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Resilient Plant Monitoring Systems: Techniques,
Analysis, Design, and Performance Evaluation

H. E. Garcia∗, S. M. Meerkov†, and M. T. Ravichandran†

Abstract

Resilient plant monitoring systems are sensor networks that degrade gracefully under malicious attacks on

their sensors, causing them to project misleading information. This paper develops techniques to ensure

resiliency and illustrates their application using a powerplant. Specific techniques developed are: active

data quality acquisition, process variable and plant condition assessments, sensor network adaptation, and

plant decomposition with knowledge fusion. Based on these techniques, a five-layer resilient monitoring

architecture is proposed and analyzed under various cyber-physical attack scenarios. As quantified by

Kullback-Leibler divergence, in all scenarios considered, the system offers effective protection against

misleading information and identifies the plant conditions- normal or anomalous - in a reliable manner.

I. INTRODUCTION

Plant monitoring systems is a relatively new area of control-theoretic research. In this section, we briefly

characterize these systems (with emphasis on resiliency),describe a specific scenario addressed, and

outline the main techniques developed in this work.

A. What is a resilient plant monitoring system?

Plant monitoring systemsare wired or wireless sensor networks intended to measure process variables

(e.g., temperature, pressure, flow rates, etc.), analyze them, and inform the plant operator about the plant

conditions− normal or anomalous. Based on this information, the operator takes corrective actions,

if needed. When some of the sensors are captured by an attacker, forcing them to project misleading

information (possibly, statistically unrelated to the actual values of process variables), the identified plant
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conditions could be erroneous. This may lead to wrong actions on the part of the operator and, possibly,

a disaster. To prevent this situation, the monitoring system must possess a capability of autonomously

identifying the attacked sensors and mitigating their effect (by discounting or disregarding completely the

data they project). Although the loss of sensors may lead todegradationof plant condition assessment,

in a well-designed system this degradation should be “proportional” to the severity of the attack, i.e.,

graceful. Plant monitoring systems that possess such a property are referred to asresilient.

This paper is devoted to developing techniques that can be used to ensure resiliency, analyzing their

properties and, on this basis, designing and evaluating theperformance of a resilient monitoring system.

A specific application, in terms of which the development is carried out, is a simplified model of apower

plant, although a similar approach can be used for other applications as well.

B. Scenario and problem addressed

Briefly, the scenario considered in this paper is as follows:

• The monitored plant process variables,Vi, i = 1, ...,M , are characterized by probability density

functions (pdf’s) fṼi
(ṽi), i = 1, ...,M . In practice, thestatus of the process variables is often

characterized as being Normal (N) or Anomalous (A). The latter could be, for instance, Low (L)

or High (H). In this case,fṼi
(ṽi) induces a random event with the outcomes in{LVi

,NVi
,HVi

},

i = 1, ...,M . With a slight abuse of terminology, we refer to this event (and similar events throughout

this paper) as a discrete random variable,Vi, i = 1, ...M , with the probability mass function (pmf),

p[Vi], defined on the universal setΣVi
= {LVi

,NVi
,HVi

}, i = 1, ...,M .

• The plant,G, is also characterized by its status, which is a discrete random variable,G, with the pmf

p[G] defined by the pmf’s of process variables and taking values onΣG = {NG,AG}, whereNG

andAG denote the normal and anomalous plant statuses, respectively. Depending on the plant, the

anomalous status can be further characterized by specific anomalies, e.g., boiler insulation damaged,

turbine malfunctioning, etc. In each status, plant dynamics may be different, e.g., described by

different transfer functions.

• Each process variable,Vi, is monitored by a sensor,Si (multiple sensors of a process variable are

also considered in the sequel). If a sensor is under attack, its projected data may have a pdf,fS̃i
(s̃i),

statistically unrelated tofṼi
(ṽi). In this situation, utilizing the sensor data in order to assess the

process variable may lead to a pmf,p̂[Vi], qualitatively different fromp[Vi]. For instance,̂p[Vi] may

indicate that the process variable is Normal, while in reality it is Low or High.

• The plant status assessment is based on the process variableassessments,̂p[Vi], and is quantified by
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a pmf denoted aŝp[G], G ∈ {NG,AG}. Since, as indicated above, the process variable assessments

may be erroneous,̂p[G] may be quite different from the actualp[G] and, thus, lead to erroneous

actions by the plant operator.

In this scenario, theoptimal resilient monitoring system must be able to identify the status of the

plant, G, in such a manner that the “distance” between the estimated and the actual pmf’s,̂p[G] and

p[G], is minimized, as quantified by an appropriate measure of distance between the two pmf’s. While

this paper is not intended to solve this problem, here we design a plant monitoring system that degrades

gracefully under an attack (i.e., is resilient), and demonstrate that itperforms favorably in comparison with

a non-resilient one(as quantified by a measure of resiliency based on theKullback-Leibler divergence

[1]).

C. Contributions of this work: Techniques developed and resilient monitoring system designed

The main techniques developed in this work are as follows:

• The “trustworthiness” of a sensor is quantified by a parameter referred to asdata quality(DQ), which

takes values on[0, 1], with 1 indicating that the sensor is totally trustworthy and0 not trustworthy

at all. To identifyDQ, we develop anactive data quality acquisition procedure, whereby probing

signals are applied to process variables, and the level of disagreement between the anticipated and

the actual response of the sensors is used to quantify theirDQ’s.

• The estimates of process variables pmf’s,p̂[Vi], i = 1, ...,M , are calculated based on the data

projected by the sensors and theirDQ’s. SinceDQ is not a statistical quantity, classical statistics

cannot be used for this purpose. Therefore, we introduce a model of theDQ’s effect on the coupling

between sensors data and process variables and, using this model, develop the so-calledh-procedure

(which is a modified stochastic approximation algorithm [2]). Analyzing this procedure, we show

that it converges to a steady state defined by theDQ’s. Specifically, ifDQ = 1, it converges to the

actual process variable pmf; asDQ tends to0, the steady state of the h-procedure converges to a

uniform pmf, implying that in this limit the sensor measurements carry no information at all. For

all otherDQ’s, the conditional pmf ofVi given the sensor data is an affine function ofDQ. When

multiple sensors monitor a process variable, theDempster-Shafer rule[3] is used to combine the

steady states of the h-procedures associated with each sensor.

• The estimate of the plant status pmf,p̂[G], is calculated based on the statistical plant model

(typically given as a set of conditional pmf’sP [Vi|G], i = 1, ...,M , or a joint conditional pmf
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P [V1, V2, ..., VM |G]), the estimates of the process variables pmf’s,p̂[Vi], i = 1, ...,M , and the

Jeffrey rule[4].

• The above assessments are carried out at each state of the sensor network, where the state is a

vector of 1’s and 0’s, with 1 indicating that the corresponding sensor is taken into account for

process variable assessment and0 that it is not. The quality of each state is quantified by the

entropy (i.e., the level of uncertainty) of eitherp̂[G] or p̂[Vi]. The adaptation of the sensor network

to the optimal state, i.e., the state with the smallest entropy, is carried out using the so-calledrational

controllers [5], which are decision making devices that reside mostly instates, where the penalty

function (i.e., entropy) is minimized.

• As mentioned above, the adaptation can be carried out using the entropy of either̂p[G] or p̂[Vi]. The

former, which we refer to ascentralized, suffers from the curse of dimensionality: the adaptation

time grows exponentially with the number of sensors in the network. To combat this problem, a

decentralizedsystem, with adaptation based onp̂[Vi], could be used. In the case of a power plant,

this decentralized system is comprised ofsub-plants, e.g., boiler, turbine, reheat pipe, etc. Such a

decomposition, however, impedes the derivation of inferences among the sub-plants, which, as it

turns out, are important to ensure resiliency. Therefore, we develop a decentralized system based on

plant decomposition with knowledge fusionand show that it leads to both mitigation of the curse of

dimensionality and derivation of the above mentioned inferences.

Using these techniques, we design a resilient plant monitoring system consisting of the following five

layers: data quality acquisition, process variable assessment, adaptation, knowledge fusion, and sub-plant

assessment. The subsequent sections describe in details each of the developed techniques, along with the

overall architecture and performance evaluation of the resulting monitoring system.

D. Related literature

The literature related to the topic of this paper can be classified into four groups. The first one is devoted to

foundational issues, where the problems of resilient monitoring and control are motivated and formulated

[6]–[10]. The second group includes publications on control-theoretic methods for attack identification

and alleviation, [11]–[13]. In these publications, the authors consider LTI systems with a given state

space realization(A,B,C,D) and disturbances interpreted as attack vectors. The problem addressed is

to identify the attack and, if possible, mitigate its effect, for instance, by designing a controller that

makes the closed-loop system invariant with respect to the disturbance-attack. The main difference of

the current work is that the plant may be either normal or anomalous (i.e., described by several state
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space realizations), and the problem is to identify which plant status indeed takes place, in spite of the

misleading information projected by the sensors.

The third group consists of publications on fault tolerant control, [14]–[16]. In these works, it is

assumed that a closed-loop system has multiple sensors and actuators, some of which could be faulty

due to natural or malicious causes. The typical problem hereis to determine the conditions (e.g., the

number of sensors and actuators) under which the closed-loop system performance is maintained without

degradation. The difference of the current work is that, although multiple sensors may be present, the

goal is to determine the status of the plant and, if otherwiseimpossible, tolerate degradation.

The fourth group consists of research on monitoring communication channels in order to capture

anomalous traffic and correlate it with a possible attack, [17]–[19]. In terms of the current work,

this implies the identification ofDQ. The main tools used here are hypothesis testing and clustering

techniques. While the results of [17]–[19] may be useful forresilient plant monitoring, they do not

provide methods for process variable and plant condition assessment pursued in the current work.

Our preliminary results on resilient monitoring systems have been reported in conference presentations

[20]–[23] and summarized in article [24]. In the current paper, along with reviewing and extending

some of these results, we introduce and investigate a decentralized monitoring system based on plant

decomposition with knowledge fusion, as a means for combating the curse of dimensionality that mars the

performance of the system developed in [20]–[24]. While thedecomposition of the plant into sub-plants

induces a sensor network decomposition into sub-networks,alleviating thereby the curse of dimensionality,

the subsequent knowledge fusion allows for recovering inferences, which are necessary for resiliency. The

implementation of this approach necessitates developing asensor network adaptation technique based on

process variable assessments,p̂[Vi], calculating inter- and intra-sub-plant inferences, and designing and

investigating the efficacy of a five-layer resilient monitoring system. These developments are described

in the current paper, along with an application to monitoring a simplified model of a power plant.

E. Paper outline

The remainder of this paper is structured as follows: Section II addresses the issue of active data quality

acquisition. In Section III, the h-procedure and associated techniques for process variable assessment are

described. Section IV is devoted to plant pmf assessment. The sensor network adaptation is discussed

in Section V, where a practical consequence of the curse of dimensionality is quantified. An approach

to combatting the curse of dimensionality based on a decentralized system with knowledge fusion is

developed in Section VI. The resulting five-layer monitoring system architecture is presented in Section
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VII. An application to a power plant is discussed and investigated by simulations in Section VIII. Finally,

the conclusions and directions for future work are given in Section IX. All proofs and the parameters of

the power plant model are included in the Appendices.

II. A CTIVE DATA QUALITY ACQUISITION

In this section, we describe an approach toDQ evaluation briefly mentioned in Subsection I-C.

Consider sensorS intended to monitor process variableV and assume that the following holds:

Assumption 1. (i) Process variableV is quantified by a continuous random variableṼ , taking values

in the domainṼ ∈ [Vmin, Vmax]; its pdf, fṼ (ṽ), is unknown.

(ii) The random variablẽV induces a discrete random variableV , which describes the status ofV and

takes values on

ΣV = {LV ,NV ,HV } (1)

with the pmf given by

p[V = LV ] =

∫ R1

Vmin

fṼ (ṽ) dṽ, p[V = NV ] =

∫ R2

R1

fṼ (ṽ) dṽ, p[V = HV ] =

∫ Vmax

R2

fṼ (ṽ) dṽ, (2)

whereR1 andR2 are known andVmin < R1 < R2 < Vmax (V ’s with outcomes other than Low,

Normal, and High can be introduced similarly). SincefṼ (ṽ) is unknown, the pmf ofV is also

unknown.

(iii) The d.c. gain,αV, of V with respect to its control input,UV (e.g., fuel valve of the boiler), depends

on the status ofV, i.e., whether it is Low, Normal, or High. This is formalizedby assuming that

αV is a priori known piecewise constant function of the expected value ofṼ (denoted asµṼ ):

αV =







αL
V
, if µṼ ∈ [Vmin, R1)

αN
V
, if µṼ ∈ [R1, R2)

αH
V
, if µṼ ∈ [R2, Vmax].

(3)

In the case of other than L, N, and H anomalies,αV is introduced similarly. (Note that we use

here the d.c. gain, rather than the full transfer function, in order to require as little information

about the plant as possible. Also, various other dependencies ofαV on µṼ can be considered; for

instance,αV could be assumed to be a piecewise linear function ofµṼ ; expression (3) is used here

for simplicity.)
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(iv) The data projected by sensorS is quantified by a continuous random variableS̃, taking values on

S̃ ∈ [Vmin, Vmax]; its pdf, fS̃(s̃), can be evaluated using the classical statistical methods (based on

the sensor measurements).

(v) The random variablẽS induces a discrete random variableS taking values on

ΣS = ΣV = {LV ,NV ,HV } (4)

with the pmf given by

p[S = LV ] =

∫ R1

Vmin

fS̃(s̃) ds̃, p[S = NV ] =

∫ R2

R1

fS̃(s̃) ds̃, p[S = HV ] =

∫ Vmax

R2

fS̃(s̃) ds̃, (5)

whereR1 andR2 are the same as in (2). SincefS̃(s̃) may be viewed as known, the pmf ofS is

known as well.

(vi) If S is not attacked,µS̃ = µṼ , whereµS̃ is the expected value of̃S. If S is under attack,µS̃ 6= µṼ

and the pmf’s ofS and V may be qualitatively different; for instance,max
σ∈ΣS

p[S = σ] may be

achieved atLV , while max
σ∈ΣV

p[V = σ] at NV . (The expressionµS̃ 6= µṼ can be viewed as a

definition of the attacker; other types of attackers can be considered as well.)

Under Assumption 1, the active data quality acquisition is carried out as follows: Introduce a probing

signal using the control inputUV. Any type of deterministic or random probing signals could be used.

Here, we use the simplest probe− a rectangular pulse with amplitudeAV and durationT , applied at

the time instantt0, i.e.,

uV(t) = AVrectT (t− t0). (6)

The value ofAV is selected sufficiently small so thatAV << min{[Vmin, R1], [R1, R2], [R2, Vmax]}. The

value ofT is selected so that̃V reaches a small vicinity of its steady state defined by the probe.

If the sensor is not under attack, i.e.,µS̃ = µṼ , the following takes place:

µ′
S̃
− µS̃ = AVαV(µS̃), (7)

whereµ′
S̃

is the expected value of̃S after the probe andαV is the d.c. gain defined in (3). If the sensor

is attacked, (7) does not hold. In order to quantify the severity of the attack, introduce the notion of

probing inconsistency(PICS) defined by:

PICS :=
∣
∣
∣(µ′

S̃
− µS̃)−AVαV

(
µS̃

)
∣
∣
∣ . (8)



8

ClearlyPICS = 0 implies that the sensor is not attacked;PICS > 0 indicates an attack and its severity.

Given thisPICS, theDQ of sensorS is defined as:

DQS = e−F (PICS), (9)

whereF ( ·) is a strictly increasing function ofPICS with F (0) = 0. Note that ifF (PICS) grows too

fast, thenDQ will be small even for relatively smallPICS’s; if it grows too slow,DQ is relatively large

even for largePICS’s. Our numerical study, reported in [21], indicates that a quadraticF ( ·) provides

better results for subsequent utilization than a linear one. Therefore, we introduce this function as

F (PICS) := −
ln ǫ

PIC2
max,S

PIC2
S, (10)

whereǫ is a sufficiently small positive number andPICmax,S is the largest value attainable byPICS.

Clearly, due to (9) and (10),minDQS = ǫ, which can be viewed as a design parameter.

Expressions (1)-(10) characterize the activeDQ acquisition procedure utilized in this work. As mentioned

above, numerous modifications of this procedure are possible by considering different properties ofV ,

different types of probing signals and their effect on process variables, various definitions of probing

inconsistency, etc. Specific selections may depend on intended applications. The ones used here are

motivated by the application to a power plant.

III. PROCESSVARIABLE PMF ASSESSMENT

In this section, we describe an approach to the evaluation ofprocess variable pmf,̂p[V ]. As mentioned

in Subsection I-C, this pmf is evaluated based on the sensorsdata and theirDQ’s. If the DQ were

1, this could be accomplished using classical statistics. However, these methods cannot be applied if

0 ≤ DQ < 1. Therefore, to carry out this evaluation, a model of the effect of DQ on the coupling

betweenV andS must be postulated and then, in the framework of this model, anovel statistical method

for pmf’s evaluation should be developed. Below, this development is carried out, and methods for pmf

evaluation using a single and multiple sensors, as well as inferences among the process variables, are

introduced.

A. Model of V and S coupling

Introduce the notion of sensor believability:

βS =
|ΣV | − 1

|ΣV |
DQS +

1

|ΣV |
, (11)
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where|ΣV | is the cardinality of the universal set ofV . If, as indicated in (1),|ΣV | = 3, then

βS =
2

3
DQS +

1

3
.

The last two equations imply that whenDQ = 1, believability is also1; whenDQ = 0, believability is

1
|ΣV | , implying that every status ofV is equally likely. Using the believability, introduce

Assumption 2. The coupling betweenV andS is as follows:

P [V = σ|S = σ] = βS,

P [V = σ̄|S = σ] = 1−βS

|ΣV |−1 ,
(12)

whereσ̄ implies ‘not σ’ and σ, σ̄ ∈ ΣV .

Clearly, this implies that ifDQ = 1, thenV has the same status asS with probability 1; if DQ = 0,

every status ofV is equally probable, irrespective of the status ofS. The coupling (12) is used throughout

this paper.

B. Process variable pmf assessment using a single sensor

Consider a sensorS intended to monitor process variableV and assume that Assumption 1 holds. As

indicated above, our goal is to evaluate the pmf ofV , based on the sensor data,s1, s2, ..., sn, ... (where

the subscript is the time index) and its data qualityDQS. In other words, we are interested in

p̂[V = σ] = lim
n→∞

P [V = σ|s1, s2, ..., sn;DQS], ∀σ ∈ ΣV . (13)

To accomplish this, consider

p̂n[V = σ] = P [V = σ|s1, s2, ..., sn;DQS], ∀σ ∈ ΣV , (14)

and introduce, for convenience, the notation

hσ(n) := p̂n[V = σ], ∀σ ∈ ΣV .

Obviously, the limit ofhσ(n), ∀σ ∈ ΣV , asn → ∞ (if it exists) is the sought pmf,̂p[V ]. Define the

evolution ofhσ(n) as follows:

hσ(n+ 1) = hσ(n) + ǫh [h
∗
σ(sn+1)− hσ(n)] , hσ(0) =

1

|ΣV |
, ∀σ ∈ ΣV , (15)

where the set point,h∗σ(sn+1), is given by

h∗σ(sn+1) =







βS, if sn+1 = σ

1−βS

|ΣV |−1 , if sn+1 6= σ,
(16)
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and the step,ǫh, is either a small number,

0 < ǫh << 1, (17)

or a function ofn monotonically converging to0 so that

0 < ǫh(n) ≤ 1,

∞∑

n=0

ǫh(n) = ∞,

∞∑

n=0

ǫ2h(n) < ∞. (18)

As it follows from (16), the evolution ofhσ(n) depends on both the sensor data andDQS (through

βS). The system of equations (15), (16) is referred to as the h-procedure. It can be viewed as a stochastic

approximation algorithm [2] with a random set point.

Theorem 1. Let Assumptions 1 and 2 hold. Then:

1) There exists a sufficiently smallǫ0, such that for all0 < ǫh < ǫ0, recursive procedure(15)-(17)

converges in probability asn → ∞ to the following limit:

hσ(n)
P
→ p[S = σ]DQS +

1−DQS

|ΣV |
, ∀σ ∈ ΣV . (19)

2) Under (18), recursive procedure(15), (16) converges to the same limit almost surely.

Proof: Part 1 is proved in [24]. The proof of Part 2 is given in the Appendix.

Thus, according to this theorem, ifDQ is close to1, the pmf of process variable,̂p[V ], is close to

the pmf of the sensor,p[S]. However, ifDQ is close to0, the same sensor data result inp̂[V ] being

practically uniform and independent of the sensor measurements. For all intermediate values ofDQ, the

pmf p̂[V ] is an affine function ofDQ.

Recursive procedure (15), (16) is the basis of process variable assessments used throughout this paper.

C. Process variable pmf assessment using multiple sensors

Assume that process variableV is monitored by two sensors,S1 andS2, having data quality,DQS1
and

DQS2
, respectively. The goal is to evaluatep̂[V ] based on the data projected by both sensors, i.e.,

p̂S1,S2 [V = σ] = lim
n→∞

P [V = σ|s11, ..., s
1
n;DQS1

; s21, ..., s
2
n;DQS2

], ∀σ ∈ ΣV . (20)

This can be accomplished by combining the two pmf’s, evaluated based on the h-procedure, i.e.,p̂S1 [V ]

and p̂S2 [V ], into a single pmf,̂pS1,S2 [V ], using the Dempster-Shafer rule [3]:

p̂S1,S2 [V = σ] =
p̂S1 [V = σ]p̂S2 [V = σ]

∑

σ

p̂S1 [V = σ]p̂S2 [V = σ]
, ∀σ ∈ ΣV . (21)
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A question arises: IŝpS1,S2 [V ] “better” than the constituent̂pS1 [V ] andp̂S2 [V ] from the point of view

of the uncertainty in the process variable assessment, i.e., entropy? To answer this question, letI{p[V ]}

denote the entropy of the pmfp[V ] defined as

I{p[V ]} = −
∑

σ∈ΣV

p[V = σ] log|ΣV | p[V = σ] (22)

and introduce:

Definition 1. A pair of pmf’s p̂S1 [V ] and p̂S2 [V ] is Dempster-Shafer monotonic(DS-monotonic) if

I{p̂S1,S2 [V ]} < min
[
I{p̂S1 [V ]}, I{p̂S2 [V ]}

]
. (23)

Thus, only if p̂S1 [V ] and p̂S2 [V ] are DS-monotonic, the combined pmf (21) is beneficial; otherwise,

the pmf from one sensor (eitherS1 or S2), having the smallest entropy, should be utilized.

It would be of interest to provide conditions under whichp̂S1 [V ] and p̂S2 [V ] are DS-monotonic. At

present no general conditions of this type are available. Our numerical study, reported in [20], indicates

that if the expected values of̃S1 andS̃2 belong to the same outcome ofΣV and their standard deviations

are sufficiently small, then̂pS1 [V ] and p̂S2 [V ] are DS-monotonic; otherwise,I{p̂S1 [V ]} or I{p̂S2 [V ]}

may be smaller thanI{p̂S1,S2 [V ]}.

D. Process variable pmf assessment using inferences

Consider a plant characterized by two process variables,V1 andV2, monitored by sensorsS1 andS2,

respectively, and operating in accordance with Assumption1. Denote the universal sets ofV1 asΣV1
and

V2 asΣV2
. Assume that these process variables are coupled by conditional pmf’sP [V1|V2] andP [V2|V1].

For instance, ifV1 andV2 are the temperatures of the boiler and turbine, respectively, these conditional

pmf’s may be of the form

P [V1|V2] =








1
2 0 0

1
2 1 1

2

0 0 1
2







, P [V2|V1] =








1 1
3 0

0 1
3

1
2

0 1
3

1
2







, (24)

where the columns represent the states of the condition and the rows that of the random variable itself.

Clearly, (24) implies that ifV2 is Normal,V1 is Normal as well, while ifV1 is Normal,V2 may be

either Normal, or Low, or High. Using these conditional pmf’s, the pmf ofV1 (resp.,V2) can be assessed

not only by the data andDQ of S1, (resp.,S2), but also by those ofS2 (resp.,S1). This is important
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because it offers a possibility of assessing the status of a process variable even if its sensor hasDQ = 0.

To describe this inference procedure, letp̂S2 [V1] andp̂S2 [V2] denote the pmf’s ofV1 andV2, respectively,

evaluated based on the data andDQ of S2. Obviously,p̂S2 [V2] can be evaluated using the h-procedure

(15), (16). Then,̂pS2 [V1] can be computed usingP [V1|V2] and the total probability formula:

p̂S2 [V1] =
∑

σ2∈ΣV2

P [V1|V2 = σ2]p̂
S2 [V2 = σ2]. (25)

Thus,V1 is assessed usingS2. Having bothp̂S2 [V1] and p̂S1 [V1], the Dempster-Shafer rule may be used

to combine them, if it is beneficial from the point of view of the resulting entropy.

The calculation of̂pS1 [V2] is carried out similarly.

IV. PLANT PMF ASSESSMENT

As mentioned in Subsection I-C, the plant status assessmentis quantified bŷp[G], G ∈ ΣG. To describe a

method for its evaluation, let the plant model be given byP [Vi|G], i = 1, ...,M , and letp̂[Vi], i = 1, ...,M ,

denote the process variable pmf’s evaluated as described inSection III. Then,̂p[G] can be computed using

the following:

Algorithm 1. (a) Assign the initial plant pmf:

p0[G] =

[
1

3
,
1

3
,
1

3

]

. (26)

(b) Calculate the initial joint pmf ofVi andG:

p0[Vi, G] = P [Vi|G]p0[G], i = 1, 2, ...,M. (27)

(c) Calculate the marginal probability:

p0[Vi] =
∑

G∈ΣG

p0[Vi, G], i = 1, 2, ...,M. (28)

(d) Apply the Jeffrey rule [4]:

p̂[Vi, G] = p0[Vi, G]
p̂[Vi]

p0[Vi]
, i = 1, 2, ...,M. (29)

(e) Marginalize to obtain the plant pmf estimate:

p̂Vi [G] =
∑

Vi∈ΣVi

p̂[Vi, G], i = 1, 2, ..,M. (30)
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(f) If M > 1, combine the pmf’s obtained in (30) using the Dempster-Shafer rule:

p̂[G = σG] =

M∏

i=1

p̂Vi [G = σG]

∑

σG

M∏

i=1

p̂Vi [G = σG]

, σG ∈ ΣG. (31)

If the plant model is given asP [V1, V2, ..., VM |G], marginalize it to obtainP [Vi|G], i = 1, 2, ...,M ,

and then follow steps (a)-(f) above.

Algorithm 1 is carried out after the h-procedure has converged andp̂[Vi], i = 1, ...,M , is evaluated.

To speed up the process ofp̂[G] evaluation, it is tempting to apply this algorithm recursively, i.e., using

p̂n[Vi], instead ofp̂[Vi], at step (d). As it turns out, however, this may lead to a paradox: the entropy of

p̂n[G] may tend to0 asn → ∞, irrespective of the sensors data and theirDQ’s. This paradox can be

explained by the fact that when̂pn[Vi] approaches its limit (i.e., is practically constant), the dynamics of

p̂n[G] are defined not by the sensor measurements and theirDQ’s, but by the eigenvalues of the recursive

version of Algorithm 1, defined as follows:

Algorithm 2. (a) Assign the plant pmf at timen as:

p̂n[G], wherep̂0[G] =

[
1

3
,
1

3
,
1

3

]

. (32)

(b) Calculate the joint pmf ofVi andG:

p̂n[Vi, G] = P [Vi|G]p̂n[G], n = 0, 1, 2, ...; i = 1, 2, ...,M. (33)

(c) Calculate the marginal probability:

p̂Gn [Vi] =
∑

G∈ΣG

p̂n[Vi, G], n = 0, 1, 2, ...; i = 1, 2, ...,M. (34)

(d) Apply the Jeffrey rule:

p̂n+1[Vi, G] = p̂n[Vi, G]
p̂n+1[Vi]

p̂Gn [Vi]
, n = 0, 1, 2, ...; i = 1, 2, ...,M. (35)

(e) Marginalize to obtain the plant pmf estimate:

p̂Vi

n+1[G] =
∑

Vi∈ΣVi

p̂n+1[Vi, G], n = 0, 1, 2, ...; i = 1, 2, ...,M. (36)
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(f) If M > 1, combine the pmf’s obtained in (36) using the Dempster-Shafer rule:

p̂n+1[G = σG] =

M∏

i=1

p̂Vi

n+1[G = σG]

∑

σG

M∏

i=1

p̂Vi

n+1[G = σG]

, n = 0, 1, 2, ...; σG ∈ ΣG. (37)

(g) Updaten to n+ 1. Return to (a).

To investigate the performance of this algorithm, considera plantG with process variableV, monitored

by sensorS. Assume that the universal sets ofG, V , andS are given by:

ΣG = {NG,AG}, ΣV = ΣS = {NV ,AV }. (38)

Further, assume that the plant model is characterized by theconditional pmf

P [V |G] =




1− a a

a 1− a



 , (39)

wherea < 0.5. Denote the pmf’s of the process variable and the plant at time n as

p̂n[V ] = [hNV
(n), hAV

(n)], p̂n[G] = [kNG
(n), kAG

(n)], (40)

wherehNV
(n) andhAV

(n) are calculated using the h-procedure (15), (16) andkNG
(n) andkAG

(n) are

evaluated using Algorithm 2. To specify the evolution ofkNG
(n) andkAG

(n), substitute (39) and (40)

in steps (a)-(e) of this algorithm to obtain

kNG
(n+ 1) =

[
1− a

C(n)

]

kNG
(n) +

[
akNG

(n)

D(n)
−

[1− a]kNG
(n)

C(n)

]

hNV
(n+ 1), (41)

with kNG
(0) = 0.5 andC(n) andD(n) given by

C(n) := [1− a]kNG
(n) + a[1− kNG

(n)], D(n) := akNG
(n) + [1− a][1 − kNG

(n)]. (42)

Denote the steady state values ofhNV
(n) andhAV

(n), evolving according to the h-procedure (15),(16),

as hssNV
and hssAV

, respectively. Then, the steady state values ofkNG
(n) and kAG

(n) are quantified as

follows:

Theorem 2. The steady statekssNG
of the recursion(41) is:

1) kssNG
= 1, if hssNV

> 1− a;

2) kssNG
= 0, if hssNV

< a;

3) kssNG
=

hss
NV

−a

1−2a , if hssNV
> a and hssNV

< 1− a.
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Proof: See the Appendix.

This theorem exhibits the paradoxical nature of the recursive Jeffrey rule. Namely, if, for instance,

hssNV
= 0.7, i.e., p̂[V ] = [0.7, 0.3], anda = 0.4, then, according to Part 1 of Theorem 2,p̂[G] = [1, 0],

implying that the plant status is normal with certainty, while the process variable status is uncertain.

Similarly, for the samea, if hssNV
= 0.3, i.e., p̂[V ] = [0.3, 0.7], then, according to Part 2,̂p[G] = [0, 1],

implying that the plant status is anomalous, again with certainty, while the process variable status is

uncertain. In other words, this theorem implies that a recursive version of Jeffrey rule may “create

erroneous information” rather than transfer it from one quantity, Vi, into another,G.

V. SENSORNETWORK ADAPTATION AND MEASURE OFRESILIENCY

As mentioned in Subsection I-C, the adaptation of sensor network to the state with minimal entropy can

be carried out using either the plant or the process variablepmf’s. In this section, we describe the former

and in Section VII the latter.

A. Sensor network

Consider the plantG with M process variables,V1,V2, ...,VM , monitored byNS sensors,S1,S2, ...,SNS
,

under Assumption 1. Each sensor may or may not be utilized forthe process variable pmf’s assessment.

This induces the sensor network state space,X, where each element,x, is anNS-tuple of 1’s and0’s,

with 1 in the i-th place indicating thatSi is used for process variable pmf’s assessment and0 that it is

not. Thus, the cardinality of the state space,|X|, is 2NS . (A practical consequence of this exponential

growth of |X| as a function ofNS is discussed in Subsection V-D.) The process variable pmf’sand

the plant pmf assessed in statex of the sensor network are denoted asp̂x[Vi], x ∈ X, i = 1, ...,M ,

and p̂x[G], respectively. The goal of the sensor network adaptation isto converge to the state, where the

entropy ofp̂x[G] is minimal.

B. Adaptation using a rational controller

As mentioned in Subsection I-C, the adaptation technique used in this work is based on rational controllers

introduced in [5] and further developed in [25], [26]. Rational controllers are decision making devices

that possess two properties:ergodicity and rationality. The ergodicity property implies that each state,

x, of the decision space,X, is visited with a non-zero probability. The rationality property implies that

the residence time in states with a smaller value of thepenalty functionis larger than in those with a

larger one. The degree to which this distinction takes placeis referred to as thelevel of rationalityand
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quantified by a positive integer,N .

If the sensor network adaptation is based on the plant assessment pmf,p̂x[G], the penalty function is

selected as its entropy,I{p̂x[G]} := Îx(G). Various types of rational controller dynamics can be defined

to ensure rationality and ergodicity. In this work, to ensure the former, the following residence time in

each statex ∈ X is introduced:

Tx =







Tmax, if Îx(G) ≤ β
(

β

Îx(G)

)N

Tmax, if Îx(G) > β,
(43)

whereβ > 0 is a small number (design parameter) andTmax is the largest residence time (also a design

parameter). To ensure ergodicity, whenTx expires, the controller moves to the next state in a deterministic,

round-robin manner.

Let τx be the relative residence time in statex ∈ X, i.e.,

τx =
Tx

∑

x∈X

Tx

. (44)

Then, theaverageplant assessment pmf, to be reported to the plant operator after each complete

round-robin cycle, is evaluated as

p̄[G] =
∑

x∈X

τxp̂x[G]. (45)

It can be shown that ifN is sufficiently large,p̄[G] is arbitrarily close toarg min
x∈X

Îx(G). Note that

although under the deterministic, round-robin transitionrule, the state with the minimal entropy could be

selected by various other methods, we use (43)-(45) since itis equally applicable to random transitions,

which may be necessary in other applications.

C. Measure of resiliency

The measure of resiliency employed in this work is based on the Kullback-Leibler divergence [1] of two

pmf’s, p1[G] andp2[G], given by:

D (p1[G]||p2[G]) =
∑

σG∈ΣG

p1 [G = σG] log|ΣG|

p1[G = σG]

p2[G = σG]
. (46)

Let p1[G] be the true pmf of the plant,p[G]. As for p2[G], we consider two cases. In the first one,

p2[G] is p̄[G] calculated according to (45) and based on theDQ’s of the sensors. In the second,p2[G]

is the pmf of the plant assessed under the assumption that theDQ of all sensors is1; we refer to such
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a system asnon-resilientand denote the resulting pmf aspnr[G]. Then, the measure of resiliency(MR)

considered in this paper is given by

MR =
D (p[G]||pnr[G]) −D (p[G]||p̄[G])

D (p[G]||pnr[G])
. (47)

Clearly, MR ≤ 1, and the equality is attained when̄p[G] = p[G]. Thus, to test the resiliency of a

monitoring system, one has to assume thatp[G] is known, evaluatēp[G] andpnr[G], and then use (47).

This is carried out in Section VIII for the case of the power plant.

D. Temporal properties of adaptation and curse of dimensionality

From the temporal point of view, the adaptation process consists ofepochs; |X| epochs (where, as before,

X is the sensor network state space) comprise acycle; at the end of each cycle,̄p[G] is reported to the

plant operator.

For eachx ∈ X, the epoch consists of three periods:DQ acquisition (TDQ), process variable(s) and

plant pmf evaluation (Teval), and residence in statex (Tx). Assuming that the sensor data are provided

every 0.01sec and using the procedure described in Section II,TDQ can be evaluated as5sec (if the

time constant of the process variable is1sec and100 measurements are utilized to calculate the sensor

mean). Using the procedures described in Sections III and IV, the duration of process variable and plant

assessment,Teval, can be calculated as6sec (if the stopping rule of the h-procedure is|hσ(n+1)−hσ(n)| <

10−4). The maximum residence period,Tmax, can be selected as desired. If it is selected to be1sec, the

duration of each epoch is less than or equal to12sec.

As mentioned above,|X| epochs constitute a cycle, so that the cycle duration is, at most, 12|X|sec.

Thus, the resilient monitoring system provides the plant assessment pmf,̄p[G], within a reporting period

Treport = 12|X|sec. If a network consists of5 sensors,Treport = (25)12sec ≈ 6min, whereas in a

network of10 sensors,Treport ≈ 3hr, which is clearly unacceptable. This curse of dimensionality is the

main drawback of the centralized system based onp̂x[G] adaptation.

VI. COMBATTING THE CURSE OFDIMENSIONALITY : DECENTRALIZED SYSTEM WITH KNOWLEDGE

FUSION

This section provides a method for combatting the curse of dimensionality based on the plant decomposition

with knowledge fusion. The development is carried out in terms of a power plant; however, the approach

is applicable to other systems as well.
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A. Power plant

A simplified model of a power plant is shown in Figure 1, where Bis the boiler, HT and LT are the high

and low pressure turbines, respectively, RP is the reheat pipe, C is the condenser, FP is the feedwater

pump, andSij ’s are the sensors. For simplicity, it is assumed that only B,HT, RP, LT may be under a

Fig. 1: Schematics of the power plant

physical attack or malfunction, while C and FP are assumed tooperate normally; hence, their sensors

are not included in Figure 1.

Having8 sensors, the number of network states is256. Thus, based on the temporal properties discussed

in Subsection V-D, a report to the plant operator could be produced in about every45min. To combat

this drawback, a decentralized system could be considered,where B, HT, RP, and LT are viewed as

separatesub-plantsmonitored by their respective sensorsub-networks(i.e., B by sensorsS11 andS12,

etc.). The problem with such a decentralized system is that inferences arising from coupling of process

variables that belong to various sub-plants are neglected.In other words if, for example, all boiler sensors

are captured by an attacker, no information about the boilercould be derived, even if all other sensors

operate normally. To alleviate this problem, we develop another approach− based, as it is mentioned in

Subsection I-C, on a decentralized system with knowledge fusion and show that under certain conditions

such a decomposition, while decreasing the state space of resilient adaptation, leads to no loss in quality

of plant condition assessment.
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B. Developing the decentralized system with knowledge fusion

Assume, for simplicity, that B, HT, RP, and LT are characterized by a single process variable, e.g., its

temperature, denoted asV1, V2, V3, and V4, respectively, each monitored by two sensors. Mutual

influences of the temperature among sub-plants can be represented by a directedcyclic graphshown in

Figure 2(a). Assuming, for simplicity, that the heat-generating capacity of B is large enough to maintain

(a) Cyclic graph

representation

(b) Tree graph

representation

Fig. 2: Influence diagrams

RP temperature independent of HT conditions (normal or anomalous), the influence HT→ RP can be

omitted. Similarly, under the above assumption, one may ignore the influence RP→ B, since B is capable

of maintaining its own temperature independent of HT and RP conditions. Further, if the heat-absorbing

capacity of C is large enough to maintain a constant water temperature at its outlet independent of LT

condition, the influence LT→ B can also be ignored. Under these assumptions, the cyclic graph of Figure

2(a) is reduced to thetree graphof Figure 2(b). This implies that the power plant can be represented as four

sub-plants, denoted asGB, GHT, GRP, andGLT , interrelated as shown in Figure 2(b). This partitioning

induces a corresponding partitioning of the sensor networkSN into four sub-networks, SNB, SNHT,

SNRP, andSNLT, consisting of{S11,S12}, {S21,S22}, {S31,S32}, and{S41,S42}, respectively. IfXk,

k ∈ {B,HT,RP,LT}, denotes the state space of each sub-network, then the number of states in each

of them is4, and, if the evaluation of each state takes12sec, a report to the operator is produced in

approximately48sec (rather than45min, as in the centralized case). Clearly, under this decomposition,

the aforementioned report would consist of the pmf’s of the sub-plants, i.e.,̄p[B], p̄[HT], p̄[RP], and

p̄[LT], rather than of a single pmf̄p[G].

Note that in this decentralized architecture, the sensor sub-networks adaptation is carried out based on

p̂[Vi] (rather thanp̂[G]). This is becausêp[Gi], i ∈ {B,HT,RP,LT}, become available only after the

knowledge fusion of̂p[Vi]’s is carried out.
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To implement knowledge fusion calculations, couplings among process variables must be introduced.

This is accomplished based on the conditional probabilitiesP [Vi|Vj]. While specific matrices representing

these conditional pmf’s are given in Subsection VIII-A, below we describe the knowledge fusion calculations

used in this work.

C. Knowledge fusion calculations

Let p̄GB
[V1], p̄GHT

[V2], p̄GRP
[V3], and p̄GLT

[V4] be the process variable pmf’s of the sub-plants, evaluated

using the techniques described in Sections II, III, and V. Then, fusion of this information, leading to the

sought inferences, is carried out as follows:

1) Inferences forV1:

(a) Calculate the pmf ofV1 based on the sensors of LT (denoted asp̄GLT
[V1]):

p̄GLT
[V1] =

∑

σ3∈ΣV3

P [V1|V3 = σ3]p̄GLT
[V3 = σ3], (48)

wherep̄GLT
[V3] is calculated as

p̄GLT
[V3] =

∑

σ4∈ΣV4

P [V3|V4 = σ4]p̄GLT
[V4 = σ4]. (49)

(b) Calculate the pmf ofV1 based on the sensors of RP:

p̄GRP
[V1] =

∑

σ3∈ΣV3

P [V1|V3 = σ3]p̄GRP
[V3 = σ3]. (50)

(c) Calculate the pmf ofV1 based on the sensors of HT:

p̄GHT
[V1] =

∑

σ2∈ΣV2

P [V1|V2 = σ2]p̄GHT
[V2 = σ2]. (51)

(d) Calculate the pmf ofV1 based on all sensors of the sensor network (using the Dempster-Shafer rule):

p̄GB,HT,RP,LT
[V1 = σ1] =

∏

k=B,HT,RP,LT

p̄Gk
[V1 = σ1]

∑

σ1∈ΣV1

∏

k=B,HT,RP,LT

p̄Gk
[V1 = σ1]

. (52)

(e) Finally, select̄p∗[V1] as the one of the five pmf’s obtained above, which has the smallest entropy,

i.e.,

p̄∗[V1] = argmin
{
I {p̄GB

[V1]} , I {p̄GHT
[V1]} , I {p̄GRP

[V1]} , I {p̄GLT
[V1]} , I

{
p̄GB,HT,RP,LT

[V1]
}}

. (53)

Fusion of other process variable pmf’s is carried out similarly, leading top̄∗[V2], p̄∗[V3], and p̄∗[V4].
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D. Accuracy of decentralized systems with knowledge fusion

In this subsection, we address the following question: How much information is lost due to the decentralization

with knowledge fusion? Although a complete answer to this question is not available yet, a partial one

is provided below by considering a system motivated by the power plant application.

Let the plantG consist of two process variablesV1 andV2, each monitored by two sensors,{S11,S12}

and{S21,S22}, respectively. Assume that the universal sets ofV1 andV2 are

ΣV1
:= {NV1

,AV1
} , ΣV2

:=
{

NV2
,A

(1)
V2

,A
(2)
V2

,A
(3)
V2

}

, (54)

where, as before, N stands for Normal and A for Anomalous. LetZNV1
andZAV1

be the intervals where

V1 is viewed asNV1
andAV1

, respectively, and letZNV2
, ZA

(1)

V2

, ZA
(2)

V2

, andZA
(3)

V2

be the corresponding

intervals forV2. Similar to (3), assume that the d.c. gains of the process variables are piecewise constant

in these intervals. Finally, let the coupling betweenV1 andV2 be characterized by the conditional pmf’s

P [V1|V2] =




1 1 0 0

0 0 1 1



 , P [V2|V1] =











0.5 0

0.5 0

0 0.5

0 0.5











. (55)

To combat the curse of dimensionality, introduce two sub-plants,GI andGII, consisting of process

variablesV1 andV2 and their sensors, respectively. Two methods for evaluating the pmf’s ofV1 andV2

are considered below, the centralized and the decentralized with knowledge fusion, and their results are

compared.

Centralized assessment (CA):Each sensor is assignedDQ based on the procedure described in

Section II. The state space of the overall sensor network is given by

X = {(0000), (1000), (0100), ...., (1111)} , (56)

which contains16 states. Let the sensor network be equipped with a rational controller, whose objective

is to minimize the penalty functionΦ(x), specified as

Φ(x) = I {p̂x[V1, V2]} , x ∈ X, (57)

where the joint pmf̂px[V1, V2] is computed as

p̂x[V1, V2] = P [V1|V2]p̂x[V2], (58)
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and p̂x[V2] is calculated as described in Section III. Assume that a unique solution of this minimization

problem,min
x∈X

Φ(x), exists and is given by

x∗ = argmin
x∈X

Φ(x). (59)

To solve the above problem, specify the residence time of thecontroller in statex ∈ X as

Tx =

(
1

Φ(x)

)N

, (60)

whereN is sufficiently large. In this scenario, utilizing the formula similar to (45), the pmf̄p[V1, V2] is

calculated aŝpx∗ [V1, V2]. Finally, p̄[V1, V2] is marginalized to obtain̄p[V1] and p̄[V2].

Decentralized assessment with knowledge fusion (DA-KF):AssignDQ to each sensor as before.

Decompose the sensor network with state space (56) into two sub-networks, with state spacesXI and

XII defined as follows:

XI = {(00)I, (10)I, (01)I, (11)I} , XII = {(00)II, (10)II, (01)II, (11)II} . (61)

Assume that each sub-network is equipped with a rational controller, whose objective is to minimize the

penalty functions

ΦI(xI) = I {p̂xI
[V1]} , xI ∈ XI, ΦII(xII) = I {p̂xII

[V2]} , xII ∈ XII, (62)

respectively, wherêpxI
[V1] and p̂xII

[V2] are calculated as in Section III. Assume that unique solutions of

these minimization problems exist and are given by

x∗I = arg min
xI∈XI

ΦI(xI), x
∗
II = arg min

xII∈XII

ΦII(xII). (63)

Let the residence time of the rational controllers be specified as in (60). Under this scenario, the pmf’s

p̄GI
[V1] and p̄GII

[V2] are calculated aŝpx∗

I
[V1] and p̂x∗

II
[V2], respectively. Then, based on the knowledge

fusion calculations (48)-(51), the inferencesp̄GI
[V2] and p̄GII

[V1] are obtained.

To characterize the conditions under which CA and DA-KF result in the same pmf’s of process

variables, introduce

Definition 2. The pmf’s p̄GI
[Vi] and p̄GII

[Vi], i = 1, 2, aremax-similar if

arg max
σi∈ΣVi

p̄GI
[Vi = σi] = arg max

σi∈ΣVi

p̄GII
[Vi = σi], i = 1, 2. (64)

In other words,̄pGI
[V1] and p̄GII

[V1] (resp.p̄GI
[V2] and p̄GII

[V2]) are max-similar if their maxima are

attained at the same element ofΣV1
(resp.ΣV2

).
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Theorem 3. Assume that both pairs of pmf’s{p̄GI
[V1], p̄GII

[V1]} and{p̄GI
[V2], p̄GII

[V2]} are DS- monotonic

and max-similar. Then,(x∗I , x
∗
II) = x∗, and the pmf’s ofV1 andV2 calculated using CA and DA-KF are,

respectively, identical.

Proof: See the Appendix.

We hypothesize that this sufficient condition for the efficacy of decentralized systems with knowledge

fusion is applicable to more general scenarios than that considered here. A justification of this hypothesis

and derivation of more general conditions are topics for future work.

VII. R ESILIENT MONITORING SYSTEM ARCHITECTURE

Turning now to the issue of computing the pmf’s of B, HT, RP, and LT, we introduce a five-layer

architecture shown in Figure 3. It consists of four parallelsub-architectures, each corresponding to a

sub-plant,GB, GHT, GRP, andGLT , which could be under a physical attack (or malfunction). The inputs

to each sub-architecture are the sensor data provided by thesub-networksSNB, SNHT, SNRP, andSNLT,

which could be under a cyber attack. The physical and cyber attacks might be either coordinated or not.

The outputs of the overall architecture are the assessed sub-plant pmf’s, i.e.,p̄[B], p̄[HT], p̄[RP], p̄[LT].

The five layers of this architecture can be characterized as follows (using the sub-plant B, as an

example):

• TheDQ acquisition layer remains the same as in Section II.

• The process variable assessment layer consists of two parts. The first one represents the evaluation of

p̂xB
[V1] using the methods of Section III. The second part evaluatesp̄GB

[V1] using the expression (45)

applied to the sub-plant (i.e.,̄pGB
[V1] =

∑

xB∈XB

τxB
p̂xB

[V1], whereτxB
is the output of the adaptation

layer).

• The sub-network adaptation layer operates as described in Section V, but using the entropy of̂pxB
[V1]

as the penalty function.

• The knowledge fusion layer implements the calculations described in Subsection VI-C.

• The sub-plant assessment layer evaluatesp̄[B], p̄[HT], p̄[RP], and p̄[LT] using the technique of

Section IV.

The measure of resiliency is evaluated using (47) applied separately to each sub-plant, e.g.,

MRB =
D (p[B]||pnr[B])−D (p[B]||p̄[B])

D (p[B]||pnr[B])
. (65)

TheMR’s for HT, RP, and LT are computed similarly, resulting in thefollowing vector:

#      »

MR = [MRB, MRHT, MRRP, MRLT ] . (66)
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Fig. 3: Five-layer resilient monitoring system architecture based on decentralization with knowledge

fusion

VIII. A PPLICATION TO POWER PLANT

In this section, we apply the resilient monitoring system ofFigure 3 to the power plant of Figure 1.

While the statistics of process variables and the parameters of the monitoring system are specified in the

Appendix, below we introduce the sub-plant anomalies (Subsection VIII-A), describe the attack scenarios

and the resulting system performance (Subsection VIII-B),and discuss qualitative features of the results

obtained (Subsection VIII-C).
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A. Sub-plant anomalies and process variable couplings

1) Boiler: The anomaly of B is insulation fracture. Since the fracture results in a lower than normal

temperature, the universal set ofV1 is ΣV1
:= {LV1

,NV1
}.

2) High pressure turbine:The anomaly of HT is also the insulation fracture. Taking into account

the influence B→ HT, we assume thatV2 takes progressively increasing values under the following

conditions: Both B and HT are damaged; only B is damaged; onlyHT is damaged; and both B and

HT operate normally. As it follows from the above, the universal set ofV2 is ΣV2
:= {VLV2

,L(1)V2
,

L(2)V2
,NV2

}, where VL stands for Very Low, andL(1)V2
andL(2)V2

indicate Low HT temperature due

to B and HT damage, respectively.

3) Reheat pipe:The anomaly of RP is similar to that of B and HT, i.e., the insulation fracture.

RegardingV3, we assume that it takes increasing values under the following conditions: Both B and RP

are damaged; only B is damaged; only RP is damaged; and both B and RP operate normally. From the

above,V3 ∈ ΣV3
:= {VLV3

,L(1)V3
,L(2)V3

,NV3
}.

4) Low pressure turbine:Since LT operates at a low pressure, we assume that the anomaly is not due to

the fracture of its insulation, but due to the inefficient transfer of energy to the output shaft, leading to the

temperature being higher than normal. Taking into account the chain of influences B→ RP→ LT and the

above assumption,V4 takes progressively increasing values under the followingconditions: LT operates

normally, while RP and B are damaged; LT malfunctions, whileRP and B are damaged; LT and RP

operate normally, while B is damaged; LT malfunctions and B is damaged, while RP operates normally;

LT and B operate normally, while RP is damaged; LT malfunctions and RP is damaged, while B operates

normally; LT, RP, and B operate normally; and LT malfunctions, while RP and B operate normally. As

it follows from the above,V4 ∈ ΣV4
:= {VL(1)V4

,VL(2)V4
,L(1)V4

,L(2)V4
,M(1)V4

,M(2)V4
,NV4

,HV4
},

where M stands for Medium and H for High.

5) Coupling of process variables:As described in Subsection VI-B, the couplings of the process

variables are characterized by the conditional pmf’sP [Vi|Vj ]. Taking into account the universal sets
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introduced above, these pmf’s are as follows:

P [V1|V2] = P [V1|V3] =




1 1 0 0

0 0 1 1





︸ ︷︷ ︸

A

, P [V2|V1] = P [V3|V1] =











0.5 0

0.5 0

0 0.5

0 0.5











︸ ︷︷ ︸

B

,

P [V3|V4] =




A 02×4

02×4 A



 , P [V4|V3] =




B 04×2

04×2 B



 .

(67)

6) Universal sets of the sub-plants:Since each sub-plant is characterized by a single anomaly, the

random variableGi, i ∈ {B,HT,RP,LT}, which represents its status, has the universal set comprised

of two outcomes,{NGi
,AGi

}, i ∈ {B,HT,RP,LT}, where, as before,NGi
andAGi

stand for normal

and anomalous status of the sub-plantGi, respectively.

B. Attack scenarios and the resulting monitoring system performance

In this section, we introduce seven cyber and cyber-physical attack scenarios selected so as to exhibit

the main features of the resilient monitoring system designed herein. As it may be expected, physical

attacks on the sub-plants are less damaging for resilient monitoring than cyber attacks on the sensors.

Nevertheless, to illustrate that every sub-plant status (normal or anomalous) can be identified with or

without a physical attack, we include cyber-physical attacks into consideration as well.

Scenario 1:Cyber attack on the boiler:All sub-plants operate normally. All sensors monitoring B are

captured and project misleading information that the boiler is damaged. All other sensors operate normally.

Performance:The resilient monitoring system computes the following pmf’s:

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09], p̄[GLT ] = [0.92, 0.08], (68)

correctly indicating that all sub-plants operate normallywith large probability. The non-resilient monitoring

system (i.e., the system withDQ’s of all sensors equal to1 − see Subsection V-C) evaluates the pmf of

B aspnr[GB] = [0.05, 0.95], erroneously indicating that the boiler is damaged. Using (65) and (66), the

measure of resiliency under this scenario is calculated as
#      »

MR = [0.98,−,−,−] , where “−” indicates

that none of the sensors of the corresponding sub-plant are attacked.

Scenario 2:Cyber attack on the low pressure turbine:All sub-plants operate normally. All sensors of LT
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are under attack, reporting that it is malfunctioning. All other sensors operate normally.

Performance:The resilient monitoring system computes the following pmf’s:

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09], p̄[GLT ] = [0.49, 0.51], (69)

implying that, while the status of B, HT, and RP is ascertained correctly, the status of LT is undetermined

(i.e., either normal or anomalous with almost equal probabilities). The non-resilient monitoring system

evaluates the pmf of LT aspnr[GLT ] = [0.09, 0.91], erroneously indicating that LT is malfunctioning. The

measure of resiliency in this case is
#      »

MR = [−,−,−, 0.7]. Note, however, that if only one sensor of LT

was captured, the status of all sub-plants would be assessedcorrectly with the pmf’s

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09], p̄[GLT ] = [0.91, 0.09].

Scenario 3:Coordinated cyber-physical attack on the reheat pipe:RP is under attack, resulting in

insulation fracture. All other sub-plants operate normally. Since RP is attacked, the temperature of LT

is M(1)V4
. All sensors of RP are captured, forcing them to indicate that RP is normal. All other sensors

are not attacked.

Performance:The pmf’s of B, HT, RP, and LT are computed as follows:

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.12, 0.88], p̄[GLT ] = [0.92, 0.08], (70)

correctly identifying the status of all sub-plants. The non-resilient monitoring system evaluates the pmf

of RP aspnr[GRP] = [0.91, 0.09], i.e., erroneously. The measure of resiliency is
#      »

MR = [−,−, 0.95,−].

Note that if the attack was not coordinated, e.g., physical attack on RP and cyber attack, say, on LT, the

status of LT would be undetermined, i.e.,

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.12, 0.88], p̄[GLT ] = [0.49, 0.51].

Scenario 4:Coordinated cyber-physical attack on the high pressure turbine: HT is under attack, resulting

in fracture of its insulation, withV2 beingL(2)V2
. All other sub-plants operate normally. All sensors of

HT are captured, forcing them to indicate that its status is normal. All other sensors are not attacked.

Performance:The pmf’s of the sub-plants are computed as follows:

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.51, 0.49], p̄[GRP] = [0.91, 0.09], p̄[GLT ] = [0.92, 0.08], (71)

correctly identifying the status of B, RP, and LT, while thatof HT is undetermined. The non-resilient

monitoring system evaluates the pmf of HT aspnr[GHT] = [0.9, 0.1], i.e., erroneously indicating that HT
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is normal. The measure of resiliency is
#      »

MR = [−, 0.69,−,−]. If only one sensor of HT was captured,

the status of all sub-plants would be ascertained correctlywith the pmf’s

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.11, 0.89], p̄[GRP] = [0.91, 0.09], p̄[GLT ] = [0.92, 0.08].

If the attack was not coordinated, e.g., a physical attack onHT and a cyber attack on all sensors of B,

the resulting performance would be

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.1, 0.9], p̄[GRP] = [0.91, 0.09], p̄[GLT ] = [0.92, 0.08],

indicating that all sub-plants are assessed correctly.

Scenario 5:Coordinated cyber-physical attack on the boiler and low pressure turbine:B and LT are

under attack, resulting in insulation damage of the former and malfunctioning of the latter, withV1 being

LV1
and V4 being L(2)V4

. All other sub-plants operate normally, withV2 being L(1)V2
and V3 being

L(1)V3
. All sensors of B and LT are captured, forcing them to indicate that their status is normal. All

other sensors are not attacked.

Performance:The pmf’s of the sub-plants are computed as follows:

p̄[GB] = [0.05, 0.95], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09], p̄[GLT ] = [0.51, 0.49], (72)

correctly identifying the status of B, HT, and RP, while the status of LT is undetermined. The non-resilient

monitoring system evaluates the pmf’s of B and LT aspnr[GB] = [0.95, 0.05] andpnr[GLT ] = [0.92, 0.08],

erroneously assessing them as normal. The measure of resiliency is
#      »

MR = [0.98,−,−, 0.72]. If only one

sensor of LT was captured, the status of all sub-plants wouldbe ascertained correctly with the pmf’s

p̄[GB] = [0.05, 0.95], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09], p̄[GLT ] = [0.1, 0.9].

Note also that if the attack was not coordinated, e.g., physical attack on LT and cyber attack on all

sensors of B, the resulting performance would be

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09], p̄[GLT ] = [0.09, 0.91],

indicating that all sub-plants are assessed correctly.

Scenario 6:Coordinated cyber-physical attack on the boiler, reheat pipe, and low pressure turbine:B,

RP, and LT are under attack, withV1, V3, and V4 being LV1
, VLV3

, andVL(2)V4
, respectively. The

remaining sub-plant, HT, operates normally. All sensors that monitor B, RP, and LT are captured, forcing
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them to indicate that their status is normal. The sensors of HT are not attacked.

Performance:The pmf’s of the sub-plants are computed as follows:

p̄[GB] = [0.05, 0.95], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.51, 0.49], p̄[GLT ] = [0.5, 0.5], (73)

correctly identifying the status of B and HT, while the status of RP and LT is undetermined. The

non-resilient monitoring system evaluates the pmf’s of B, RP, and LT aspnr[GB] = [0.95, 0.05], pnr[GRP] =

[0.9, 0.1], andpnr[GLT ] = [0.92, 0.08], erroneously assessing them as normal. The measure of resiliency

is
#      »

MR = [0.98,−, 0.7, 0.72]. If only one sensor of LT was captured, the status of all sub-plants would

be ascertained correctly with the pmf’s

p̄[GB] = [0.05, 0.95], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.12, 0.88], p̄[GLT ] = [0.09, 0.91].

If the attack was not coordinated, e.g., physical attack on LT and all sensors of B and RP being captured,

the status of all sub-plants would be assessed correctly with the pmf’s

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09], p̄[GLT ] = [0.09, 0.91].

Scenario 7:Coordinated cyber-physical attack on all sub-plants:All sub-plants are attacked, resulting in

their anomalous operation. All sensors are captured, forcing them to indicate that their status is normal.

Performance:The status of all sub-plants is undetermined with the pmf’s being close to[0.5, 0.5].

The non-resilient monitoring system evaluates erroneously that all sub-plants are normal. The measure

of resiliency is
#      »

MR = [0.76, 0.7, 0.7, 0.72]. If one sensor of HT was not captured, the pmf’s of the

sub-plants would be

p̄[GB] = [0.05, 0.95], p̄[GHT] = [0.1, 0.9], p̄[GRP] = [0.5, 0.5], p̄[GLT ] = [0.5, 0.5],

i.e., B and HT are assessed correctly, while RP and LT are undetermined. If one sensor of HT and one

sensor of LT were not captured, the pmf’s of the sub-plants would be

p̄[GB] = [0.05, 0.95], p̄[GHT] = [0.1, 0.9], p̄[GRP] = [0.12, 0.88], p̄[GLT ] = [0.09, 0.91],

i.e., all are assessed correctly.

C. Discussion

The above results lead to the following conclusions:

• Under all attack scenarios considered,the resilient monitoring system provides no erroneous assessments

(as insinuated by the attacker).
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• As evidenced by Scenarios 1-4,cyber attacks on HT and/or LT are more dangerous than those on

B and RP. This is due to the structure of the conditional probabilitymatrices (67), which permit

inferences from HT and LT to B and RP, but not vice-versa. In other words, cyber-attacking the

terminal nodes of the graph of Figure 2(b) is more dangerous than attacking the initial and/or

intermediate ones.

• As evidenced from Scenarios 3 and 4,coordinated cyber-physical attacks may not be more dangerous

than non-coordinated ones. More important is not the coordination, but the nature of a cyber attack

− involving or not the terminal nodes of the graph.

• As follows from Scenario 7, theminimum number of non-attacked sensors necessary and sufficient

to correctly assess all sub-plants is2: one for HT and one for LT. If these sensors were made

“known secure” [27], the plant assessment would never be compromised.

• In all cases considered,the measure of system resiliency is quite high:from 0.69 (when some

sub-plants status remains undetermined) to close to1 (when all sub-plants status is assessed with

certainty).

IX. CONCLUSION AND FUTURE RESEARCH

This work provides techniques to ensure resiliency and demonstrates that they are adequate for designing

resilient plant monitoring systems. The development is carried out under the assumption that each process

variable may be either normal or anomalous, and a cyber-physical attacker shifts sensor measurements so

as to project misleading information. In this scenario, we develop a decentralized five-layer monitoring

system architecture with knowledge fusion, which, on one hand, alleviates the curse of dimensionality and,

on the other hand, allows for calculating inferences necessary for resiliency. Although the development

is carried out in terms of a power plant, a similar approach can be used for other critical infrastructure

plants, as long as they admit a representation as a set of interrelated sub-plants.

Numerous research problems, however, remain open. These include:

• Problems related to overall architecture:

◦ The decentralized system with knowledge fusion is based on the reduction of a cyclic influence

graph to a tree-graph (see Figure 2). Extending this decomposition to cyclic graphs is important.

The approach may be quite similar to that of the present work,and, in this framework, the effect

of “circular” coupling among process variables could be investigated.

◦ Another important architectural issue is: What are other than decentralization techniques that

can effectively combat the curse of dimensionality in resilient monitoring systems? Perhaps, the
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overlapping decomposition of [28], [29] could be a productive alternative.

• Problems related to data quality acquisition:

◦ Investigating efficacy of the probe-based data quality acquisition technique for attackers other

than those modifying the expected value of sensor measurements.

◦ Improving temporal properties ofDQ acquisition. As shown in Subsection V-D,DQ is acquired

in about5sec. It would be desirable to achieve this an order of magnitude faster. A potential

approach is inferringDQ from the transient, rather than the steady state, response of a process

variable to the probe.

◦ Introducing and investigating other than probe-basedDQ acquisition techniques. Perhaps, this

could be accomplished by considering inference diagrams ofprocess variables and continually

monitoring the level of their satisfaction in the data provided by the sensors.

• Problems related to process variable assessment:

◦ Introducing and investigating different than (12) models of coupling between the sensor data

and process variables. Similarly, investigating different (as compared with the believability (11))

effects ofDQ on process variable assessment.

◦ Introducing and utilizing other than conditional probability-based coupling (see (24)) among the

process variables. This may be based on logical models “if-then”, rather than on quantitative

ones.

◦ In the current work, the sensor data andDQ’s are utilized to assess the process variable pmf’s

(i.e., h-procedure (15), (16)) under the assumption that the state of the sensor network remains

constant. Are there convergent techniques to accomplish this when the state of the sensor

network is non-stationary? If so, the temporal properties of resilient monitoring systems could

be improved substantially.

◦ Investigating monotonicity properties of Dempster-Shafer rule (21). A sufficient condition for

monotonicity is mentioned in Subsection III-C. More general (e.g., necessary and sufficient)

conditions would be beneficial for improving the speed of process variable pmf’s assessment.

• Problems related to sensor network adaptation:

◦ Utilizing other than (43) rational controllers. The goal here is to devise rational controllers with

faster adaptation rates (see [5] where various types of rational controllers are introduced and

analyzed).

◦ Introducing and analyzing other than entropy-based penalty functions. Perhaps, there exists a
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penalty function that would lead to lower uncertainty in process variable assessment than the

entropy.

◦ Investigating a possibility of associating a rational controller with each sensor of the sensor

network. Although this would lead to a non-stationary adaptation environment, it would result,

if convergent, in a substantial improvement of adaptation rates.

• Problems related to knowledge fusion:

◦ Evaluation of the efficacy of knowledge fusion. This would involve the derivation of more

general conditions to quantify, for example, the loss of information due to knowledge fusion

calculations.

◦ At present, just a rudimentary technique has been used at this layer: a “combination” of process

variable pmf’s obtained in different sub-architectures (see Figure 3). It would be of interest to

investigate fusing information measures other than the pmf’s.

• Problems related to plant assessment:

◦ Investigating a possibility of recursive plant assessment. Because recursive application of the

Jeffrey rule may lead to paradoxical result (see Section IV), in the current paper we apply this

rule non-recursively, which slows down the plant pmf assessment. So, modifying this rule or

developing a new one, which would permit a recursive application, is an important problem.

Solutions of these problems will enable designing effective resilient monitoring systems for critical

infrastructures (e.g., power systems, computer networks,civil engineering objects) and complex individual

plants (e.g., aircraft and space structures).
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APPENDIX A

PROOFS

A. Theorem 1

As mentioned in Section III, Part 1 of this theorem is proved in [24]. Below, we prove Part 2. It is based

on the following lemmas:
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Lemma A.1. Consider the recursive procedure(15), (16), (18). Then,

0 ≤ lim
n→∞

hσ(n) ≤ 1, σ ∈ ΣV . (A.1)

Proof: As it follows from (15),

hσ(n) = w0(n)hσ(0) +

n∑

i=1

wi(n)h
∗
σ(si), σ ∈ ΣV ,

w0(n) :=
n∏

i=1

[1− ǫh(i− 1)], wi(n) := ǫh(i− 1)
n−1∏

j=i

[1− ǫh(j)], i = 1, 2, ..., n.

(A.2)

Thus,hσ(n) ≥ 0, ∀n and∀σ. Also, it can be shown that, due to (18),

n∑

i=0

wi(n) = 1, lim
n→∞

w0(n) = 0. (A.3)

Therefore,

lim
n→∞

hσ(n) = lim
n→∞

w0(n)hσ(0) + lim
n→∞

n∑

i=1

wi(n)h
∗
σ(si), σ ∈ ΣV ,

= lim
n→∞

n∑

i=1

wi(n)h
∗
σ(si) ≤ lim

n→∞

n∑

i=1

wi(n),

(A.4)

where the last inequality is due to (16). Finally, in view of (A.3), this inequality becomeslimn→∞ hσ(n) ≤

limn→∞[1− w0(n)] = 1, σ ∈ ΣV .

Lemma A.2. Under the assumptions of Theorem 1, the expected value of theset point,h∗σ(sn), σ ∈ ΣV ,

n ∈ N, is given by

E[h∗σ(sn)] = p[S = σ]DQS +
1−DQS

|ΣV |
, σ ∈ ΣV , n ∈ N. (A.5)

Proof: Follows directly from (16).

Thus, according to this lemma, the expected value ofh∗σ(sn) is independent ofn ∈ N, and can be

denoted asE[h∗σ(sn)] = µh∗

σ
, σ ∈ ΣV .

To formulate the next lemma, introduce the function

f (hσ(n)) :=
1

2
[h∗σ(sn+1)− hσ(n)]

2 , σ ∈ ΣV . (A.6)

Lemma A.3. The unique minimum ofE [f (hσ(n))], σ ∈ ΣV , is attained at

arg min
hσ(n)

E [f (hσ(n))] = µh∗

σ
, σ ∈ ΣV . (A.7)
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Proof: Clearly,E [f (hσ(n))] is differentiable and convex inhσ(n) and, therefore, its unique minimum

is attained at

∂

∂hσ(n)
E [f (hσ(n))] = 0, σ ∈ ΣV . (A.8)

Due to (A.6), this expression becomeshσ(n)−µh∗

σ
= 0, implying that for any fixedn ∈ N, the solution

of the minimization problem ishmin
σ (n) = µh∗

σ
, σ ∈ ΣV .

Proof of Theorem 1, Part 2:The proof is based on showing that for largen, the recursive procedure

(15), (16), (18) solves the aforementioned minimization problem, and, therefore,hσ(n) converges toµh∗

σ
,

σ ∈ ΣV , almost surely.

Sincef (hσ(n)), σ ∈ ΣV , is continuously differentiable and convex, there exists ascalar0 ≤ γ ≤ 1

such that

f (hσ(n + 1)) = f (hσ(n)) + [hσ(n+ 1)− hσ(n)]
∂f

∂hσ(n)

∣
∣
∣
hσ(n)=hσ(n)

+ [hσ(n+1)−hσ(n)]2

2
∂2f

∂h2
σ(n)

∣
∣
∣
hσ(n)=hσ(n)+γ[hσ(n+1)−hσ(n)]

, σ ∈ ΣV .
(A.9)

From (A.6) and (15), (16), we obtain

f (hσ(n+ 1)) = f (hσ(n))− ǫh(n)

[
∂f

∂hσ(n)

]2

+
ǫ2h(n)

2
[h∗σ(sn+1)− hσ(n)]

2, σ ∈ ΣV . (A.10)

Using the summation of both sides of (A.10), we obtain:

f (hσ(n)) = f (hσ(0)) −
n−1∑

n=0

ǫh(n)

[
∂f

∂hσ(n)

]2

+
n−1∑

n=0

ǫ2h(n)

2
[h∗σ(sn+1)− hσ(n)]

2, σ ∈ ΣV . (A.11)

Now, consider the limit of (A.11) asn → ∞. Sincehσ(n) is bounded for alln (see Lemma A.1),

the left hand side of the above equation is a finite positive number. Due to the same reason, the term

[h∗σ(sn+1)−hσ(n)]
2 is bounded for alln, implying that there exists a positiveM , such that[h∗σ(sn+1)−

hσ(n)]
2 ≤ M , ∀n. Thus,

lim
n→∞

f (hσ(n)) ≤ f (hσ(0))− lim
n→∞

n−1∑

n=0

ǫh(n)

[
∂f

∂hσ(n)

]2

+
M

2
lim
n→∞

n−1∑

n=0

ǫ2h(n), σ ∈ ΣV . (A.12)

Observe that since
∑∞

n=0 ǫ
2
h(n) < ∞, the last term in the right hand side of (A.12) is bounded. Now,

suppose ∂f
∂hσ(n)

does not go to0 asn tends to∞. Then the expression
∑∞

n=0 ǫh(n)
[

∂f
∂hσ(n)

]2
is unbounded

(due to
∑∞

n=0 ǫh(n) = ∞) and the right hand side of (A.12) becomes−∞. This is a contradiction, since

the left hand side is positive and bounded. Therefore,∂f
∂hσ(n)

→ 0 asn → ∞ almost surely (a.s.).

From the above arguments,E
[

∂f
∂hσ(n)

]

→ 0 asn → ∞. Furthermore, due to the linearity of expectation,

∂
∂hσ(n)

E[f(hσ(n))] → 0 asn → ∞, implying that the condition (A.8) is satisfied. Therefore,from Lemma

A.3, it is clear thatlimn→∞ hσ(n) = µh∗

σ
, σ ∈ ΣV , a.s. Finally, using Lemma A.2, we conclude that

limn→∞ hσ(n) = p[S = σ]DQS + 1−DQS

|ΣV | , σ ∈ ΣV , a.s.
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B. Proof of Theorem 2

Sincehσ(n) is convergent a.s., for everyǫ, there existsn0(ǫ), such thatP
[
|hNV

(n)− hssNV
| < ǫ

]
> 1−ǫ,

∀n > n0(ǫ). Therefore, for sufficiently largen, equation (41) can be rewritten as

kNG
(n+ 1) = F (kNG

(n)) +O(ǫ), (A.13)

where

F (kNG
(n)) :=

[
ahssNV

akNG
(n) + [1− a][1− kNG

(n)]
+

[1− a][1− hssNV
]

[1− a]kNG
(n) + a[1− kNG

(n)]

]

kNG
(n), (A.14)

andO(ǫ) represents terms of orderǫ. Omitting these terms, equation (A.13) is approximated as

kNG
(n+ 1) = F (kNG

(n)) . (A.15)

It can be shown that the system (A.15) has three equilibria,

k∗NG
= 1, k∗∗NG

= 0, k∗∗∗NG
=

hssNV
− a

1− 2a
. (A.16)

Based on the perturbation theory [30], forǫ sufficiently small, stability properties of (A.15) are the same

as (A.13). To analyze stability, consider the Jacobians ofF ( ·) at each equilibrium:

A1 = ∂F
∂kNG

∣
∣
∣
k∗

NG

=
[1−a]2+[2a−1]hss

NV

a[1−a] , A2 =
∂F

∂kNG

∣
∣
∣
k∗∗

NG

=
a2+[1−2a]hss

NV

a[1−a] ,

A3 = ∂F
∂kNG

∣
∣
∣
k∗∗∗

NG

= a[1−a]
hss
NV

[1−hss
NV

] .
(A.17)

SupposehssNV
> 1 − a. Since0 < a < 0.5, we haveA1 < 1, A2 > 1, andA3 > 1, implying that

k∗NG
is asymptotically stable, whilek∗∗NG

andk∗∗∗NG
are not. Therefore,kNG

(n) converges locally tok∗NG

asn → ∞, which proves Part 1 of the theorem. Parts 2 and 3 can be provedsimilarly.

C. Theorem 3

The proof of this theorem is based on the following five lemmas.

Lemma A.4. Let p̂xI
[V1], xI ∈ XI, be the pmf ofV1, calculated as mentioned in Subsection VI-D, and

p̂xI
[V2] be the pmf ofV2, calculated using total probability formula:

p̂xI
[V2] =

∑

σ1∈Σ1

P [V2|V1 = σ1]p̂xI
[V1 = σ1], xI ∈ XI, (A.18)

whereΣ1 andP [V2|V1] are specified by(54) and (55), respectively. Then,

I {p̂xI
[V2]} =

I {p̂xI
[V1]}+ 1

2
, xI ∈ XI, (A.19)

whereI{ ·} is the entropy.
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Proof: Due to the structure ofP [V2|V1], equation (A.18) can be expressed asp̂xI
[V2 = N2] =

p̂xI
[V2 = A21] =

1
2 p̂xI

[V1 = N1] and p̂xI
[V2 = A22] = p̂xI

[V2 = A23] =
1
2 p̂xI

[V1 = A1]. Consequently,

the entropy ofp̂xI
[V1] can be evaluated as

I {p̂xI
[V1]} = −

∑

σ2∈Σ2

p̂xI
[V2 = σ2] log2 p̂xI

[V2 = σ2]− 1, (A.20)

whereΣ2 is defined in (54). Then, applying the change of base formula,loga x = logb x
logb a

, the right hand

side (RHS) of (A.20) becomesI {p̂xI
[V2]} log2 4− 1 = 2I {p̂xI

[V2]} − 1.

Lemma A.5. Let p̂x[V1, V2], x ∈ X, be the joint pmf ofV1 andV2, calculated as mentioned in Subsection

VI-D, and p̂x[V2] be the pmf ofV2, obtained by marginalizinĝpx[V1, V2]. Then,

I {p̂x[V2]} =
3

2
I {p̂x[V1, V2]} , x ∈ X. (A.21)

Proof: The proof of this lemma is similar to that of Lemma A.4.

Sincep̂x∗[V1, V2] andp̂x∗

I
[V1] have the smallest entropies in the state space of their respective networks

(see (59) and (63)), Lemmas A.4 and A.5 indicate that the centralized and the decentralized rational

controllers adapt in such a manner that the entropy of the pmfof V2 is minimized.

Lemma A.6. Assume that̂pxI
[V2] and p̂xII

[V2], xI ∈ XI, xII ∈ XII, are DS-monotonic and̂p(xI,xII)[V2]

is their concatenation using Dempster-Shafer rule. Then,

dI
{
p̂(xI,xII)[V2]

}

dI {p̂xI
[V2]}

> 0 and
dI

{
p̂(xI,xII)[V2]

}

dI {p̂xII
[V2]}

> 0. (A.22)

Proof: Introduce notations:̂pxI
[V2] = [p1, p2, p3, p4] and p̂xII

[V2] = [q1, q2, q3, q4]. Without loss of

generality, assume thatmax{p1, p2, p3, p4} = p1 andmax{q1, q2, q3, q4} = q1. The entropy of̂pxI
[V2] is

I {p̂xI
[V2]} = −

4∑

i=1

pi log4 pi. (A.23)

The differential ofI {p̂xI
[V2]} is

dI {p̂xI
[V2]} =

4∑

i=1

∂

∂pi
I {p̂xI

[V2]} dpi, (A.24)

where, due to the constraint,p1 + p2 + p3 + p4 = 1,
4∑

i=1

dpi = 0. (A.25)

Using (A.25), equation (A.24) can be re-written as follows:

dI {p̂xI
[V2]} =

3∑

i=1

[
∂

∂pi
−

∂

∂p4

]

I {p̂xI
[V2]} dpi. (A.26)
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Since, as it follows from (A.23), the partial derivative,∂
∂pi

I {p̂xI
[V2]} = −1− log4 pi, i = 1, 2, 3, 4. From

(A.26), we obtain the following differential for the denominator of the first expression of (A.22):

dI {p̂xI
[V2]} =

3∑

i=1

[

log4
p4

pi

]

dpi. (A.27)

In a similar manner, it can be shown that the numerator of thisexpression is given by:

dI
{
p̂(xI,xII)[V2]

}

=

3∑

i=1

[(
Dq4 − p4q

2
4

D2

)(

1 + log4
p4q4

D

)

−

(
Dqi − piq

2
i

D2

)(

1 + log4
piqi

D

)]

dpi,
(A.28)

where

D =

4∑

i=1

piqi. (A.29)

Suppose,dp1 > 0 anddp2 = dp3 = 0. Then, the RHS of (A.27) becomes
[

log4
p4

p1

]

dp1, implying that

dI {p̂xI
[V2]} < 0. Using (A.28), it can also be shown thatdI

{
p̂(xI,xII)[V2]

}
< 0. Moreover, in all other

situations wheredI {p̂xI
[V2]} is less than zero (for instance, whendp1 > 0, dp2 > 0, dp3 = 0, p2 > p4,

and q2 > q4), it can be shown thatdI
{
p̂(xI,xII)[V2]

}
is less than zero as well. These arguments imply

that
dI{p̂(xI,xII)

[V2]}
dI{p̂xI

[V2]}
> 0.

The second expression in (A.22) can be proved in a similar manner.

Lemma A.7. Let xk be a state inXk, k = I, II, with all active sensors being captured. Let the pmf

p̂xk
[V2], k = I, II, be computed as mentioned before. Finally, letǫ << 1 be the parameter involved in

the data quality exponent(9), (10). Then,I {p̂xk
[V2]} = 1− δ(ǫ), δ(ǫ) → 0 as ǫ → 0, k = I, II.

Proof: We prove this lemma for the statexI ∈ XI. The proof forxII ∈ XII is similar.

Suppose,xI = (10)I. Let the pmf of the corresponding active sensor, namely,S11, be p[S11] =
[

pS11

LB
, pS11

NB

]

. Since this sensor is captured, its data quality is assignedasDQS11
= ǫ based on the d.c.

gain model (3) and the procedure described in Section II. In this situation, the pmf̂pxI
[V1], calculated

using the h-procedure, is as follows (see (15),(16)):

p̂xI
[V1] =

[

pS11

LB
ǫ+

1− ǫ

2
, pS11

NB
ǫ+

1− ǫ

2

]

. (A.30)

The entropy ofp̂xI
[V1] is

I {p̂xI
[V1]} = −a1(ǫ) log2 a1(ǫ)− a2(ǫ) log2 a2(ǫ), (A.31)
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where

a1(ǫ) := pS11

LB
ǫ+ 1−ǫ

2 ,

a2(ǫ) := pS11

NB
ǫ+ 1−ǫ

2 .
(A.32)

Taking into account (A.31) and using Lemma A.4, we have

I {p̂xI
[V2]} =

1

2
[1− a1(ǫ) log2 a1(ǫ)− a2(ǫ) log2 a2(ǫ)] . (A.33)

As it follows from (A.32), the expression−a1(ǫ) log2 a1(ǫ)− a2(ǫ) log2 a2(ǫ) → 1 as ǫ → 0.

Differentiating both sides of (A.33) with respect toǫ, we obtain

d

dǫ
I {p̂xI

[V2]} =

(

pS11

LB
−

1

2

)

log2
a2(ǫ)

a1(ǫ)
. (A.34)

It follows from (A.32) and (A.34) thatd
dǫ
I {p̂xI

[V2]} ≤ 0, and the equality is attained whenpS11

LB
= 1

2 . In

other words, the entropy of̂pxI
[V2] is a decreasing function ofǫ.

Equation (A.33) can be re-expressed as

I {p̂xI
[V2]} = 1 +

−1− a1(ǫ) log2 a1(ǫ)− a2(ǫ) log2 a2(ǫ)

2
. (A.35)

Denote 1+a1(ǫ) log2 a1(ǫ)+a2(ǫ) log2 a2(ǫ)
2 asδ(ǫ). It is seen thatδ(ǫ) → 0 as ǫ → 0.

Similarly, if xI is either(01)I or (11)I, it can be shown thatI {p̂xI
[V2]} is equal to1 − δ(ǫ), where

δ(ǫ) → 0 as ǫ → 0.

Lemma A.8. Let the pmf’sp̂x∗

I
[V2] and p̂x∗

II
[V2] be DS-monotonic and max-similar. Further, letxI and

xII be states inXI andXII, respectively, with their corresponding active sensors being captured. Then,

the following is satisfied:

I
{
p̂(x∗

I ,x
∗

II)
[V2]

}
< min

[
I
{
p̂(x∗

I ,xII)[V2]
}
, I

{
p̂(xI,x

∗

II)
[V2]

}
, I

{
p̂(xI,xII)[V2]

}]
. (A.36)

Proof: If the active sensors corresponding toxII are captured, it follows from Lemma A.7 that

p̂xII
[V2] =

[
1
4 + δ1(ǫ),

1
4 + δ2(ǫ),

1
4 + δ3(ǫ),

1
4 + δ4(ǫ)

]
, where ǫ is the parameter involved in theDQ

exponent (9), (10), andδi(ǫ) → 0 as ǫ → 0, i = 1, 2, 3, 4. Further, let p̂x∗

I
[V2] be expressed as

[p1, p2, p3, p4], where
4∑

i=1

pi = 1. Consequently, the entropy of the pmfp̂(x∗

I ,xII)[V2], which is obtained

by concatenatinĝpx∗

I
[V2] and p̂xII

[V2] using, as before, Dempster-Shafer rule, can be shown to havethe

following property:

I
{
p̂(x∗

I ,xII)[V2]
}
= [1− δa(ǫ)] I

{
p̂x∗

I
[V2]

}
+ δb(ǫ), (A.37)
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where

δa(ǫ) :=
D(ǫ)− 1

4

D(ǫ) ,

δb(ǫ) := −
4∑

i=1

δi(ǫ)pi
D(ǫ)

log4 pi −
4∑

i=1

pi
[
1
4 + δi(ǫ)

]

D(ǫ)
log4

1
4 + δi(ǫ)

D(ǫ)
,

D(ǫ) :=
4∑

i=1

pi

[
1

4
+ δi(ǫ)

]

.

(A.38)

From (A.38), observe thatδa(ǫ) → 0 andδb(ǫ) → 0 as ǫ → 0. Using (A.37), the difference between the

entropies,I
{
p̂(x∗

I ,xII)[V2]
}

andI
{
p̂(x∗

I ,x
∗

II)
[V2]

}
, can be expressed as

I
{
p̂(x∗

I ,xII)[V2]
}
− I

{
p̂(x∗

I ,x
∗

II)
[V2]

}
= [1− δa(ǫ)] I

{
p̂x∗

I
[V2]

}
− I

{
p̂(x∗

I ,x
∗

II)
[V2]

}
+ δb(ǫ). (A.39)

Since the pmf’sp̂x∗

I
[V2] and p̂x∗

II
[V2] are DS-monotonic, andǫ is chosen arbitrarily small, the RHS of

(A.39) is greater than zero. This implies thatI
{
p̂(x∗

I ,x
∗

II)
[V2]

}
< I

{
p̂(x∗

I ,xII)[V2]
}

.

Using the above approach and Lemma A.7, it can also be shown thatI
{
p̂(x∗

I ,x
∗

II)
[V2]

}
< I

{
p̂(x1,x∗

II)
[V2]

}

andI
{
p̂(x∗

I ,x
∗

II)
[V2]

}
< I

{
p̂(x1,x2)[V2]

}
.

Proof of Theorem 3: In this proof, we address the case ofV2; the proof forV1 is similar.

As mentioned in Subsection VI-D,argminxI∈XI
I{p̂xI

[V1]} = x∗I , argminxII∈XII
I{p̂xII

[V2]} = x∗II,

and argminx∈X I{p̂x[V1, V2]} = x∗. The objective here is to show thatx∗ is the concatenation ofx∗I

andx∗II, i.e., (x∗I , x
∗
II).

Using Lemma A.4 and the assumption that the pmf’sp̂(x∗

I ,(00)II)
[V2] andp̂((00)I,x∗

II)
[V2] are DS-monotonic,

I
{
p̂(x∗

I ,x
∗

II)
[V2]

}
< I

{
p̂(xI,(00)II)[V2]

}
, ∀xI ∈ XI,

I
{
p̂(x∗

I ,x
∗

II)
[V2]

}
< I

{
p̂((00)I,xII)[V2]

}
, ∀xII ∈ XII.

(A.40)

Clearly, from Lemma A.5, the minimizerx∗ belongs to the set{{XI \ (00)I} × {XII \ (00)II}} (where

\ is the relative complement and× is the Cartesian product).

Now, we investigate whetherx∗ is, indeed,(x∗I , x
∗
II) in the following two cases:

• For arbitraryxI and xII, let the pmf’s p̂(xI,(00)II)[V2] and p̂((00)I,xII)[V2] be DS-monotonic. Using

Lemma A.6, it can be shown thatI
{
p̂(x∗

I ,x
∗

II)
[V2]

}
< I

{
p̂(xI,xII)[V2]

}
.

• Let p̂(xI,(00)II)[V2] and p̂((00)I,xII)[V2] be non-DS-monotonic due to all active sensors of either or

both xI andxII being captured. Then, it can be shown using Lemma A.8 thatI
{
p̂(x∗

I ,x
∗

II)
[V2]

}
<

I
{
p̂(xI,xII)[V2]

}
.

Thus, these two arguments prove thatx∗ = (x∗I , x
∗
II).
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APPENDIX B

PARAMETERS OF POWER PLANT AND MONITORING SYSTEM

This appendix provides parameters of the power plant and monitoring system that have been used in

simulations reported in Subsection VIII-B.

A. Sub-plants, process variables, and sensors

1) Statistical models of the sub-plants:As mentioned in Subsection VIII-A, these models are defined

by conditional probabilities of process variables given the status of a sub-plantGi ∈ {NGi
,AGi

}, i ∈

{B,HT,RP,LT}. Accordingly, we quantify these models as follows:

• Boiler: P [V1 = NV1
|GB = NGB

] = P [V1 = LV1
|GB = AGB

] = 0.95; all other elements of this pmf

are0.05.

• High pressure turbine:P [V2 ∈ {L(1)V2
,NV2

}|GHT = NGHT
] = P [V2 ∈ {VLV2

,L(2)V2
}|GHT =

AGHT
] = 0.90; all other elements are0.1.

• Reheat pipe:P [V3 ∈ {L(1)V3
,NV3

}|GRP = NGRP
] = 0.88, P [V3 ∈ {VLV3

,L(2)V3
}|GRP = AGRP

] =

0.91, P [V3 ∈ {VLV3
,L(2)V3

}|GRP = NGRP
] = 0.12, andP [V3 ∈ {L(1)V3

,NV3
}|GRP = AGRP

] = 0.09.

• Low pressure turbine:P [V4 ∈ {VL(1)V4
,L(1)V4

,M(1)V4
,NV4

}|GLT = NGLT
] = 0.91, P [V4 ∈ {VL(2)V4

,

L(2)V4
,M(2)V4

,HV4
}|GLT = AGLT

] = 0.92, P [V4 ∈ {VL(2)V4
,L(2)V4

,M(2)V4
,HV4

}|GLT = NGLT
] =

0.09, andP [V4 ∈ {VL(1)V4
,L(1)V4

,M(1)V4
,NV4

}|GLT = AGLT
] = 0.08.

2) Models of process variables and sensors:The values of the parameters introduced here are not

intended to represent exact physical quantities but, rather, to illustrate the techniques developed in this

work.

The domains of the process variables and their d.c. gains (defined in Assumption 1) are specified in

Table I.

Without loss of generality, we assume that the process variables and the sensor measurements are

Gaussian random variables,Ṽi ∼ N
(

µṼi
, σṼi

)

and S̃ij ∼ N
(

µS̃ij
, σS̃ij

)

, i = 1, 2, 3, 4, j = 1, 2, where

the expected values,µṼi
andµS̃ij

, are specified in Tables II and III, respectively, for all attack scenarios

considered in Section VIII. Regarding the standard deviations of Ṽi and S̃ij, we assume that they are

small enough so that the realizations of these random variables outside of the domains given in Table I

may be ignored. Specifically, they are selected asσṼi
= σS̃ij

= 0.01, i = 1, 2, 3, 4, j = 1, 2.

B. Parameters of monitoring system
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TABLE I: Domains and d.c. gains of process variables

Process variables Domains (see Assumption 1) Values ofR’s (see (2)) d.c. gains (see (3))

Ṽ1 [5, 100] R1 = 50 αL

V1
= 2, αN

V1
= 2.2.

Ṽ2 [5, 25] R1 = 10, R2 = 15, R3 = 20
αVL

V2
= 0.5, αL1

V2
= 0.6,

α
L2
V2

= 0.7, αN

V2
= 0.8.

Ṽ3 [5, 100] R1 = 20, R2 = 40, R3 = 50
αVL

V3
= 0.6, α

L(1)
V3

= 0.72,

α
L(2)
V3

= 0.9, αN

V3
= 1.2.

Ṽ4 [0.1, 20]

R1 = 3, R2 = 6, α
VL(1)
V4

= 0.4, α
VL(2)
V4

= 0.42,

R3 = 9, R4 = 11, α
L(1)
V4

= 0.46, α
L(2)
V4

= 0.48,

R5 = 13, R6 = 15, α
M(1)
V4

= 0.53, α
M(2)
V4

= 0.56,

R7 = 17. αN

V4
= 0.6, αH

V4
= 0.63.

TABLE II: Expected values of process variables

Attack scenario µ
Ṽ1

µ
Ṽ2

µ
Ṽ3

µ
Ṽ4

1 80 23 75 16

2 80 23 75 16

3 80 23 44 12.1

4 80 18 76 16

5 30 12 23 10

6 30 12 15 5

7 20 7 10 5

TABLE III: Expected values of sensor measurements

Attack scenario µ
S̃11

µ
S̃12

µ
S̃21

µ
S̃22

µ
S̃31

µ
S̃32

µ
S̃41

µ
S̃42

1 31 30 22 24 74 74.1 15.8 16.1

2 81 79 22 24 74 74.1 19.2 19.1

3 81 79 22 24 74 74.1 12.2 12.1

4 81 79 22 24 74 74.1 16.1 16.2

5 81 79 12.1 12.2 23 24 16.1 16.2

6 81 79 12.1 12.2 76 75 16.1 16.2

7 81 79 23 22 76 75 16.1 16.2
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1) Data quality assessment layer:

• The amplitudes of the probing signals (6) are selected as follows:AV1
= 2, AV2

= 0.6, AV3
= 0.7,

andAV4
= 0.3.

• The parameterǫ, involved in (10), is selected as0.02.

• ThePICmax in (10) for the sensors of B, HT, RP, and LT are0.4, 0.06, 0.08, 0.03, respectively.

2) Process variables assessment layer:

• The step size of the h-procedure (15) is selected asǫh = 0.01.

• The stopping rule is defined by|hσ(n + 1)− hσ(n)| < 10−4.

3) Adaptation layer:The parameters involved in (43) are selected as follows:

• The level of rationality of the rational controller is selected asN = 2.

• The maximum residence time is selected asTmax = 1sec.

• The parameterβ is chosen as0.04.
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