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Resilient Plant Monitoring Systems: Techniques,
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Abstract

Resilient plant monitoring systems are sensor networksdsgrade gracefully under malicious attacks on
their sensors, causing them to project misleading infaonafhis paper develops techniques to ensure
resiliency and illustrates their application using a popkant. Specific techniques developed are: active
data quality acquisition, process variable and plant d@massessments, sensor network adaptation, and
plant decomposition with knowledge fusion. Based on theshrtiques, a five-layer resilient monitoring
architecture is proposed and analyzed under various gygsical attack scenarios. As quantified by
Kullback-Leibler divergence, in all scenarios considenb@ system offers effective protection against

misleading information and identifies the plant conditiem®rmal or anomalous - in a reliable manner.

. INTRODUCTION

Plant monitoring systems is a relatively new area of corfttrebretic research. In this section, we briefly
characterize these systems (with emphasis on resilienl@gcribe a specific scenario addressed, and

outline the main techniques developed in this work.

A. What is a resilient plant monitoring system?

Plant monitoring systemare wired or wireless sensor networks intended to measuweeps variables
(e.g., temperature, pressure, flow rates, etc.), analyra,tand inform the plant operator about the plant
conditions — normal or anomalous. Based on this information, the operaices corrective actions,
if needed. When some of the sensors are captured by an attémieng them to project misleading

information (possibly, statistically unrelated to theuwsdtvalues of process variables), the identified plant
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conditions could be erroneous. This may lead to wrong ast@nthe part of the operator and, possibly,
a disaster. To prevent this situation, the monitoring syisteust possess a capability of autonomously
identifying the attacked sensors and mitigating theiraftey discounting or disregarding completely the
data they project). Although the loss of sensors may leadketyradationof plant condition assessment,
in a well-designed system this degradation should be “ptapw@l” to the severity of the attack, i.e.,
graceful Plant monitoring systems that possess such a propertyegad to asesilient

This paper is devoted to developing techniques that can éeé wsensure resiliency, analyzing their
properties and, on this basis, designing and evaluatingehnf®rmance of a resilient monitoring system.
A specific application, in terms of which the developmentasried out, is a simplified model of gower

plant, although a similar approach can be used for other appicaitas well.

B. Scenario and problem addressed

Briefly, the scenario considered in this paper is as follows:

« The monitored plant process variablds;, i = 1,..., M, are characterized by probability density
functions (pdf’s) fy; (v;), ¢ = 1,..., M. In practice, thestatus of the process variables is often
characterized as being Normal (N) or Anomalous (A). Thestatiould be, for instance, Low (L)
or High (H). In this casefy; (v;) induces a random event with the outcomes{ln,,, Ny;, Hy; },

1 =1,..., M. With a slight abuse of terminology, we refer to this evemnidaimilar events throughout
this paper) as a discrete random variabg,: = 1,...M, with the probability mass function (pmf),
p[Vi], defined on the universal s&, = {Ly,,Ny,,Hy. },i=1,..., M.

« The plant,G, is also characterized by its status, which is a discretéaarvariable(, with the pmf
p|G|] defined by the pmf’s of process variables and taking valueEen= {N¢g, A¢}, whereNg
and A denote the normal and anomalous plant statuses, respgcbepending on the plant, the
anomalous status can be further characterized by specdinaies, e.g., boiler insulation damaged,
turbine malfunctioning, etc. In each status, plant dynamitay be different, e.g., described by
different transfer functions.

« Each process variabld/;, is monitored by a sensd8; (multiple sensors of a process variable are
also considered in the sequel). If a sensor is under atteckrojected data may have a pdf, (5;),
statistically unrelated tgfy; (¢;). In this situation, utilizing the sensor data in order toesssthe
process variable may lead to a pmfV;], qualitatively different fromp[V;]. For instancep[V;] may
indicate that the process variable is Normal, while in tgdtiis Low or High.

« The plant status assessment is based on the process vasabksmentg[V;]|, and is quantified by



a pmf denoted ag|G], G € {Ng, Ag}. Since, as indicated above, the process variable assetssmen
may be erroneoug[G] may be quite different from the actug|G] and, thus, lead to erroneous

actions by the plant operator.

In this scenario, theptimal resilient monitoring system must be able to identify theusteof the
plant, G, in such a manner that the “distance” between the estimatddtlae actual pmf'sp[G] and
p|G], is minimized, as quantified by an appropriate measure t¢amii® between the two pmf's. While
this paper is not intended to solve this problem, here wegdesiplant monitoring system that degrades
gracefully under an attack (i.e., is resilient), and dentras that itperforms favorably in comparison with

a non-resilient ondas quantified by a measure of resiliency based onKilithack-Leibler divergence

[1])-

C. Contributions of this work: Techniques developed andiea$ monitoring system designed

The main techniques developed in this work are as follows:

« The “trustworthiness” of a sensor is quantified by a paranreferred to aslata quality(DQ), which
takes values oif0, 1], with 1 indicating that the sensor is totally trustworthy ahaot trustworthy
at all. To identify D@, we develop aractive data quality acquisition procedyreshereby probing
signals are applied to process variables, and the levelsafgdeement between the anticipated and
the actual response of the sensors is used to quantify fh@is.

« The estimates of process variables pmp§y;], ¢ = 1,..., M, are calculated based on the data
projected by the sensors and théi)'s. Since DQ is not a statistical quantity, classical statistics
cannot be used for this purpose. Therefore, we introducedehud the DQ’s effect on the coupling
between sensors data and process variables and, usingatied, rdevelop the so-callédprocedure
(which is a modified stochastic approximation algorithm).[Znalyzing this procedure, we show
that it converges to a steady state defined bytig's. Specifically, if DQ = 1, it converges to the
actual process variable pmf; d3() tends to0, the steady state of the h-procedure converges to a
uniform pmf, implying that in this limit the sensor measumts carry no information at all. For
all other DQ’s, the conditional pmf ofl; given the sensor data is an affine function/af). When
multiple sensors monitor a process variable, Dr@mpster-Shafer rulg3] is used to combine the
steady states of the h-procedures associated with eacbrsens

« The estimate of the plant status pnflGG], is calculated based on the statistical plant model

(typically given as a set of conditional pmfB[V;|G], i = 1,..., M, or a joint conditional pmf



P[4, Vs, ..., Vir|G]), the estimates of the process variables pm#d/], i = 1,...,M, and the
Jeffrey rule[4].

The above assessments are carried out at each state of gm setwork, where the state is a
vector of I's and 0's, with 1 indicating that the corresponding sensor is taken into @uicéor
process variable assessment d@nthat it is not. The quality of each state is quantified by the
entropy (i.e., the level of uncertainty) of eithgiG] or p[V;]. The adaptation of the sensor network
to the optimal state, i.e., the state with the smallest egtris carried out using the so-calleational
controllers [5], which are decision making devices that reside mostlgtates, where the penalty
function (i.e., entropy) is minimized.

As mentioned above, the adaptation can be carried out uséngritropy of eithep[G] or p[V;]. The
former, which we refer to asentralized suffers from the curse of dimensionality: the adaptation
time grows exponentially with the number of sensors in thevagk. To combat this problem, a
decentralizedsystem, with adaptation based pfV;], could be used. In the case of a power plant,
this decentralized system is comprisedsob-plants e.g., boiler, turbine, reheat pipe, etc. Such a
decomposition, however, impedes the derivation of infeesnamong the sub-plants, which, as it
turns out, are important to ensure resiliency. Therefoedevelop a decentralized system based on
plantdecomposition with knowledge fusiand show that it leads to both mitigation of the curse of

dimensionality and derivation of the above mentioned &riees.

Using these techniques, we design a resilient plant mang@ystem consisting of the following five

layers: data quality acquisition, process variable agsest adaptation, knowledge fusion, and sub-plant

assessment. The subsequent sections describe in dethilsfethe developed techniques, along with the

overall architecture and performance evaluation of theltieg monitoring system.

D. Related literature

The literature related to the topic of this paper can be ifladsnto four groups. The first one is devoted to

foundational issues, where the problems of resilient nooimi¢) and control are motivated and formulated

[6]-[10]. The second group includes publications on cdritieoretic methods for attack identification

and alleviation, [11]-[13]. In these publications, thehaus consider LTI systems with a given state

space realizatiofA, B, C, D) and disturbances interpreted as attack vectors. The pnoatklressed is

to identify the attack and, if possible, mitigate its effefur instance, by designing a controller that

makes the closed-loop system invariant with respect to tbirthance-attack. The main difference of

the current work is that the plant may be either normal or alouos (i.e., described by several state



space realizations), and the problem is to identify whidmnpktatus indeed takes place, in spite of the
misleading information projected by the sensors.

The third group consists of publications on fault toleraontcol, [14]-[16]. In these works, it is
assumed that a closed-loop system has multiple sensorscamat@as, some of which could be faulty
due to natural or malicious causes. The typical problem Iste determine the conditions (e.g., the
number of sensors and actuators) under which the closguslgstem performance is maintained without
degradation. The difference of the current work is thati@lgh multiple sensors may be present, the
goal is to determine the status of the plant and, if othenwvigaossible, tolerate degradation.

The fourth group consists of research on monitoring compatiin channels in order to capture
anomalous traffic and correlate it with a possible attack]{fL9]. In terms of the current work,
this implies the identification of0(). The main tools used here are hypothesis testing and dhspter
technigques. While the results of [17]-[19] may be useful fesilient plant monitoring, they do not
provide methods for process variable and plant conditi@ssment pursued in the current work.

Our preliminary results on resilient monitoring systemsehbeen reported in conference presentations
[20]-[23] and summarized in article [24]. In the current papalong with reviewing and extending
some of these results, we introduce and investigate a datizatt monitoring system based on plant
decomposition with knowledge fusion, as a means for combdkie curse of dimensionality that mars the
performance of the system developed in [20]-[24]. While deeomposition of the plant into sub-plants
induces a sensor network decomposition into sub-netwalesjating thereby the curse of dimensionality,
the subsequent knowledge fusion allows for recoveringé@mfees, which are necessary for resiliency. The
implementation of this approach necessitates developsanaor network adaptation technique based on
process variable assessmeit§;], calculating inter- and intra-sub-plant inferences, aedighing and
investigating the efficacy of a five-layer resilient moningr system. These developments are described

in the current paper, along with an application to monitgransimplified model of a power plant.

E. Paper outline

The remainder of this paper is structured as follows: Sadli@ddresses the issue of active data quality
acquisition. In Section Ill, the h-procedure and assodigé¢ehniques for process variable assessment are
described. Section IV is devoted to plant pmf assessmerm.sEmsor network adaptation is discussed
in Section V, where a practical consequence of the cursemémsionality is quantified. An approach
to combatting the curse of dimensionality based on a deslezed system with knowledge fusion is

developed in Section VI. The resulting five-layer monitgrisystem architecture is presented in Section



VII. An application to a power plant is discussed and inggted by simulations in Section VIII. Finally,
the conclusions and directions for future work are givenagt®n IX. All proofs and the parameters of

the power plant model are included in the Appendices.

Il. ACTIVE DATA QUALITY ACQUISITION

In this section, we describe an approachl1@ evaluation briefly mentioned in Subsection I-C.

Consider sensds intended to monitor process variale and assume that the following holds:

Assumption 1. (i) Process variabld/ is quantified by a continuous random variabletaking values
in the domainV ¢ [Vinin, Vinax); its pdf, f (), is unknown.
(i) The random variabld’ induces a discrete random variabife which describes the status f and

takes values on
Yy ={Ly,Ny,Hy} 1)

with the pmf given by
R, Rq Vinax

W =tl= [ @ v =N = [ g v =m= [T p@a. @
where R; and Ry, are known and/j,in < Ry < Re < Vinax (Vs with outcomes other than Low,
Normal, and High can be introduced similarly). Singg() is unknown, the pmf ofi” is also
unknown.

(i) The d.c. gain,ay, of V with respect to its control inpulJv (e.g., fuel valve of the boiler), depends
on the status oWV, i.e., whether it is Low, Normal, or High. This is formalizéyy assuming that

o is a priori known piecewise constant function of the expeatelue ofV (denoted aguy):

al{,, if 115 € [Vinin, R1)
ay = 9ok, if uy € [R1, Ry) 3)
oAb, if pp € [Ro, Vinaxl-
In the case of other than L, N, and H anomalies; is introduced similarly. (Note that we use
here the d.c. gain, rather than the full transfer functionpider to require as little information
about the plant as possible. Also, various other dependsméiny on 1, can be considered; for

instancey could be assumed to be a piecewise linear functiopgfexpression (3) is used here

for simplicity.)



(iv) The data projected by sens8ris quantified by a continuous random variabletaking values on
S € [Vinin, Vimax); its pdf, f3(3), can be evaluated using the classical statistical methoatsed on

the sensor measurements).

(v) The random variablé induces a discrete random varialletaking values on

¥s =Xy ={Ly,Ny,Hy} (4)

with the pmf given by
R, Ro Vimax
s =Lvl= [ fs@ds s =Nl = [y s, pls =y = /R s ©)
where R, and R, are the same as in (2). Sin¢g(5) may be viewed as known, the pmf 6fis
known as well.

(vi) If S is not attacked.g = puy;, Wherepug is the expected value . If S is under attacky g # py
and the pmf’s ofS and V' may be qualitatively different; for instanc?;éaxuép[s = o] may be
achieved atly,, while ;Iel%)ép[v = o] at Ny. (The expressionug # ug; can be viewed as a
definition of the attacker; other types of attackers can besicered as well.)

Under Assumption 1, the active data quality acquisitionagied out as follows: Introduce a probing
signal using the control inputy,. Any type of deterministic or random probing signals couéused.
Here, we use the simplest probe a rectangular pulse with amplitudéy, and durationT’, applied at

the time instant, i.e.,

uvy (t) = Ayrect, (t — to). (6)

The value ofAy is selected sufficiently small so thdt, << min{[Viin, R1], [R1, Ra2], [R2, Vinax]}- The
value of T is selected so that reaches a small vicinity of its steady state defined by théero

If the sensor is not under attack, i.e.g = p, the following takes place:

!/

Hy —pg = Avav(ug), (7)

Whereug is the expected value & after the probe andy is the d.c. gain defined in (3). If the sensor
is attacked, (7) does not hold. In order to quantify the dgvef the attack, introduce the notion of

probing inconsistencyPICg) defined by:

PICs := |(y — pg) — Avay (Mg)‘ : (8)



Clearly PICs = 0 implies that the sensor is not attackdel,Cs > 0 indicates an attack and its severity.

Given thisPICs, the D@ of sensorS is defined as:
DQs = e F(P10s), ©)

where F'(-) is a strictly increasing function aPICs with F'(0) = 0. Note that if F'(PICs) grows too
fast, thenD(Q will be small even for relatively smalPICg’s; if it grows too slow,DQ is relatively large
even for largePICg’s. Our numerical study, reported in [21], indicates thatuadyaticF'( -) provides

better results for subsequent utilization than a linear. dierefore, we introduce this function as

Ine

- PIC?

max,S

F(PICs) := PICE, (10)

wheree is a sufficiently small positive number all Cy,,.x s is the largest value attainable @/ Cs.
Clearly, due to (9) and (10ninDQs = ¢, which can be viewed as a design parameter.

Expressions (1)-(10) characterize the acfiM@ acquisition procedure utilized in this work. As mentioned
above, numerous modifications of this procedure are p@ssiplconsidering different properties of,
different types of probing signals and their effect on pesceariables, various definitions of probing
inconsistency, etc. Specific selections may depend on detérapplications. The ones used here are

motivated by the application to a power plant.

[1l. PROCESSVARIABLE PMF ASSESSMENT

In this section, we describe an approach to the evaluatigrafess variable pmfj[V]. As mentioned

in Subsection I-C, this pmf is evaluated based on the serdates and theirDQ's. If the DQ were

1, this could be accomplished using classical statisticavéder, these methods cannot be applied if
0 < D@ < 1. Therefore, to carry out this evaluation, a model of the atfigf D@ on the coupling
betweenl” and.S must be postulated and then, in the framework of this moded\we! statistical method
for pmf’'s evaluation should be developed. Below, this depsaient is carried out, and methods for pmf
evaluation using a single and multiple sensors, as well fsseinces among the process variables, are

introduced.

A. Model of V and S coupling

Introduce the notion of sensor believability:

_ Evl-1 1

Bs = WDQS + ma (11)



where |y | is the cardinality of the universal set df. If, as indicated in (1)|Xy| = 3, then

1

2
=-D —.
Bs 3 Qs+3

The last two equations imply that when@ = 1, believability is alsol; when DQ = 0, believability is

ﬁ, implying that every status df" is equally likely. Using the believability, introduce

Assumption 2. The coupling betweel and S is as follows:

PV =0|S = o] =0s,
PV =5|S = o] = 515,

wherea implies ‘note’ and 0,5 € Xy . |

(12)

Clearly, this implies that ifDQ = 1, thenV has the same status &swith probability 1; if DQ = 0,
every status o/ is equally probable, irrespective of the status5ofThe coupling (12) is used throughout

this paper.

B. Process variable pmf assessment using a single sensor

Consider a sensd intended to monitor process variablé and assume that Assumption 1 holds. As
indicated above, our goal is to evaluate the pmf/gfbased on the sensor data, so, ..., s, ... (Where

the subscript is the time index) and its data quality)s. In other words, we are interested in

p[V =0] = lim P[V =o|s1, s2,...,8,; DQg], Yo € Xy. (13)

n— o0

To accomplish this, consider
pn|V = o] = P[V = 0ls1, s2, ..., $n; DQs], Vo € Xy, (14)
and introduce, for convenience, the notation
he(n) = pu[V = o], Vo € Zy.

Obviously, the limit ofh,(n), Yo € Xy, asn — oo (if it exists) is the sought pmfp[V]. Define the

evolution of h,(n) as follows:

ho(n + 1) = ho(n) + e, [h%(sns1) — ho(n)], he(0) Vo € Sy, (15)

1
Bl
where the set point}’ (s,+1), is given by

h:’;(sn+1) _ { /857 if Sn+1 =0 (16)

1-8 :
ﬁ7 if spy1 # o,
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and the stepg,, is either a small number,
0<ep <<, @7

or a function ofn monotonically converging t0 so that
[e.e] [ee]
0 <ep(n) <1, Zeh(n) = 00, Ze%(n) < 0. (18)
n=0 n=0

As it follows from (16), the evolution of.,(n) depends on both the sensor data @@g (through
Bs). The system of equations (15), (16) is referred to as theohaalure. It can be viewed as a stochastic

approximation algorithm [2] with a random set point.

Theorem 1. Let Assumptions 1 and 2 hold. Then:

1) There exists a sufficiently smal, such that for all0 < ¢, < ¢, recursive procedurg€15)-(17)

converges in probability ag — oo to the following limit:

1 - DQs

, Vo e Xy. 19
Y 1% (19)

2) Under (18), recursive procedur¢l5), (16) converges to the same limit almost surely.

Proof: Part 1 is proved in [24]. The proof of Part 2 is given in the Apgi. |
Thus, according to this theorem, 9@ is close tol, the pmf of process variablg|V], is close to
the pmf of the sensop[S]. However, if DQ is close to0, the same sensor data resultzif}’] being
practically uniform and independent of the sensor measeimgsnFor all intermediate values 6fQ), the
pmf p[V] is an affine function ofDQ.

Recursive procedure (15), (16) is the basis of processhiar@ssessments used throughout this paper.

C. Process variable pmf assessment using multiple sensors

Assume that process variablé is monitored by two sensorS,; andS,, having data qualityDQs, and

DQs,, respectively. The goal is to evalugif/] based on the data projected by both sensors, i.e.,

P55 [V = 6] = lim P[V =olsi,...,s}: DQs,; 5%, ...,52; DQs,], Yo € Ty (20)

n—o0
This can be accomplished by combining the two pmf’s, evaldidtased on the h-procedure, i#5:[V]
andpS:[V], into a single pmfpS:S:[V7], using the Dempster-Shafer rule [3]:
PV = o]pS:[V = o]
> 5V =olp% [V =o0]

ﬁsl,sz [V — O'] — s Vo € EV. (21)
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A question arises: 1$5::5:[V/] “better” than the constituent™ [V] andpS2[V] from the point of view
of the uncertainty in the process variable assessmentengopy? To answer this question, Igtp[V]}
denote the entropy of the pmfV] defined as

KpV]} == Y plV = ollogps, plV = 0] (22)

oED Y

and introduce:
Definition 1. A pair of pmf’s 55:[V] and 55:[V] is Dempster-Shafer monoton{®S-monotonic) if
H{pP+%:(V]} < min [I{p> [V]}, I{p>[V]}] - (23)

[

Thus, only if 5 V] and pS2 [V] are DS-monotonic, the combined pmf (21) is beneficial; atfrs,
the pmf from one sensor (eith&; or S,), having the smallest entropy, should be utilized.

It would be of interest to provide conditions under whigh [V'] and 55:[V] are DS-monotonic. At
present no general conditions of this type are available.r@merical study, reported in [20], indicates
that if the expected values &f and.S, belong to the same outcome Bf and their standard deviations
are sufficiently small, theS:[V] and pS:[V] are DS-monotonic; otherwisd{pS:[V]} or I{pS:[V]}

may be smaller thad{pS+S:[V]}.

D. Process variable pmf assessment using inferences

Consider a plant characterized by two process variablgsand V,, monitored by sensorS; and So,
respectively, and operating in accordance with AssumptidDenote the universal sets bf asXy, and
V, asXy,. Assume that these process variables are coupled by aomalippmf’s P[V;|V2] and P[Va|V4].
For instance, ifV; and V5 are the temperatures of the boiler and turbine, respeytithedse conditional

pmf’s may be of the form

200 110
PpwviVal=1 1 1 3 |, PVelVi]=1]0 % 3 |, (24)
00 5 0 3 3

where the columns represent the states of the conditiontendotvs that of the random variable itself.
Clearly, (24) implies that ifVy is Normal, V; is Normal as well, while ifV; is Normal, V5, may be
either Normal, or Low, or High. Using these conditional psapthe pmf ofl; (resp.,V:) can be assessed

not only by the data an@d(@ of S;, (resp.,S2), but also by those 08, (resp.,S;). This is important
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because it offers a possibility of assessing the status obeeps variable even if its sensor hHag) = 0.
To describe this inference procedure,#€t[V;] andpS:[V5] denote the pmf's of; and V5, respectively,
evaluated based on the data aRd) of S,. Obviously,52[V;] can be evaluated using the h-procedure
(15), (16). ThenpS2[V;] can be computed using[V;|V5] and the total probability formula:

P Wil = Y PWi|Va = 02]p> (Vo = o). (25)

0265,

Thus,V, is assessed usirfp. Having bothpS:[V;] and 5! [V1], the Dempster-Shafer rule may be used
to combine them, if it is beneficial from the point of view ofetihesulting entropy.

The calculation ofySt[V3] is carried out similarly.

IV. PLANT PMF ASSESSMENT

As mentioned in Subsection I-C, the plant status assessmguantified byp[G], G € ¥¢. To describe a
method for its evaluation, let the plant model be giverA¥y;|G], i = 1, ..., M, and letp[V;], i = 1, ..., M,
denote the process variable pmf’s evaluated as descritfgedtion Ill. Thenp|G] can be computed using

the following:
Algorithm 1. (a) Assign the initial plant pmf:
polG] = [57 PR g} . (26)
(b) Calculate the initial joint pmf ol; and G:
po[Vi, Gl = P[Vi|Glpo[G], i=1,2,..., M. (27)
(c) Calculate the marginal probability:

pO[‘/Z] - Z pO[V;hGL 1= 1727"'7M' (28)
GeXg

(d) Apply the Jeffrey rule [4]:

A plvil .
Vi, G] = polVi, G ,i=1,2,..., M. 29
pVi, G = pol ]po[Vi] (29)
(e) Marginalize to obtain the plant pmf estimate:
VG = > plVi, Gl i=1,2,.., M. (30)

Viely,
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() If M > 1, combine the pmf's obtained in (30) using the Dempster-&hafle:

, 06 € S (31)

[

If the plant model is given a®[Vi, Vs, ..., Vi |G], marginalize it to obtainP[V;|G], i = 1,2,..., M,
and then follow steps (a)-(f) above.

Algorithm 1 is carried out after the h-procedure has cormergndp|V;], i = 1,..., M, is evaluated.
To speed up the process @G| evaluation, it is tempting to apply this algorithm recuedyy i.e., using
pn[Vi], instead ofp[V;], at step (d). As it turns out, however, this may lead to a patathe entropy of
pn[G] may tend to0 asn — oo, irrespective of the sensors data and the®’s. This paradox can be
explained by the fact that wheh,[V;] approaches its limit (i.e., is practically constant), thyaaimics of
pn|G] are defined not by the sensor measurements andZi@®s, but by the eigenvalues of the recursive

version of Algorithm 1, defined as follows:
Algorithm 2. (a) Assign the plant pmf at time as:
5[G], Wherepo[G] = B > ﬂ . (32)
(b) Calculate the joint pmf o¥; and G:
Vi, G| = P[Vi|G]pn[G], n=0,1,2,..; i =1,2,..., M. (33)
(c) Calculate the marginal probability:

PSVil= > palVi,Gl, n=0,1,2,..5 i =1,2,.., M. (34)
GeXlg

(d) Apply the Jeffrey rule:

A - N - ﬁn—l—l[vl]

n=0,1,2,..; i=1,2, .., M. (35)
(e) Marginalize to obtain the plant pmf estimate:

PralGl= > pPnalVi,Gl, n=0,1,2,...; i =1,2,..., M. (36)
Viedy,
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(H If M > 1, combine the pmf's obtained in (36) using the Dempster-&hafie:

M

~V;
Hpn+l [G = od]
i=1

ﬁn-i-l[G = UG] = M y = 07 17 27 -~ Og € EG' (37)
Z Hﬁr‘z/ii-l[G = o¢]
o 1=1
(g) Updaten to n + 1. Return to (a).
[ |

To investigate the performance of this algorithm, consaplantG with process variabl&, monitored

by sensorS. Assume that the universal sets@f V', andS are given by:
Y¢ ={Ng,Ag}, Xy = Xg = {Ny, Ay} (38)

Further, assume that the plant model is characterized bgdhditional pmf

1—a a ]
; (39)

a 1—a

PVIG] =

wherea < 0.5. Denote the pmf’s of the process variable and the plant a tims
PnlV] = [hxy (n), ha, (n)], PnlG] = [kng (1), kag (n)]; (40)

wherehy, (n) andhy,, (n) are calculated using the h-procedure (15), (16) And(n) andka . (n) are
evaluated using Algorithm 2. To specify the evolution/af, (n) and ka(n), substitute (39) and (40)

in steps (a)-(e) of this algorithm to obtain

kg (n+1) = [é{nﬂ keng () + [Q?FX) _a _g]&N)G (n) hx, (n+ 1), (41)

with kx, (0) = 0.5 andC'(n) and D(n) given by
C(n) :=[1 —alkng,(n) + a[l — kxg(n)], D(n) := akng(n) + [1 — a][1 — kng (n)]. (42)

Denote the steady state valuesgf, (n) andh,, (n), evolving according to the h-procedure (15),(16),
ashy, and b , respectively. Then, the steady state values@f(n) and ks, (n) are quantified as

follows:

Theorem 2. The steady statéy = of the recursion(41) is:
1) k¥, =1, 1A% >1—gq;
2) kY, =0,if AT <a;

hg, —a .
3) k¥ =t ifAg, >aandhF, <1-a.
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Proof: See the Appendix. [ |
This theorem exhibits the paradoxical nature of the reeearseffrey rule. Namely, if, for instance,
hY, = 0.7, i.e., p[V] = [0.7,0.3], anda = 0.4, then, according to Part 1 of Theorem (] = [1,0],
implying that the plant status is normal with certainty, l&hihe process variable status is uncertain.
Similarly, for the samey, if A = 0.3, i.e., p[V] = [0.3,0.7], then, according to Part 2|G] = [0, 1],
implying that the plant status is anomalous, again withadety, while the process variable status is
uncertain. In other words, this theorem implies that a r&igarversion of Jeffrey rule may “create

erroneous information” rather than transfer it from onergitg V;, into another(G.

V. SENSORNETWORK ADAPTATION AND MEASURE OFRESILIENCY

As mentioned in Subsection I-C, the adaptation of sensavar&tto the state with minimal entropy can
be carried out using either the plant or the process varaiis. In this section, we describe the former

and in Section VIl the latter.

A. Sensor network

Consider the plan@ with A/ process variabled/, Vo, ..., V1, monitored byNg sensorsS;, So, ..., Sy,
under Assumption 1. Each sensor may or may not be utilizethi®process variable pmf’s assessment.
This induces the sensor network state spacewhere each element, is an Ng-tuple of 1's and0’s,
with 1 in the i-th place indicating tha$; is used for process variable pmf’'s assessment(atidat it is
not. Thus, the cardinality of the state spag¥|, is 2"s. (A practical consequence of this exponential
growth of | X| as a function ofNg is discussed in Subsection V-D.) The process variable parit
the plant pmf assessed in stateof the sensor network are denoted@asVi], + € X, i = 1,..., M,
andp,[G], respectively. The goal of the sensor network adaptatida onverge to the state, where the

entropy ofp,[G] is minimal.

B. Adaptation using a rational controller

As mentioned in Subsection I-C, the adaptation techniqed irsthis work is based on rational controllers
introduced in [5] and further developed in [25], [26]. Raiid controllers are decision making devices
that possess two propertiesrgodicity and rationality. The ergodicity property implies that each state,
x, of the decision spacey, is visited with a non-zero probability. The rationalityoperty implies that
the residence time in states with a smaller value ofghealty functionis larger than in those with a

larger one. The degree to which this distinction takes piaageferred to as thével of rationalityand
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guantified by a positive integely.

If the sensor network adaptation is based on the plant assespmf,p, [G], the penalty function is
selected as its entropy{p.[G]} := L.(G). Various types of rational controller dynamics can be define
to ensure rationality and ergodicity. In this work, to ersthie former, the following residence time in

each statec € X is introduced:

{ Thnax if 1,(G) < 3
T, =

(+25) Tmax 1t 1) > 5 “3)
fm(G) maxs xT )

where > 0 is a small number (design parameter) dhgy is the largest residence time (also a design
parameter). To ensure ergodicity, whHEnexpires, the controller moves to the next state in a detastign
round-robin manner.

Let 7, be the relative residence time in statec X, i.e.,
T
> To

zeX

. (44)
Then, theaverageplant assessment pmf, to be reported to the plant operater ehch complete
round-robin cycle, is evaluated as

reX
It can be shown that ifV is sufficiently large,p[G] is arbitrarily close toarg Imrél)r(l I.(G). Note that

although under the deterministic, round-robin transitiole, the state with the minimal entropy could be

selected by various other methods, we use (43)-(45) sinseeiqually applicable to random transitions,

which may be necessary in other applications.

C. Measure of resiliency

The measure of resiliency employed in this work is based erKihilback-Leibler divergence [1] of two

pmf’s, p1[G] andp2[G], given by:

DGR = Y mG = ocllogs, 2 G = o] (46)

oaEXG [G - UG] .

Let p;[G] be the true pmf of the planp[G]. As for p3[G], we consider two cases. In the first one,
p2|G] is p[G] calculated according to (45) and based on ih@’s of the sensors. In the secong,|G]|

is the pmf of the plant assessed under the assumption tha?d¢hef all sensors isl; we refer to such
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a system ason-resilientand denote the resulting pmf as.[G]. Then, the measure of resilien¢y/ R)

considered in this paper is given by

D (p[G]|lpn:[G]) — D (p[G1][PIG])
D (p|G[pur[G]) '

Clearly, MR < 1, and the equality is attained whenG] = p[G]. Thus, to test the resiliency of a

MR =

(47)

monitoring system, one has to assume fj&t] is known, evaluate|G] andp,,[G], and then use (47).

This is carried out in Section VIII for the case of the powearl

D. Temporal properties of adaptation and curse of dimerelion

From the temporal point of view, the adaptation processistsefepochs|X| epochs (where, as before,
X is the sensor network state space) comprisgde at the end of each cycle|G| is reported to the
plant operator.

For eachr € X, the epoch consists of three periods) acquisition {'pg), process variable(s) and
plant pmf evaluation...;), and residence in state (7;.). Assuming that the sensor data are provided
every 0.01sec and using the procedure described in Sectiofijl, can be evaluated &ssec (if the
time constant of the process variablelgec andl00 measurements are utilized to calculate the sensor
mean). Using the procedures described in Sections Il andh& duration of process variable and plant
assessmenl,,;, can be calculated @sec (if the stopping rule of the h-procedurélis(n+1)—h,(n)| <
10~%). The maximum residence perioé,,.,, can be selected as desired. If it is selected tadee, the
duration of each epoch is less than or equal 2sec.

As mentioned above,X| epochs constitute a cycle, so that the cycle duration is, ast,m2| X|sec.
Thus, the resilient monitoring system provides the plaseasment pmfp[G], within a reporting period
Treport = 12|X|sec. If a network consists df sensorsTieport = (2°)12sec ~ 6min, whereas in a
network of 10 sensorsy;cport ~ 3hr, which is clearly unacceptable. This curse of dimenditnis the

main drawback of the centralized system baseg ] adaptation.

VI. COMBATTING THE CURSE OFDIMENSIONALITY: DECENTRALIZED SYSTEM WITH KNOWLEDGE

FUSION

This section provides a method for combatting the curseroédsionality based on the plant decomposition
with knowledge fusion. The development is carried out imigiof a power plant; however, the approach

is applicable to other systems as well.
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A. Power plant
A simplified model of a power plant is shown in Figure 1, wher&Bhe boiler, HT and LT are the high

and low pressure turbines, respectively, RP is the reheat, @ is the condenser, FP is the feedwater

pump, andS;;'s are the sensors. For simplicity, it is assumed that onlyHB, RP, LT may be under a

HT valve

Fuel valve

Fig. 1: Schematics of the power plant

physical attack or malfunction, while C and FP are assumeaptrate normally; hence, their sensors
are not included in Figure 1.

Having& sensors, the number of network state®36. Thus, based on the temporal properties discussed
in Subsection V-D, a report to the plant operator could belpced in about everg5min. To combat
this drawback, a decentralized system could be considevedre B, HT, RP, and LT are viewed as
separatesub-plantsmonitored by their respective senssaurb-networkgi.e., B by sensor$;; and Sy,
etc.). The problem with such a decentralized system is tifatences arising from coupling of process
variables that belong to various sub-plants are negletiteather words if, for example, all boiler sensors
are captured by an attacker, no information about the boeitd be derived, even if all other sensors
operate normally. To alleviate this problem, we developtla@oapproach- based, as it is mentioned in
Subsection I-C, on a decentralized system with knowledgm®ifuand show that under certain conditions
such a decomposition, while decreasing the state spacesibén¢ adaptation, leads to no loss in quality

of plant condition assessment.
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B. Developing the decentralized system with knowledgeriusi

Assume, for simplicity, that B, HT, RP, and LT are charaatedi by a single process variable, e.g., its
temperature, denoted &%;, V,, V3, and V,, respectively, each monitored by two sensors. Mutual
influences of the temperature among sub-plants can be espieesby a directedyclic graphshown in

Figure 2(a). Assuming, for simplicity, that the heat-gextieig capacity of B is large enough to maintain

N

/K \

HT— RP — LT LT

(a) Cyclic graph (b) Tree graph

representation representation

Fig. 2: Influence diagrams

RP temperature independent of HT conditions (nhormal or aons), the influence HF RP can be
omitted. Similarly, under the above assumption, one magngthe influence RP» B, since B is capable
of maintaining its own temperature independent of HT and BiRditions. Further, if the heat-absorbing
capacity of C is large enough to maintain a constant watepéeature at its outlet independent of LT
condition, the influence L~ B can also be ignored. Under these assumptions, the cyelphgyf Figure
2(a) is reduced to thieee graphof Figure 2(b). This implies that the power plant can be repn¢ed as four
sub-plants, denoted &Sz, Gur, Grp, and G+, interrelated as shown in Figure 2(b). This partitioning
induces a corresponding partitioning of the sensor netvi8ik into four sub-networksSNg, SNy,
SNgp, andSN |, consisting of{S11,S12}, {S21, S22}, {S31,Ss2}, and{S41,S42}, respectively. IfXy,
k € {B,HT,RP,LT}, denotes the state space of each sub-network, then the nwhbtates in each
of them is4, and, if the evaluation of each state tak@sec, a report to the operator is produced in
approximately48sec (rather thad5min, as in the centralized case). Clearly, under this deositipn,
the aforementioned report would consist of the pmf’s of thb-plants, i.e.p[B], p[HT], p[RP], and
p[LT], rather than of a single pnfG].

Note that in this decentralized architecture, the sensoma&tworks adaptation is carried out based on
plVi] (rather thanp[G]). This is becausg|G;], i € {B,HT,RP,LT}, become available only after the

knowledge fusion of[V;]'s is carried out.
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To implement knowledge fusion calculations, couplings agiprocess variables must be introduced.
This is accomplished based on the conditional probalsilfig/;|V;]. While specific matrices representing
these conditional pmf’s are given in Subsection VIII-A,delwe describe the knowledge fusion calculations

used in this work.

C. Knowledge fusion calculations

Let pa, [Vi], PG, [V2], Paew[Va], andpg,. [Vi] be the process variable pmf’'s of the sub-plants, evaluated
using the techniques described in Sections Il, Ill, and Ver,Husion of this information, leading to the
sought inferences, is carried out as follows:

1) Inferences fofiVy:

(a) Calculate the pmf of; based on the sensors of LT (denotedpas, [V4]):
Pe. Vil = ) PWiVs = oslpa, [Vs = o3, (48)
LEISNA
wherepg,, [V5] is calculated as
Pa. Vsl = > PVa|Vi = oulpa,.[Vi = o4l. (49)
[ZISONTA
(b) Calculate the pmf of; based on the sensors of RP:
Pa.Vil = Y PIVi|Vs = o3lpa..[Vs = o3]. (50)
03Xy
(c) Calculate the pmf of/; based on the sensors of HT:
peVil= > PWVi|Va = oalpic,[Va = o). (51)
PISNA
(d) Calculate the pmf of/; based on all sensors of the sensor network (using the Derfpiséder rule):
II pevi=al

k=B,HT,RP,LT

- > 1T pa,[Vi = o1]

01€%y, k=B,HT,RP,LT

ﬁGB,HT,RP,LT [‘/1 = 01] (52)

(e) Finally, selectp*[V;] as the one of the five pmf’'s obtained above, which has the sstadintropy,
ie.,

p'[Vi] = argmin {1 {pc.[Vil} . I {Pc..[Vil} . T {pc. Vil T {Bc. [Vil} T {PGarm Vi }} - (B3)

Fusion of other process variable pmf’s is carried out siryildeading top*[V2], p*[V3], andp*[Vy].
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D. Accuracy of decentralized systems with knowledge fusion

In this subsection, we address the following question: Hawelminformation is lost due to the decentralization
with knowledge fusion? Although a complete answer to thisggjion is not available yet, a partial one
is provided below by considering a system motivated by thegoglant application.

Let the plantG consist of two process variabl&5 andV,, each monitored by two sensof§;1, S12}

and{Ss1, S22}, respectively. Assume that the universal setd’pfandV, are
Sy, o= {Ny,, Ay, }, Sy, = {sz,A(Vlg,A(VZj,A@}, (54)

where, as before, N stands for Normal and A for Anomalous.Zet andZ,,, be the intervals where
A

V, is viewed asNy, and Avy,, respectively, and IeZNVQ, A A®)
Va

AQ)

intervals forV,. Similar to (3), assume that the d.c. gains of the procesablas are piecewise constant

and ZA@ be the corresponding

in these intervals. Finally, let the coupling betwéén and'V, be characterized by the conditional pmf’s

0.5 0
1 1 0 0 0.5 0
PV1|Va] = , P[Wa|Vi] = . (55)
0 0 1 1 0 0.5
0 0.5

To combat the curse of dimensionality, introduce two sund, G; and Gy, consisting of process
variablesV; and V5 and their sensors, respectively. Two methods for evalgdkia pmf’s of1; and V5
are considered below, the centralized and the decentlaith knowledge fusion, and their results are
compared.

Centralized assessment (CA)Each sensor is assigndd@ based on the procedure described in

Section Il. The state space of the overall sensor networkviengoy
X = {(0000), (1000), (0100), ...., (1111)}, (56)

which containsl6 states. Let the sensor network be equipped with a ratiortaer, whose objective

is to minimize the penalty functio®(z), specified as
<I>($) = I{ﬁx[vlv ‘/2]}7 T € X> (57)
where the joint pmf,. [V, V5] is computed as

P=[V1, Vo] = P[Vi[Va]p[V2], (58)
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andp,[Vs] is calculated as described in Section Ill. Assume that auengplution of this minimization

problem,mi)r(l ®(x), exists and is given by
xre

x* = argmin ®(x). (59)

zeX

To solve the above problem, specify the residence time otdmdroller in stater € X as

where N is sufficiently large. In this scenario, utilizing the fortawsimilar to (45), the pmp[V;, V3] is
calculated a%,-[V1, V5|. Finally, p[V4, V3] is marginalized to obtaip[V;] and p[V5].

Decentralized assessment with knowledge fusion (DA-KF)Assign D@ to each sensor as before.
Decompose the sensor network with state space (56) into tlvenstworks, with state space§ and

Xy defined as follows:

X1 = {(00)1, (10)1, (01)1, (1)1}, X1 = {(00)11, (10)11, (01)11, (1 1)1} - (61)

Assume that each sub-network is equipped with a rationaralter, whose objective is to minimize the

penalty functions

<I>1(x1) = [{ﬁxl [Vl]}’ x1 € X, (I)Il(xll) = I{ﬁxn [Vz]}, i € Xi, (62)

respectively, wherg,, [V1] andp,,,[V2] are calculated as in Section Ill. Assume that unique soistiof

these minimization problems exist and are given by

xf = arg min ®g(xy), 2 = arg min Pry(an). (63)
X1

€X en€Xu
Let the residence time of the rational controllers be spatifis in (60). Under this scenario, the pmf’s
pa,[Vi] andpg,, V2] are calculated ag,-[V1] andp,: [V], respectively. Then, based on the knowledge
fusion calculations (48)-(51), the inferenceg, [V2] andpg,,[V1] are obtained.
To characterize the conditions under which CA and DA-KF ltegu the same pmf's of process

variables, introduce
Definition 2. The pmf'spg,[V;] andpg,[Vi], i = 1,2, aremax-similarif

arg max pg,|V; = 0;] = arg max pg,[Vi=04], i1 =1,2. (64)

O'iEEVi O'iEEVi
|

In other wordspg,[Vi] andpg,,[Vi] (resp.pa,[V2] andpg,,[V2]) are max-similar if their maxima are

attained at the same elementXf, (resp.Xy,).
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Theorem 3. Assume that both pairs of pmf{gc, [V1], e, [V1]} and{pa,[V2], PG, [V2]} are DS- monotonic
and max-similar. Thenizy, zf;) = «*, and the pmf’s o¥; and V; calculated using CA and DA-KF are,

respectively, identical.

Proof: See the Appendix. [ |
We hypothesize that this sufficient condition for the effica€ decentralized systems with knowledge
fusion is applicable to more general scenarios than thatidered here. A justification of this hypothesis

and derivation of more general conditions are topics founrieitwork.

VIlI. RESILIENT MONITORING SYSTEM ARCHITECTURE

Turning now to the issue of computing the pmf's of B, HT, RPdd, we introduce a five-layer
architecture shown in Figure 3. It consists of four parafleb-architectures, each corresponding to a
sub-plant,Gg, Gyr, Grp, and G, which could be under a physical attack (or malfunction)e Titpputs
to each sub-architecture are the sensor data provided tsutir@etworksSSNg, SNy, SNgp, andSN |,
which could be under a cyber attack. The physical and cyhaclks might be either coordinated or not.
The outputs of the overall architecture are the assesseglaobpmf’s, i.e.,p[B|, p[HT], p[RP], p[LT].

The five layers of this architecture can be characterizedoliswls (using the sub-plant B, as an
example):

o The D@ acquisition layer remains the same as in Section II.

« The process variable assessment layer consists of twao phgdirst one represents the evaluation of

Dz [V1] Using the methods of Section Ill. The second part evalyateB/; | using the expression (45)

applied to the sub-plant (i.epc,[Vi] = Z Tz Dzs [V1], Wherer,, is the output of the adaptation

rs€Xe
layer).

« The sub-network adaptation layer operates as describeetiiog V, but using the entropy ¢f,, [V ]
as the penalty function.

« The knowledge fusion layer implements the calculationidlesd in Subsection VI-C.

« The sub-plant assessment layer evalugi®y, p[HT|, p[RP], and p[LT] using the technique of
Section IV.

The measure of resiliency is evaluated using (47) applipdrseely to each sub-plant, e.g.,

MR, = 2 @BllPulB) — D (p[Bll[p[B]) (65)

D (p[B||pu:[B])
The M R’s for HT, RP, and LT are computed similarly, resulting in #fodlowing vector:

m — [MRB, MRHT7 MRRP7 MRLT] . (66)
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Fig. 3: Five-layer resilient monitoring system architeetlbbased on decentralization with knowledge

fusion

DQ Process variable assessment Knowledge fusion  Sub-plant

Physical Cyber acquisition layer layer assessment
attack attack layer layer
Gg SNBJ; DQ P [Vi] Pe il > vl PIBI >
W n
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attack attack
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~
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VIIl. A PPLICATION TO POWER PLANT

In this section, we apply the resilient monitoring systemFigure 3 to the power plant of Figure 1.
While the statistics of process variables and the parasiefethe monitoring system are specified in the
Appendix, below we introduce the sub-plant anomalies (Eciiisn VII-A), describe the attack scenarios
and the resulting system performance (Subsection VIllaBY discuss qualitative features of the results

obtained (Subsection VIII-C).
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A. Sub-plant anomalies and process variable couplings

1) Boiler: The anomaly of B is insulation fracture. Since the fractgsuits in a lower than normal

temperature, the universal set¥f is Xy, := {Lv,, Ny, }.

2) High pressure turbine:The anomaly of HT is also the insulation fracture. Takingpimiccount
the influence B— HT, we assume that, takes progressively increasing values under the following
conditions: Both B and HT are damaged; only B is damaged; éfllyis damaged; and both B and
HT operate normally. As it follows from the above, the unaadrset ofV; is Xy, := {VLv,,Layv,,
Lyv,, Ny, }, where VL stands for Very Low, anll;)y, andL )y, indicate Low HT temperature due

to B and HT damage, respectively.

3) Reheat pipe:The anomaly of RP is similar to that of B and HT, i.e., the iasioh fracture.
Regardingl;, we assume that it takes increasing values under the faltpwonditions: Both B and RP
are damaged; only B is damaged; only RP is damaged; and botid BRB operate normally. From the

above,V; € Yy, = {VLV37L(1)V3aL(2)V37NV3}-

4) Low pressure turbineSince LT operates at a low pressure, we assume that the anismalt due to
the fracture of its insulation, but due to the inefficientnster of energy to the output shaft, leading to the
temperature being higher than normal. Taking into accdumthain of influences B> RP — LT and the
above assumptiori/; takes progressively increasing values under the follovaiogditions: LT operates
normally, while RP and B are damaged; LT malfunctions, wiitle and B are damaged; LT and RP
operate normally, while B is damaged; LT malfunctions and Blamaged, while RP operates normally;
LT and B operate normally, while RP is damaged; LT malfunwiand RP is damaged, while B operates
normally; LT, RP, and B operate normally; and LT malfuncipmwhile RP and B operate normally. As
it follows from the aboveV, € Xy, := {VLqyv,, VLewv,, Loy, Leyve Mayv,, Mewv,, Nv,, Hy, },

where M stands for Medium and H for High.

5) Coupling of process variablesAs described in Subsection VI-B, the couplings of the preces

variables are characterized by the conditional pr?/|V;]. Taking into account the universal sets
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introduced above, these pmf’s are as follows:

05 0
1100 05 0
P[Vi|Va] = P[V4|V5] = , P[Va|W1] = P[V3|Vi] = ,
0011 0 0.5
A 0 0.5 (67)
L |
B
A 0O9yy B 0442
P[V3| V4] = L PVas] = i
05,4 A 042 B

6) Universal sets of the sub-plantSince each sub-plant is characterized by a single anontedy, t
random variableZ;, ¢ € {B,HT,RP,LT}, which represents its status, has the universal set coagpris
of two outcomes{Ng,,A¢,}, i € {B,HT,RP,LT}, where, as beforéNs, and A¢, stand for normal

and anomalous status of the sub-pléht respectively.

B. Attack scenarios and the resulting monitoring systenfoperance

In this section, we introduce seven cyber and cyber-phisitack scenarios selected so as to exhibit
the main features of the resilient monitoring system desigherein. As it may be expected, physical
attacks on the sub-plants are less damaging for resiliemitoring than cyber attacks on the sensors.
Nevertheless, to illustrate that every sub-plant statwsnial or anomalous) can be identified with or

without a physical attack, we include cyber-physical &sainto consideration as well.

Scenario 1:Cyber attack on the boilerAll sub-plants operate normally. All sensors monitoring & a
captured and project misleading information that the lbaslelamaged. All other sensors operate normally.

Performance:The resilient monitoring system computes the following jgsmf
p[Ge] = [0.95,0.05], p[Gur] =[0.9,0.1], p[Gre] = [0.91,0.09], p[G\r] = [0.92,0.08], (68)

correctly indicating that all sub-plants operate normailith large probability. The non-resilient monitoring
system (i.e., the system withQ'’s of all sensors equal td — see Subsection V-C) evaluates the pmf of
B asp..[Gs] = [0.05,0.95], erroneously indicating that the boiler is damaged. UsBig) @nd (66), the
measure of resiliency under this scenario is calculated/ds = [0.98, —,—, —] , where “-" indicates

that none of the sensors of the corresponding sub-plantterekad.

Scenario 2Cyber attack on the low pressure turbin&li sub-plants operate normally. All sensors of LT
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are under attack, reporting that it is malfunctioning. Ather sensors operate normally.

Performance The resilient monitoring system computes the following jsmf

implying that, while the status of B, HT, and RP is ascertdioerrectly, the status of LT is undetermined
(i.e., either normal or anomalous with almost equal prdiiegs). The non-resilient monitoring system
evaluates the pmf of LT as,,[G ] = [0.09,0.91], erroneously indicating that LT is malfunctioning. The
measure of resiliency in this case$fi = [—,—,—,0.7]. Note, however, that if only one sensor of LT

was captured, the status of all sub-plants would be assessezttly with the pmf’s

plGs] = [0.95,0.05], p[Gur] = [0.9,0.1], p[Gre] = [0.91,0.09], p[Gyr] = [0.91,0.09].

Scenario 3:Coordinated cyber-physical attack on the reheat pif® is under attack, resulting in
insulation fracture. All other sub-plants operate norgpnallince RP is attacked, the temperature of LT
is M(1)v,. All sensors of RP are captured, forcing them to indicat¢ R is normal. All other sensors
are not attacked.

PerformanceThe pmf's of B, HT, RP, and LT are computed as follows:

correctly identifying the status of all sub-plants. The fresilient monitoring system evaluates the pmf
of RP aspy,[Gre| = [0.91,0.09], i.e., erroneously. The measure of resiliency@ = [—,—,0.95,—].
Note that if the attack was not coordinated, e.g., physittatk on RP and cyber attack, say, on LT, the

status of LT would be undetermined, i.e.,

PG = [0.95,0.05], p[Gur] = [0.9,0.1], P[Grel = [0.12,0.88], p[Gyr] = [0.49,0.51].

Scenario 4Coordinated cyber-physical attack on the high pressurbite: HT is under attack, resulting
in fracture of its insulation, with, beingLs)y,. All other sub-plants operate normally. All sensors of
HT are captured, forcing them to indicate that its statusoismral. All other sensors are not attacked.

PerformanceThe pmf’s of the sub-plants are computed as follows:
p[Gs] = [0.95,0.05], p[Gur] = [0.51,0.49], p[Gre] = [0.91,0.09], p|G.r] = [0.92,0.08], (71)

correctly identifying the status of B, RP, and LT, while thadtHT is undetermined. The non-resilient

monitoring system evaluates the pmf of HTa$[G\7] = [0.9,0.1], i.e., erroneously indicating that HT
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is normal. The measure of resiliencyﬁ = [-,0.69, —, —]. If only one sensor of HT was captured,

the status of all sub-plants would be ascertained correatly the pmf’'s

If the attack was not coordinated, e.g., a physical attackidrand a cyber attack on all sensors of B,

the resulting performance would be

indicating that all sub-plants are assessed correctly.

Scenario 5:Coordinated cyber-physical attack on the boiler and lowssige turbine:B and LT are
under attack, resulting in insulation damage of the fornmel malfunctioning of the latter, with; being
Ly and V3 being

1 2

and Vy being L(y)y,. All other sub-plants operate normally, willh, being L)y
Layv,- All sensors of B and LT are captured, forcing them to indécditat their status is normal. Al
other sensors are not attacked.

Performance:The pmf’s of the sub-plants are computed as follows:

correctly identifying the status of B, HT, and RP, while thatgs of LT is undetermined. The non-resilient
monitoring system evaluates the pmf’s of B and LTpa§Gs] = [0.95,0.05] andp,,[Gr] = [0.92,0.08],
erroneously assessing them as normal. The measure oéneyilis]\ﬁ =[0.98,—,—,0.72]. If only one

sensor of LT was captured, the status of all sub-plants wbaldscertained correctly with the pmf’s

Note also that if the attack was not coordinated, e.g., glaysttack on LT and cyber attack on all

sensors of B, the resulting performance would be
p[Gs] = [0.95,0.05], p[Gyr] = [0.9,0.1], p[Gre] = [0.91,0.09], p[G.r] = [0.09,0.91],
indicating that all sub-plants are assessed correctly.
Scenario 6:Coordinated cyber-physical attack on the boiler, rehegtepiand low pressure turbines,

RP, and LT are under attack, withy, V3, and V; being Ly,, VLy,, and VL(2)v,; respectively. The

remaining sub-plant, HT, operates normally. All sensoad thonitor B, RP, and LT are captured, forcing
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them to indicate that their status is normal. The sensorsTohté not attacked.

PerformanceThe pmf’s of the sub-plants are computed as follows:

correctly identifying the status of B and HT, while the statof RP and LT is undetermined. The
non-resilient monitoring system evaluates the pmf’s of B, &d LT a®,,,[Gg] = [0.95, 0.05], pu:[Gre] =
[0.9,0.1], andpy,[G\ 1] = [0.92,0.08], erroneously assessing them as normal. The measure é¢megil
is MR = [0.98,—,0.7,0.72]. If only one sensor of LT was captured, the status of all siantp would

be ascertained correctly with the pmf’s

If the attack was not coordinated, e.g., physical attack bahd all sensors of B and RP being captured,

the status of all sub-plants would be assessed correctly vt pmf's

PlGs] = [0.95,0.05), p[Gur] = [0.9,0.1], [Gre] = [0.91,0.09], 5[G'r] = [0.09,0.91].

Scenario 7Coordinated cyber-physical attack on all sub-plandl sub-plants are attacked, resulting in
their anomalous operation. All sensors are captured,rfigrdiem to indicate that their status is normal.
Performance:The status of all sub-plants is undetermined with the pmé&mnd close to[0.5,0.5].
The non-resilient monitoring system evaluates errongothelt all sub-plants are normal. The measure
of resiliency isME = [0.76,0.7,0.7,0.72]. If one sensor of HT was not captured, the pmf’s of the

sub-plants would be
ﬁ[GB] - [0057095]717[GHT] - [01709]715[GRP] - [05705]7]5[G|_T] - [05,05],

i.e., B and HT are assessed correctly, while RP and LT aretermdimed. If one sensor of HT and one

sensor of LT were not captured, the pmf’s of the sub-plantslevbe
p[Gs] = [0.05,0.95], 5[Gur] = [0.1,0.9], 5[Gre] = [0.12,0.88], 5[G 7] = [0.09,0.91],

i.e., all are assessed correctly.

C. Discussion

The above results lead to the following conclusions:

« Under all attack scenarios considertde resilient monitoring system provides no erroneoussssents

(as insinuated by the attacker).
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« As evidenced by Scenarios 1-@yber attacks on HT and/or LT are more dangerous than those on
B and RP This is due to the structure of the conditional probabititatrices (67), which permit
inferences from HT and LT to B and RP, but not vice-versa. Imeptwords, cyber-attacking the
terminal nodes of the graph of Figure 2(b) is more dangerbas fattacking the initial and/or
intermediate ones.

« As evidenced from Scenarios 3 anccéprdinated cyber-physical attacks may not be more danggero
than non-coordinated oneMore important is not the coordination, but the nature of/baec attack
— involving or not the terminal nodes of the graph.

« As follows from Scenario 7, theminimum number of non-attacked sensors necessary andeniffic
to correctly assess all sub-plants & one for HT and one for LTIf these sensors were made
“known secure” [27], the plant assessment would never bepcomised.

« In all cases consideredhe measure of system resiliency is quite higlom 0.69 (when some
sub-plants status remains undetermined) to close t@hen all sub-plants status is assessed with

certainty).

IX. CONCLUSION AND FUTURE RESEARCH

This work provides techniques to ensure resiliency and datnates that they are adequate for designing
resilient plant monitoring systems. The development isi@adrout under the assumption that each process
variable may be either normal or anomalous, and a cyberigdiyesttacker shifts sensor measurements so
as to project misleading information. In this scenario, vesalop a decentralized five-layer monitoring
system architecture with knowledge fusion, which, on onedhalleviates the curse of dimensionality and,
on the other hand, allows for calculating inferences neags®r resiliency. Although the development
is carried out in terms of a power plant, a similar approaah lsa used for other critical infrastructure
plants, as long as they admit a representation as a set ofelilated sub-plants.
Numerous research problems, however, remain open. Thelsglén

« Problems related to overall architecture:

o The decentralized system with knowledge fusion is basedhemdduction of a cyclic influence
graph to a tree-graph (see Figure 2). Extending this decsitipoto cyclic graphs is important.
The approach may be quite similar to that of the present va#d, in this framework, the effect
of “circular” coupling among process variables could beestigated.

o Another important architectural issue is: What are othantklecentralization techniques that

can effectively combat the curse of dimensionality in resil monitoring systems? Perhaps, the



31

overlapping decomposition of [28], [29] could be a produetalternative.
« Problems related to data quality acquisition:

o Investigating efficacy of the probe-based data quality &iiipn technique for attackers other
than those modifying the expected value of sensor measuatsme

o Improving temporal properties dP() acquisition. As shown in Subsection V-D( is acquired
in aboutbsec. It would be desirable to achieve this an order of madeitaster. A potential
approach is inferringD@ from the transient, rather than the steady state, respdres@mcess
variable to the probe.

o Introducing and investigating other than probe-bag¥g acquisition techniques. Perhaps, this
could be accomplished by considering inference diagran@adess variables and continually

monitoring the level of their satisfaction in the data pdwd by the sensors.
« Problems related to process variable assessment:

o Introducing and investigating different than (12) modeilscoupling between the sensor data
and process variables. Similarly, investigating différ@s compared with the believability (11))
effects of DQ on process variable assessment.

o Introducing and utilizing other than conditional prob#ptbased coupling (see (24)) among the
process variables. This may be based on logical model$éiftt, rather than on quantitative
ones.

o In the current work, the sensor data abd)’s are utilized to assess the process variable pmf’s
(i.e., h-procedure (15), (16)) under the assumption thaitstate of the sensor network remains
constant. Are there convergent techniques to accomplishwhen the state of the sensor
network is non-stationary? If so, the temporal propertiegesilient monitoring systems could
be improved substantially.

o Investigating monotonicity properties of Dempster-Shatde (21). A sufficient condition for
monotonicity is mentioned in Subsection IlI-C. More gehdeag., necessary and sufficient)

conditions would be beneficial for improving the speed ofcess variable pmf's assessment.
« Problems related to sensor network adaptation:

o Utilizing other than (43) rational controllers. The goaltéés to devise rational controllers with
faster adaptation rates (see [5] where various types ajnaiticontrollers are introduced and
analyzed).

o Introducing and analyzing other than entropy-based periatictions. Perhaps, there exists a
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penalty function that would lead to lower uncertainty in gges variable assessment than the
entropy.

o Investigating a possibility of associating a rational coler with each sensor of the sensor
network. Although this would lead to a non-stationary adtph environment, it would result,
if convergent, in a substantial improvement of adaptatates.

« Problems related to knowledge fusion:

o Evaluation of the efficacy of knowledge fusion. This would/idlve the derivation of more
general conditions to quantify, for example, the loss obiinfation due to knowledge fusion
calculations.

o At present, just a rudimentary technique has been usedsaayer: a “combination” of process
variable pmf’s obtained in different sub-architecturese(§igure 3). It would be of interest to
investigate fusing information measures other than thegpmf

« Problems related to plant assessment:

o Investigating a possibility of recursive plant assessmBatause recursive application of the
Jeffrey rule may lead to paradoxical result (see Section itVjhe current paper we apply this
rule non-recursively, which slows down the plant pmf assesg. So, modifying this rule or
developing a new one, which would permit a recursive apptinais an important problem.

Solutions of these problems will enable designing effectigsilient monitoring systems for critical
infrastructures (e.g., power systems, computer netweiki engineering objects) and complex individual

plants (e.g., aircraft and space structures).
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APPENDIX A
PROOFS
A. Theorem 1

As mentioned in Section lll, Part 1 of this theorem is proved?4]. Below, we prove Part 2. It is based

on the following lemmas:
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Lemma A.1l. Consider the recursive procedu(#5), (16), (18). Then,

0< lim hy(n) <1, o€ Xy. (A1)

n— oo

Proof: As it follows from (15),

n

he(n) = wo(n)he(0) + > wi(n)hi(s;), o € Sy,

n =1 n—1 (AZ)
wo(n) = [JI1 = en(i = D], wi(n) == en(i — 1) [JL = ea(h)], i = 1,2, ...,n.
i=1 j=i

Thus, h,(n) > 0, Yn andVo. Also, it can be shown that, due to (18),

Zwl(n) =1, le wp(n) = 0. (A.3)
Therefore,
J ho(n) =l wo()h ,H&EIW ) 7 €Ty,
(A.4)
= <
,ﬂ&iiw 60 < Jim Dt

i=1
where the last inequality is due to (16). Finally, in view Af), this inequality becoméan,, o, h,(n) <

limy,o0[1l —wp(n)] =1, 0 € Xy [ |

Lemma A.2. Under the assumptions of Theorem 1, the expected value skth®int,h (s,,), o € Xy,

n € N, is given by
* D
E[R;(sp)] =p[S =0]DQs + —=———, c € ¥y, ne N. (A.5)

Proof: Follows directly from (16). |
Thus, according to this lemma, the expected valué.ifs,,) is independent of. € N, and can be
denoted asv[h; (sn)] = pps, 0 € Xy

To formulate the next lemma, introduce the function
1,
f(ho(n)) := 5 [ho(sn+1) = he(n)]*, o € Sy. (A.6)
Lemma A.3. The unique minimum o [f (h,(n))], o € Xy, is attained at

arg uin B[ (ho ()] = . o € T (A7)
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Proof: Clearly,E [f (h,(n))] is differentiable and convex ik, (n) and, therefore, its uniqgue minimum

is attained at

0
S B (he ()] =0, o € 3. (A-8)

Due to (A.6), this expression becomis(n) — i, = 0, implying that for any fixedh € N, the solution

of the minimization problem &2 (n) = -, o € Sy. [
Proof of Theorem 1, Part ZThe proof is based on showing that for langethe recursive procedure

(15), (16), (18) solves the aforementioned minimizatioobtem, and, thereforé,, (n) converges tquy-,

o € Yy, almost surely.

Since f (h,(n)), o € Xy, is continuously differentiable and convex, there existcalar0 < v <1

such that
fho(n+1)) = f (ho(n)) + [ho(n+1) — ho(n)] 524
) g (m)=ho () (A.9)
1 lhe(n4D)=ho (m)? B;f , 0 € Xy. '
2 OhZ (1) |, (n)=hy (n)+7[ho (n+1)—ho (n)]

From (A.6) and (15), (16), we obtain
8fn)r Q)

F o4 1) = F (o) = en(w) | 52 2

Using the summation of both sides of (A.10), we obtain:

[hE(spe1) — he(n)]?, 0 € By, (A.10)

n—1 af 2 n—lez(n)
f(ho(n)) = f (he(0)) = en(n) {% (n)} +)° hT[hf,(an) — hy(n)]?, 0 € Sy, (A11)
g n=0

Now, consider the limit of (A.11) a®& — oo. Sinceh,(n) is bounded for alln (see Lemma A.1),

n=0

the left hand side of the above equation is a finite positivenlmer. Due to the same reason, the term
[hE(sn41) — ho(n)])? is bounded for alh, implying that there exists a positivel, such thafh (s, 41) —
he(n)]? < M, ¥n. Thus,

n—1 2 n—1
lim f (he(n)) < f (he(0)) —nli_{r;OZeh(n) [ahaif(fn)} Mo D ein), ceSy. (Al2)
n=0 i n

n— oo

Observe that sincd o2 €7 (n) < oo, the last term in the right hand side of (A.12) is bounded. Now
supposeb%(n) does not go td asn tends taco. Then the expression. - ex(n) [%{n)] ’ is unbounded
(due to) 7 ; en(n) = oo) and the right hand side of (A.12) becomeso. This is a contradiction, since
the left hand side is positive and bounded. Therefgﬁ% — 0 asn — oo almost surely (a.s.).

From the above argumenE,[%] — 0 asn — oo. Furthermore, due to the linearity of expectation,
ﬁ(n)E[f(hJ(n))] — 0 asn — oo, implying that the condition (A.8) is satisfied. Therefdrem Lemma

A.3, it is clear thatlim, o hy(n) = Hpey 0 € Ny, @&.S. Finally, using Lemma A.2, we conclude that

lim,, o ho(n) = p[S = 0| DQs + 1?5?5, o€ Xy, as. [ |
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B. Proof of Theorem 2

Sinceh,(n) is convergent a.s., for every there existsiy(¢), such thatP ||, (n) — b | < €] > 1—¢,

Vn > ng(e). Therefore, for sufficiently large, equation (41) can be rewritten as
kNG (’I’L + 1) =F (kNG (TL)) + 0(6)7 (A13)

where
_ ahls\?v N [1—alll— hf\?v]
akng(n) +[1 —al[l —kng(n)]  [1 —alkng(n) +a[l — kng (n)]

and O(e) represents terms of order Omitting these terms, equation (A.13) is approximated as

F (kng(n)) - kng(n), (A.14)

It can be shown that the system (A.15) has three equilibria,

SS

—a
INZ S (A.16)

ko, =1, kYL =0, kN =

Based on the perturbation theory [30], fosufficiently small, stability properties of (A.15) are thanse

as (A.13). To analyze stability, consider the Jacobiang'©f) at each equilibrium:

. OF . [1—a}2+[2a—1]h§\?v _OF . a2+[1—2a]h§‘\?v
A = Okng s a[l—al , Ag = Okng |psr a[l—al ’
Ro No (A.17)
Ay = OF _ a[l—a]
akNG klt{g hf\?v [l—h?\?v} .

Supposeiy, > 1 —a. Since0 < a < 0.5, we haved; < 1, Ay > 1, and A3 > 1, implying that
kx,, is asymptotically stable, whiléy’ andk{ are not. Thereforekn, (n) converges locally td:y

asn — oo, which proves Part 1 of the theorem. Parts 2 and 3 can be piwakhrly. [ |
C. Theorem 3
The proof of this theorem is based on the following five lemmas

Lemma A.4. Let p,, [V1], 21 € X7, be the pmf oV}, calculated as mentioned in Subsection VI-D, and

Dz, [V2] be the pmf ofl,, calculated using total probability formula:

buulVel = Y PVelVi = o1l [Vi = 0], a1 € X1, (A.18)
01€5,
whereX; and P[V5|V;] are specified by54) and (55), respectively. Then,
. I{ps[V1]} +1
I {pa[Va]} = %, xy € X7, (A.19)

wherel{-} is the entropy.
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Proof: Due to the structure oP[V2|V}], equation (A.18) can be expressedas[Va = Nj| =
ﬁmI[VQ = Agl] = %ﬁ:ﬁl [‘/1 = Nl] andﬁrI[Vg = AQQ] = ﬁmI[VQ = A23] = % [‘/1 Al] Consequently,

the entropy ofp,, [V1] can be evaluated as

Hpe W]} = = ) PauVa = 09]10gs puy [Va = 03] — 1, (A.20)

02€%,

wherey, is defined in (54). Then, applying the change of base formujg,» = 1222 the right hand

log, a’

side (RHS) of (A.20) becomeb{p,,[V2]}log, 4 — 1 = 21 {p,, [Va]} — 1. [ |

Lemma A.5. Letp,[V1, V], z € X, be the joint pmf of;, and V3, calculated as mentioned in Subsection

VI-D, and p, [V:] be the pmf ofi;, obtained by marginalizing,.[V1, V]. Then,
. 3
Hpa[Val} = 514 [V, Val}, @ € X. (A.21)

Proof: The proof of this lemma is similar to that of Lemma A.4. |
Sincep,-[V1, V2] andp,- [V1] have the smallest entropies in the state space of theiretgp@etworks
(see (59) and (63)), Lemmas A.4 and A.5 indicate that therakzred and the decentralized rational

controllers adapt in such a manner that the entropy of theqdnif, is minimized.

Lemma A.6. Assume thap,,[Vz2] and p,, V], =1 € X1, x11 € Xy1, are DS-monotonic ang,, ,.,y[V2]
is their concatenation using Dempster-Shafer rule. Then,

dl {p V dl 3p V
{p(mAI,:EII)[ 2]} > 0 and {p(:fIv’EII)I: 2]}
dI {prl [VQ]} dI {plEII [VQ]}

Proof: Introduce notationsp,,[V2] = [p1,p2, p3, p4] and p,,[Va] = [q1, ¢2, g3, q4]. Without loss of

> 0. (A.22)

generality, assume thatax{pi, p2, ps, pa} = p1 andmax{ql,QQ,Q3, g4} = q1. The entropy ofp,, [V5] is

I {pa,[Va]} sz log, pi. (A.23)

The differential of7 {p,,[V]} is

4
A palVa} =3 aii o2, (Va1 dpi (A.24)
where, due to the constraint; + ps + p3 + p:: 1,
24: dp; = 0. (A.25)
Using (A.25), equation (A.24) can be re—lv:/iitten as follows:
dI {pr,[Va]} = Z [ . %] I {ps,[V2]} dpi. (A.26)
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Since, as it follows from (A.23), the partial deriV<51tiv§ﬁ—il{ﬁxI [Va]} = —1—logy pi, i = 1,2,3,4. From
(A.26), we obtain the following differential for the denamaitor of the first expression of (A.22):

dI {pa,[V2]} = Z [10g4 p } dpi. (A.27)
In a similar manner, it can be shown that the numerator ofekjgession is given by:

dI {ﬁ 501,9611 Vz]}

_ Z [(Dq4—p4q4> (1+1 og, pgﬁ;) (inlgzpzq?> <1+10g4 plz;h-)] .

(A.28)

where
4
D=3 pa (A.29)

Supposedp; > 0 anddps = dps = 0. Then, the RHS of (A.27) becom%!zag4 %] dp1, implying that
dI {px,[V2]} < 0. Using (A.28), it can also be shown thé {},, ,.\[V2]} < 0. Moreover, in all other
situations wherell {p,,[V>]} is less than zero (for instance, whép, > 0, dpy > 0, dps = 0, pa > py,

and gy > q4), it can be shown thai/ {ﬁ(xl,xn)[VQ]} is less than zero as well. These arguments imply

dl{iﬁ(ﬂvlvzn)[vﬂ}
dl{ﬁxl [Vﬂ}

The second expression in (A.22) can be proved in a similam@an |

that > 0.

Lemma A.7. Let z;, be a state inX,, k£ = I,II, with all active sensors being captured. Let the pmf
Pz, [V2], k = 1,11, be computed as mentioned before. Finally,det< 1 be the parameter involved in

the data quality exponer{®), (10). Then,I {p,, [V2]} =1 —d(e), 6(e) - 0ase — 0, k =1, 1L

Proof: We prove this lemma for the statg € X;. The proof forzy € Xy is similar.
Supposez; = (10);. Let the pmf of the corresponding active sensor, nam8ly, be p[Sii] =
[pil,pﬁ”} Since this sensor is captured, its data quality is assigisdd()s,, = ¢ based on the d.c.
gain model (3) and the procedure described in Section Ilhis s$ituation, the pmp,, [V4], calculated

using the h-procedure, is as follows (see (15),(16)):

~ 1—¢
P Vi) = 5116—1— 7p51516+ - -

. . (A.30)

The entropy ofp,, [V4] is

I{ps,[V1]} = —a1(€)logy ai(e) — as(€)logy as(e€), (A.31)
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where
o Sll —€
(11(6) T pgs €+ 177 (A32)
az(e) = pyle+ e
Taking into account (A.31) and using Lemma A.4, we have
. 1
I{pu[Vo]} = 5 [1 — ar(e) logy a1 (€) — as(e) logy az(€)] - (A.33)
As it follows from (A.32), the expressiora;(€) log, a1 (€) — az(€) logy az(e) — 1 ase — 0.
Differentiating both sides of (A.33) with respect ¢pwe obtain
d N B S11 1 CLQ(E)
Tl = (o - 5 ) o 225, (a.39

It follows from (A.32) and (A.34) thatj—el {p=[V2]} <0, and the equality is attained wh@ﬁél =1 n

[\

other words, the entropy gf,, [V2] is a decreasing function ef

Equation (A.33) can be re-expressed as

—1 —aj(€)logy ay(€) — az(e) logy ag(e).
2

I {pa[Vo]} =1+ (A.35)

Denote tar(Qlos el tax(9 1o, 02() aq5(c). It is seen that(e) — 0 ase — 0.
Similarly, if z; is either(01); or (11);, it can be shown thaf {p,,[V2]} is equal tol — d(¢), where

d(e) » 0 ase — 0. [ |

Lemma A.8. Let the pmf’'sp,-[Vz] and p,: [V2] be DS-monotonic and max-similar. Further, let and
x11 be states inX7 and Xy, respectively, with their corresponding active sensorsigpeaptured. Then,

the following is satisfied:

I {Da; gy [Val} < min [T {pias o) Val} o T {Ban,eg V2l o T {Ber,enny V2 }] - (A.36)

Proof: If the active sensors corresponding #¢ are captured, it follows from Lemma A.7 that
Do Vo] = [ +01(€), 1 + da(e), 2 + 03(€), 1 + d4(¢)], wheree is the parameter involved in th®Q
exponent (9), (10), and;(¢) — 0 ase — 0, i = 1,2,3,4. Further, letp,:[V>] be expressed as
[p1, P2, D3, D4, whereipi = 1. Consequently, the entropy of the pm;. .,)[V2], which is obtained

i=1
by concatenating,:[V>] andp,, [V2] using, as before, Dempster-Shafer rule, can be shown tothave

following property:

I {Ps o Val} = [1 = 8a(€)] I {pa; [Va] } + G(e), (A.37)
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where
dal€) 1= Dgzj,
4 4 1 1
52 €)Pi pi |7+ 52(6) it 52(6)
5b(6) = _1 D(()E 10g4p2 - Zl [4D(€) ] 10g4 . D(G) ) (A38)

Do) = sz o).

From (A.38), observe thaf,(¢) — 0 andd,(e) — 0 ase — 0. Using (A.37), the difference between the
entropies,! {p(,: 4, [Va]} and I {p: .-)[Va]}, can be expressed as

I {P(es oy Vol } = T {Pag wpp Vel } = [1 = Ga(O) I {Ba; V2l } — I {Dras az,) V2l } + 0b(e).  (A.39)

Since the pmf'sp,:[V,] and p,: [V2] are DS-monotonic, and is chosen arbitrarily small, the RHS of
(A.39) is greater than zero. This implies thafp .. . )[Val} < I {p(zs zn)[Va]}-

Using the above approach and Lemma A.7, it can also be sh@h {ip .. .-\ [Va]} < I {p(a, 2z)[Val}
and I {pa; 2z Vol } < T {2, 20)[V2]}- u

Proof of Theorem 3In this proof, we address the casel6f, the proof forV; is similar.

As mentioned in Subsection VI-Dyg ming cx, I{ps, [V1]} = zf, arg ming, ex,, I{pz,[Val} = ]},
and arg mingc x I{p,[V1,V2]} = z*. The objective here is to show that is the concatenation of;}
andzyy, i.e., (zf, zf).

Using Lemma A.4 and the assumption that the pmf;s oo),,)[V2] andp((oo), »1,) [V2] are DS-monotonic,

I {ﬁ(mf@H } <I {p (1,(00)11) } Vrp € X,

(A.40)
I {Bai appVal} < T {P((oon,xu) Vol}, Van € Xir.

Clearly, from Lemma A.5, the minimizer* belongs to the sef{ X7 \ (00)1} x {Xm \ (00)11}} (where
\ is the relative complement and is the Cartesian product).

Now, we investigate whether* is, indeed,(z7, z;) in the following two cases:

« For arbitraryz; and zyy, let the pmf'sp,, 00,)[V2] and p(oo),,2,,)[V2] be DS-monotonic. Using
Lemma A.6, it can be shown that{p,: ,-[Va]} < I {B(zy,an)[Val}-

o Let Py 00)) V2] @and p(oo), ) [V2] be non-DS-monotonic due to all active sensors of either or

both z; and z1; being captured. Then, it can be shown using Lemma A.8 Il'{aft(vaxﬁ)%]} <
I {ﬁ(u’cul‘n) [VQ] }

Thus, these two arguments prove théat= (x7, z;). u
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APPENDIX B

PARAMETERS OF POWER PLANT AND MONITORING SYSTEM

This appendix provides parameters of the power plant anditororg system that have been used in

simulations reported in Subsection VIII-B.

A. Sub-plants, process variables, and sensors

1) Statistical models of the sub-plantds mentioned in Subsection VIII-A, these models are defined
by conditional probabilities of process variables givea #tatus of a sub-plartt; € {N¢g.,Ag,}, @ €
{B,HT,RP,LT}. Accordingly, we quantify these models as follows:

o Boiler: P[V; = Ny, |Gs = Ng,] = P[Vi = Ly, |Gs = Ag,] = 0.95; all other elements of this pmf

are0.05.

o High pressure turbineP[Va> € {Lg)v,,Nv,}|Gur = Ng,,| = P[Va € {VLv,, Ly, }HGur =
Ag,.] = 0.90; all other elements are.1.

 Reheat pipeP[V3 € {L(1)v,, Ny, }|Gre = Na,] = 0.88, P[V3 € {VLv,, Loy, }|Gre = Ac,] =
0.91, P[V3 € {VLv,,La)v, }|Gre = Na,,] = 0.12, and P[V5 € {L(1)v,.Nv, }|Gre = Ag,,] = 0.09.

o Low pressure turbine?[Vy € {VL(yyy,, Layv,, Mayv,, Nv, }|Gir = Na,, | = 0.91, P[V} € {VL(y)y,,
Ly, Mayv,. Hy, HGir = Ag,] = 0.92, P[Vs € {VL@v,,Leyv,, Mayv,, Hv, }Gir = N, ] =
0.09, and P[Vy € {VL@yv,. Layv,, My, Nv, }Gior = Ag,.] = 0.08.

2) Models of process variables and sensofhe values of the parameters introduced here are not
intended to represent exact physical quantities but, ratballustrate the techniques developed in this
work.

The domains of the process variables and their d.c. gairfinédein Assumption 1) are specified in
Table I.

Without loss of generality, we assume that the process hlasaand the sensor measurements are
Gaussian random variableg, ~ A/ (M‘Z’U‘Z) and S;; ~ N (ﬂéij’aéij)’ i=1,2,3,4, 7 = 1,2, where
the expected valueg,;, andugij, are specified in Tables Il and Ill, respectively, for allaak scenarios
considered in Section VIII. Regarding the standard demiatiof V; and Sl-j, we assume that they are
small enough so that the realizations of these random VJesalutside of the domains given in Table |

may be ignored. Specifically, they are selectergs=0z =0.01,i=1,2,3,4, j =1,2.

B. Parameters of monitoring system



TABLE I: Domains and d.c. gains of process variables

Process variables Domains (see Assumption 1)  Values of R’s (see (2)) d.c. gains (see (3))
Vi [5, 100] Ry =50 ay, = 2,0y, =2.2.
. vl = 0.5, ayl = 0.6,
Va [5, 25] Ry =10, R; =15, R3 =20 L N
a\,; = 0.7, ay, = 0.8.
) Ayl =06, ay™ =0.72,
Va [5,100] R1 =20, R2 =40, R3 =50 Ly N
o =0.9, any = 1.2.
Ri =3, Ry =6, W =04, ay, @ =042,
~ Ry =9, Ry = 11, ay Y =046, ay® = 0.48,
Vi [0.1, 20] M) Mgy
Rs =13, R = 15, ay, Y =0.53, a,, ¥ = 0.56,
Ry =17. oy, = 0.6, a, = 0.63.

TABLE IlI: Expected values of process variables

Attack scenario| py. | wy, | B, | B,
1 80 23 75 16
2 80 23 75 16
3 80 23 44 | 121
4 80 18 76 16
5 30 12 23 10
6 30 12 15 5
7 20 7 10 5

TABLE llI: Expected values of sensor measurements

Attack scenario| pig,, | Kg,, | Ky | Hes | B8y | Pésy | Héu | Hsuo
1 31 30 22 24 74 74.1 | 15.8 | 16.1
2 81 79 22 24 74 74.1 | 19.2 | 19.1
3 81 79 22 24 74 74.1 | 12.2 | 121
4 81 79 22 24 74 74.1 | 16.1 | 16.2
5 81 79 12.1 | 12.2 23 24 16.1 | 16.2
6 81 79 12.1 | 12.2 76 75 16.1 | 16.2
7 81 79 23 22 76 75 16.1 | 16.2
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1) Data quality assessment layer:

The amplitudes of the probing signals (6) are selected &mafsl Ay, = 2, Ay, = 0.6, Av, = 0.7,
and Ay, = 0.3.
The parametee, involved in (10), is selected ds02.

The PIC.x in (10) for the sensors of B, HT, RP, and LT &ard, 0.06, 0.08, 0.03, respectively.

2) Process variables assessment layer:

The step size of the h-procedure (15) is selected,as 0.01.
The stopping rule is defined by, (n + 1) — hy(n)| < 1074

3) Adaptation layer:The parameters involved in (43) are selected as follows:

(1]
(2]

(3]
(4]

(5]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

The level of rationality of the rational controller is seted asN = 2.
The maximum residence time is selectedlag, = 1sec.

The parametep is chosen a$.04.
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