βe(n
∗(α, β)), if CV of

up- and downtime is less than 1.
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5 Discussion and Recommendations

The purpose of this section is to pose and answer several questions concerning
practical issues of MTBF and MTTR evaluation, as well as evaluation of e.

• How many measurements of tup,i and tdown,i are necessary to obtain reli-
able estimates of Tup and Tdown, e.g., with α = 0.04 and β = 0.9? As it
follows from Section 3 (see Table 1), the answer is n∗(0.04, 0.9) = 1691.

• How many measurements of tup,i and tdown,i are necessary to obtain an
estimate of e at least as precise as those of Tup and Tdown? Assuming
ê ≥ 0.8 and utilizing (11) with αe = 0.04, we obtain α ≥ 0.1. Then, from
Table 3 with α = 0.1, we obtain that β = 0.8 results in βe > 0.9. Finally,
from Table 1 with α = 0.1 and β = 0.8, we conclude that n∗ = 164.

Thus, sufficiently accurate evaluation of e may require, somewhat surpris-
ingly, a much smaller number of measurements than evaluation of Tup and Tdown;
in this example, order of magnitude smaller.

Another practical issue of importance is the time necessary to collect the
required number of measurements. We define this time as:

Teval = (Tup + Tdown)n∗(α, β),

where Tup and Tdown are the average values of up- and downtime, and n∗(α, β) is
the number of measurements necessary to obtain (α, β)-precise estimates of Tup
and Tdown. Obviously, Teval depends on the duration of what can be called the
“up/downtime cycle”, Tup+Tdown. If this cycle is very long, say, one month, the
observation period will be quite long for any number of required measurements.
Such breakdowns are referred to as catastrophic. They are not considered in the
standard methods of Production Systems Engineering. What is considered, are
up/downtime cycles, which occur several times during a shift, e.g., 5-10 times
per eight hours. In this case, to collect a reasonable number of measurements,
one would have to wait 1-2 weeks. Such breakdowns are referred to as regular,
and this is what Production Systems Engineering is based on.

Thus, this work shows that, in practical terms, one would have to wait
one or two weeks before relatively reliable estimates of Tup and Tdown can be
obtained. This conclusion coincides with our practical experience, according to
which reliable evaluation of system’s “health” can be obtained using a two-week
observation period.

6 Conclusions and Future Work

This paper provides a method for calculating the smallest number of measure-
ments necessary and sufficient for evaluating MTBF and MTTR of unreliable
machines with the desired accuracy. It turns out that, in most cases, this num-
ber is quite large (in practical scenarios, ranging in hundreds). Collecting such a
large number of measurements in a relatively short period time when they would
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be useful for decision-making, is often impossible. This leads to the conclusion
that MTBF and MTTR are hardly available in practice with a high precision.

On the other hand, it is shown that induced estimates of the machines effi-
ciency are, in many cases, much higher than the accuracy of MTBF and MTTR
used for their calculation. This is a fortunate situation, where a performance
index may be calculated with a higher precision than the data used in its eval-
uation. Based on this phenomenon, this paper shows how a smaller number
of up- and downtime measurements can be determined to obtain the desired
accuracy of machine efficiency estimate. As in turns out, in practical cases this
number may be in dozens rather than in hundreds.

Several problems in this area remain, however, open. The main one is to
evaluate the induced precision of the throughput and other performance metrics
of production systems with unreliable machines. Solving this problem for serial
lines and assembly operations will provide a relatively complete methodology
for collecting data on the factory floor necessary and sufficient for performance
analysis of production systems using either analytical or numerical tools.
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Appendix A Proof of Theorem 1

First, we prove the statement of this theorem for T̂up, and then address the

issue for T̂down.
Rewrite the first expression in (3) as follows:

P
{

(1− α)Tup ≤ T̂up(n) ≤ (1 + α)Tup

}
= P

{
T̂up(n) ≤ (1 + α)Tup

}
−P

{
T̂up(n) ≤ (1− α)Tup

}
≥ β.

(A1)

To evaluate this probability, observe that the numerator of the first expres-
sion in (1) for a machine with exponential reliability model is a sum of iid expo-
nential random variables, and, thus, obeys Erlang distribution with shape pa-
rameter n and scale parameter Tup = 1

λ . Therefore, the cdf of Y (n) =
∑n
i=1 tup,i

is

FY (n)(y) = P{Y (n) ≤ y} = 1−
n−1∑
i=0

1

i!
e−λy(λy)i. (A2)

Substituting this expression in (A1), we obtain

P
{
T̂up(n) ≤ (1 + α)Tup

}
− P

{
T̂up(n) ≤ (1− α)Tup

}
=P {Y (n) ≤ (1 + α)nTup} − P {Y (n) ≤ (1− α)nTup}

=FY (n) ((1 + α)nTup)− FY (n) ((1− α)nTup)

=1−
n−1∑
i=0

1

i!
e−λ(1+α)nTup (λ(1 + α)nTup)

i
(A3)

− 1 +

n−1∑
i=0

1

i!
e−λ(1−α)nTup (λ(1− α)nTup)

i

=

n−1∑
i=0

1

i!
e−(1−α)n((1− α)n)i −

n−1∑
i=0

1

i!
e−(1+α)n((1 + α)n)i ≥ β.
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Thus, the critical number n∗(α, β) is the smallest integer n that satisfies the
following inequality:

β ≤
∑n−1
i=0

1
i!e
−(1−α)n((1− α)n)i −

∑n−1
i=0

1
i!e
−(1+α)n((1 + α)n)i. (A4)

Since the last expression is independent of λ, it takes place for any exponen-
tial distribution, i.e., for downtime as well.

Appendix B Proof of Theorem 2
For large n, Y (n) can be approximated by the Gaussian distribution, with mean
M = n/λ = nTup and variance V = n/λ2 = nT 2

up.
Therefore we have:

P {(1− α)nTup ≤ Y (n) ≤ (1 + α)nTup}

= P
{
−α
√
n ≤ Y (n)−nTup√

nTup
≤ α
√
n
}

≈ P {|Z| ≤ α
√
n} ,

(B1)

where Z ∼ N(0, 1) denotes a Gaussian random variable with mean 0 and vari-
ance 1. Therefore, the Gaussian approximation of β, denoted as βG, is:

β ≈ βG ≤
∫ α
√
n

−α
√
n

fZ(z)dz = erf

(
α
√
n√
2

)
. (B2)

Thus, n∗G =
⌈
2
( erf−1(β)

α

)2⌉
.

Appendix C Proof of Lemma 1

Denote ρ = Tdown

Tup
and ρ̂ = T̂down

T̂up
. Since (1 − α)Tup ≤ T̂up ≤ (1 + α)Tup, and

0 < (1− α)Tdown ≤ T̂down ≤ (1 + α)Tdown, we have:

(1−α)Tup

(1+α)Tdown
≤ T̂up

T̂down
≤ (1+α)Tup

(1−α)Tdown

⇔ 1−α
1+α

1
ρ ≤

1
ρ̂ ≤

1+α
1−α

1
ρ

⇔ 1−α
1+α ρ̂ ≤ ρ ≤

1+α
1−α ρ̂

⇔ −2α
1+α ρ̂ ≤ ρ− ρ̂ ≤

2α
1−α ρ̂.

(C1)

Dividing (C1) by (1 + ρ)(1 + ρ̂), and substituting 1
1+ρ with e, and 1

1+ρ̂ with

ê, we obtain:
−2α

1 + α
e(1− ê) ≤ ê− e ≤ 2α

1− α
e(1− ê). (C2)

For small α, using Taylor expansion we have:

−2αe(1− ê) +O(α2) ≤ ê− e ≤ 2αe(1− ê) +O(α2). (C3)
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Therefore, we obtain:

|e− ê|
e
≤ αe = 2(1− ê)α+O(α2). (C4)

Appendix D Proof of Theorem 3

As discussed in Appendix A, Y (n) =
∑n
i=1 tup,i obeys Erlang distribution with

shape parameter n and scale parameter Tup. Therefore, the pdf of Y (n) is

fY (n)(x) = (
1

Tup
)n · x

n−1e
− x

Tup

(n− 1)!
,

and the pdf of T̂up(n) = Y (n)
n is

fT̂up(n)
(x) = n · ( 1

Tup
)n · (n · x)n−1e

− n·x
Tup

(n− 1)!
.

Similarly,

fT̂down(n)
(x) = n · ( 1

Tdown
)n · (n · x)n−1e

− n·x
Tdown

(n− 1)!
.

Since T̂up(n) and T̂down(n) are independent,

fT̂up(n),T̂down(n)
(x, y) = fT̂up(n)

(x) · fT̂down(n)
(y).

Using the notation in Appendix C, ρ = Tdown

Tup
and ρ̂ = T̂down(n)

T̂up(n)
, we can write:

P
{
|e−ê(n∗)|

e ≤ αe
}

= P
{
−2α

(
1− ê(n∗)

)
e ≤ e− ê(n∗) ≤ 2α

(
1− ê(n∗)

)
e
}

= P
{

2α ρ̂
1+ρ̂

1
1+ρ ≤

1
1+ρ −

1
1+ρ̂ ≤ 2α ρ̂

1+ρ̂
1

1+ρ

}
= P

{
1

1+2αρ ≤ ρ̂ ≤
1

1−2αρ
}
.

(D1)

Denote ρ1 = 1
1+2αρ, and ρ2 = 1

1−2αρ, we derive:

P
{
|e−ê(n∗)|

e ≤ αe
}

=
∫ +∞
0

∫ ρ2x
ρ1x

fT̂up(n∗)(x)fT̂down(n∗)(y)dydx

= ( n∗2

TupTdown
)n

∗
( 1
(n∗−1)! )

2
∫ +∞
0

xn
∗−1e

− n∗
Tup

x ∫ ρ2x
ρ1x

yn
∗−1e

− n∗
Tdown

y
dydx,

(D2)
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where ∫ ρ2x
ρ1x

yn
∗−1e

− n∗
Tdown

y
dy

= e
− n∗

Tdown
y∑n∗−1

i=0
(n∗−1)!

(n∗−1−i)! (
Tdown

n∗ )i+1yn
∗−1−i|ρ2xρ1x

= e
− n∗

Tdown
ρ1x∑n∗−1

i=0
(n∗−1)!

(n∗−1−i)! (
Tdown

n∗ )i+1(ρ1x)n
∗−1−i−

e
− n∗

Tdown
ρ2x∑n∗−1

i=0
(n∗−1)!

(n∗−1−i)! (
Tdown

n∗ )i+1(ρ2x)n
∗−1−i.

(D3)

Therefore,

P
{
|e−ê(n∗)|

e ≤ αe
}

= ( n∗2

TupTdown
)n

∗
( 1
(n∗−1)! )

2
∫ +∞
0

xn
∗−1e

− n∗
Tup

x

(
e
− n∗

Tdown
ρ1x∑n∗−1

i=0
(n∗−1)!

(n∗−1−i)! (
Tdown

n∗ )i+1(ρ1x)n
∗−1−i−

e
− n∗

Tdown
ρ2x∑n∗−1

i=0
(n∗−1)!

(n∗−1−i)! (
Tdown

n∗ )i+1(ρ2x)n
∗−1−i)dx.

(D4)

Denote

A =
∫ +∞
0

xn
∗−1e

− n∗
Tup

x(
e
− n∗

Tdown
ρ1x∑n∗−1

i=0
(n∗−1)!

(n∗−1−i)!×

(Tdown

n∗ )i+1(ρ1x)n
∗−1−i)dx, (D5)

and

B =
∫ +∞
0

xn
∗−1e

− n∗
Tup

x(
e
− n∗

Tdown
ρ2x∑n∗−1

i=0
(n∗−1)!

(n∗−1−i)!×

(Tdown

n∗ )i+1(ρ2x)n
∗−1−i)dx, (D6)

we can write:

P

{
|e− ê(n∗)|

e
≤ αe

}
= (

n∗2

TupTdown
)n

∗
(

1

(n∗ − 1)!
)2
(
A− B

)
. (D7)

We obtain:

A =
∑n∗−1
i=0

(n∗−1)!
(n∗−1−i)! (

Tdown

n∗ )i+1ρn
∗−1−i

1

∫ +∞
0

e
−( n∗

Tup
+ n∗

Tdown
ρ1)xx2n

∗−2−idx

=
∑n∗−1
i=0

(n∗−1)!
(n∗−1−i)! (

Tdown

n∗ )i+1ρn
∗−1−i

1

(
e
−( n∗

Tup
+ n∗

Tdown
ρ1)x×∑a

j=0(−1)j a!

(a−j)!
[
−( n∗

Tup
+ n∗

Tdown
ρ1)

]j+1x
a−j |+∞0

)
= n∗−2n

∗ ∑n∗−1
i=0

(n∗−1)!(2n∗−2−i)!
(n∗−1−i)! Tn

∗

up T
n∗

down(1 + 2α)n
∗
(2 + 2α)−2n

∗+i+1.

(D8)
Similarly,

B = n∗−2n
∗ ∑n∗−1

i=0
(n∗−1)!(2n∗−2−i)!

(n∗−1−i)! Tn
∗

up T
n∗

down(1− 2α)n
∗
(2− 2α)−2n

∗+i+1.

(D9)
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Substitute values of A and B in (D7), we get:

P
{
|e−ê(n∗)|

e ≤ αe
}

=
∑n∗−1
i=0

(2n∗−2−i)!
(n∗−1−i)!(n∗−1)!

[
(1 + 2α)n

∗
(2 + 2α)−2n

∗+i+1

−(1− 2α)n
∗
(2− 2α)−2n

∗+i+1
]
.

(D10)

Thus, by (6), we have:

β =
∑n∗−1
i=0

(2n∗−2−i)!
(n∗−1−i)!(n∗−1)!

[
(1 + 2α)n

∗
(2 + 2α)−2n

∗+i+1

−(1− 2α)n
∗
(2− 2α)−2n

∗+i+1
]
.

(D11)

Appendix E Justification of Proposition 1

As mentioned in Appendix D, the pdfs of T̂up(n) and T̂down(n) are as follow:

fT̂up(n)
(x) =

1

(n− 1)!
(
n

Tup
)nxn−1e

− n
Tup

x
,

fT̂down(n)
(x) =

1

(n− 1)!
(

n

Tdown
)nxn−1e

− n
Tdown

x
.

Therefore, the pdf of ρ̂ = T̂down(n)

T̂up(n)
is:

fρ̂(z) =
∫∞
−∞ |x|fT̂down(n)

(xz)fT̂up(n)
(x)dx

=
∫∞
0
xfT̂down(n)

(xz)fT̂up(n)
(x)dx

= ( n2

TupTdown
)n( 1

(n−1)! )
2
∫∞
0
x(xz)n−1e

− nzx
Tdown xn−1e

− nx
Tup dx

= ( n2

TupTdown
)n (2n−1)!

(n−1)!2 z
n−1( n

Tdown
z + n

Tup
)−2n.

(E1)

As mentioned in Appendix C, denote ρ = Tdown

Tup
. From (E1), we derive the

pdf of ê(n) = 1
1+ρ̂ :

fê(n)(x) =
(2n− 1)!

(n− 1)!2
1

x(1− x)

[
ρ−1(

1

x
−1)+ 2+ρ(

1

x
−1)−1

]−n
, x ∈ (0, 1). (E2)

We plot the pdf of ê(n) (see Figure E1 as an example). The figure shows it
is a unimodal distribution, and we approximate it with a Gaussian distribution.
We use e =

Tup

Tup+Tdown
as the mean of the Gaussian distribution, and use the

error propagation formula to compute the approximated variance:

var (ê(n)) =
(

∂ê(n)

∂T̂up(n)

)2
· var

(
T̂up(n)

)
+
(

∂ê(n)

∂T̂down(n)

)2
· var

(
T̂down(n)

)
.

(E3)
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For large n, T̂up(n) and T̂down(n) can be approximated by the Gaussian

distribution, with mean Tup and Tdown, and variance var
(
T̂up(n)

)
=

T 2
up

n and

var
(
T̂down(n)

)
=

T 2
down

n . Substitute the variances of T̂up and T̂down into (E3) ,

we have:

var (ê) =
T̂ 2
downT

2
up+T̂

2
upT

2
down

n(T̂up+T̂down)4
. (E4)

Thus, the Gaussian approximated distribution of ê(n) has mean e and vari-

ance
T̂ 2
downT

2
up+T̂

2
upT

2
down

n(T̂up+T̂down)4
. The exact pdfs of ê(n) and its Gaussian approximated

pdfs, for e = 0.8, are shown in Figure E1 as an example. We can see that
the Gaussian approximated distribution approaches to the exact distribution of
ê(n) as n increases.

From (6), for observing n∗ number of realizations of up- and downtimes, we
can write:

Pr {(1− αe)e ≤ ê(n∗) ≤ (1 + αe)e}

= Pr {ê(n∗) ≤ (1 + αe)e} − Pr {ê(n∗) ≤ (1− αe)e}

= Fê(n∗)

(
(1 + αe)e

)
− Fê(n∗)

(
(1− αe)e

)
.

(E5)

Using the Gaussian approximation of ê(n∗), we obtain:

Pr {(1− αe)e ≤ ê(n∗) ≤ (1 + αe)e}

≈ 1
2

[
1 + erf

( (1+αe)e−e√
2var(ê(n∗))

)]
− 1

2

[
1 + erf

( (1−αe)e−e√
2var(ê(n∗))

)]
.

(E6)

Under the assumption that for large n∗, T̂up(n
∗) ≈ Tup, and T̂down(n∗) ≈

Tdown, and take αe = 2ê(1− ê) in Lemma 1, we derive:

Pr {(1− αe)e ≤ ê(n∗) ≤ (1 + αe)e}

≈ 1
2

[
erf(α

√
n∗)− erf(−α

√
n∗)
]

= erf(α
√
n∗).

(E7)

Therefore, by (6), we have:

βe ≈ erf(α
√
n∗). (E8)
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(a) e = 0.8, n = 27
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(b) e = 0.8, n = 48
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(c) e = 0.8, n = 108

Figure E1: Plots of the exact and the Gaussian approximated
probability density functions of ê(n), for n = 27, 48, 108, and
e = 0.8.
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