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Abstract

This paper is intended to design and evaluate the perforenafrec power plant monitoring system (sensor
network) that degrades gracefully under a cyber-physitatk Such a system is referred to as resilient.
While several features of the resilient system consideszd have been developed in the previous work,
the current paper addresses the “curse of dimensionalityich arises due to the exponential growth of
the systems’ state space as a function of the number of seriEmrcombat this problem, we develop
an overlapping decomposition of the power plant into a seswiplants, inducing a corresponding
decomposition of the sensor network. Using both intra- aterisubplant inferences, the paper mitigates
the effect of information losses due to the decompositidme €fficiency of the resulting monitoring

system is demonstrated by simulations.

. INTRODUCTION

Resilient plant monitoring systems are sensor networks diegrade gracefully under cyber-physical
attacks, which cause them to project misleading infornmatio the previous work [1]-[3], we have
developed an approach to designing such systems based dtetseof active data quality assessment
[2] and rational control [4]-[6]. The former is used to idéntsensors under cyber-physical attack, and
the latter to adapt to the network state resulting in minieraropy of the monitored plant assessment.
While the steady state performance of such systems has beamdo be satisfactory, the transients
have not: the adaptation time grows exponentially as a fomadf the network size (i.e., number of
sensors in the network). This phenomenon, which arises inyneagineering problems and which R.
Bellman called the “curse of dimensionality”, is the maipitbaddressed the current paper. Specifically,

we develop an approach to combating the curse of dimend#ipmalresilient monitoring systems based
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on the ideas of overlapping plant decomposition (develdpecbntrol-theoretic literature [7], [8]) and
Dempster-Shafer combination rule [9] (used in artificiaelligence). The former induces an overlapping
decomposition of the sensor network and, thus, reduceddte space of the adaptation; the latter allows
for recovering information losses due to the decomposition

To support this approach, we develop a plant monitoringesystonsisting of five layers: one of them
remains the same as in the previous work (data quality assessayer [2]), three others are modifications
of those used previously (process variable assessmemtiatida, and plant assessment layers [1], [3]),
and one is novel (knowledge fusion layer).

A specific system, in terms of which the development is cdraiet, is a simplified power plant shown

in Figure 1, where B is the boiler, HT and LT are the high and lomssure turbines, respectively,

HT valve

B (&
Fuel valve e
i Ii N bt RP
a
& 8,0 8,0 a
° @
MAAAAN LT valve

FP

Fig. 1: Schematics of the power plant

RP is the reheat pipe, C is the condenser, FP is the feedwatep,pandS;;’s are the sensors; C and
FP are assumed to operate normally, and, therefore, thesose are not included; B, HT, RP, LT, C,
and FP are referred to throughout this papercasiponent®f the power plant. Having eight sensors,
and assuming that the measurements of at least one of thetitizeclifor plant condition assessment,
the cardinality of the sensor network state space®is- 1 = 255. Decoupling the network into three
overlapping subnetworks with four sensors each, leads d¢octirdinality2* — 1 = 15 and, thus, to

dramatic improvement of the adaptation speed, in some ea#iesut, as it is shown in this paper, loss in

quality of plant condition assessment. Quantified by thdbd&ak-Leibler divergence [10], in all scenarios



considered, the resulting system exhibits high level ofliezxy in comparison with non-resilient ones.

A brief review of the literature on other approaches to iesil plant monitoring systems is in order.
(Humberto). However, the issue of combating the curse ofedsionality has not been addressed. This
is carried out in this paper.

The remainder of this paper is structured as follows: Thevalwentioned overlapping decomposition
architecture is developed in Section Il. The model of the groplant considered is presented in Section
lll. The layers of the monitoring system are described inti®as IV-VIIl. Results from numerical
performance analysis of the overall system are present&eation 1X. Conclusions and directions of

future work are given in Section X. The proofs are includedhi@a Appendix.

I[I. OVERLAPPING DECOMPOSITIONARCHITECTURE

In this section, we describe the overlapping decompositging as an example the power plant of Figure
1. Other plants could be addressed in a similar manner asA¥sdl, for the sake of simplicity, we assume
that each component of the plant, which can be attackedB,edT, RP, and LT, is characterized by a
single process variable, e.g., its temperature, denotédd,;a®’,, V3, and'V,, respectively.

Mutual influences of the temperature among plant comporaarisbe represented bycgclic graph
shown in Figure 2(a). Assuming that B heat-generating dapiadarge enough to maintain RP temperature

independent of HT condition (normal or anomalous), the @rite HT— RP can be ignored. Similarly,

N,
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Fig. 2: Influence diagrams

under the above assumption, one can also ignore-RB, since B is capable of maintaining its own
temperature independent of HT and RP conditions. Furth€r,hieat-absorbing capacity is large enough
to maintain constant water temperature at its outlet inddeet of LT conditions, the influence LF

B can also be ignored. Under these assumptions, the cydjhgof Figure 2(a) is reduced to thee



graphillustrated in Figure 2(b). This implies that all comporenf the power plant can be viewed as
“serially connected”, and the overlapping decompositiaio ithreesubplants Gi, G, and Gy, shown

in Figure 3, is possible. Such a decomposition, while retlyithe dimensionality of the original problem,

Fig. 3: Overlapping subplan&;, G, and Gy

preserves all mutual influences of the process variabledesatt (under appropriate conditionssee
Subsection VII-B) to the same quality of plant conditionessnent as the centralized architecture of
Figure??. Note that overlapping decomposition, as a simplificatmoi,thas been widely used in control
theory for analysis and design of complex systems (see,xample, [7] and [8]).

As indicated in Figure 3, plan@ is partitioned into three overlapping subplangs;,, G, and Gyiy.
This partitioning induces a corresponding partitioningte# sensor networBIN into threesubnetworks
SN, SNy, andSNyyy, consisting of{S11, S12,S21, S22}, {S11, S12,S31, S32}, and{Ss1, S32, S41, S42},
respectively. IfX,, £ =1, 1I, lll, denotes the state space of each subnetwork, themumber of states
in each of them i2* — 1 = 15, rather thar255 as in X. In this situation, if the evaluation of each state
takes, as before,0sec, a report to the operator is produced in less @imam (rather thard2min, as in
the centralized case). Note that under this decompositien aforementioned report would consist of
four pmf's, P(B), P(HT), P(RP), and P(LT), rather than of a single pm?(G).

Turning now to the issue of computing these pmf’s, we inteathefive-layer architectureshown
in Figure 4, where the additional, new layer is intended ibzatinter-subplant inference® produce
assessments similar to those that could be produced whbiréntralized architecture of Figup@. We

refer to this new layer as thenowledge fusion layer



The system of Figure 4 consists of three parallel sub-archites, where the first three layers in each

of them are similar, but not identical, 0@ assessment, process variable assessment, and A/RC layers

of the centralized architecture. While the first of theseetayoperates in the same manner as in the
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Fig. 4: Overlapping five-layer monitoring system architeet

centralized architecture, the latter two are differentmédy, the process variable assessment layer uses

intra-subplantinferences to calculate joint pmf’s of process variablegath subplant (i.eP(Vl, V5)

in G, P(Vl,Vg) in Gy, andP(Vg,V4) in Gir). The A/RC layer is different because it uses these joint

pmf’s as a basis of adaptation, rather than the plant pmf.réason is that the subplant pmf’s are not

yet available at this stage of computation, since they reguter-subplant inferences. These inferences

are utilized in the fourth (knowledge fusion) layer, whicbntbines information from all subplants and

evaluates pmf’s of all process variables involved in the goplant. Finally, based on these pmf’s and

statistical models of power plant components, the fifth laggsesses their conditions and provides a

report to the plant operator.



As mentioned before, details of these calculations areritbestin Sections 1V-VIII.

I11. M ODELING

In this section, we model process variables of the powert@aown in Figure 1 for various conditions
— normal and anomalous. While we assume that anomalies in eatiponent of the plant occur
independently, the process variables under various donditare, in fact, coupled as shown in Figure

2(b), and this coupling leads to the models of process viasatieveloped below.

A. Models of process variables

As mentioned before, states of B, HT, RP, and LT are assumiegl ¢haracterized by the following process
variables: boiler temperaturd/{), high pressure turbine temperatuM,{, reheat pipe temperatur¥’),
and low pressure turbine temperatulMé,}, respectively. It should be noted that this assumptionois n
restrictive, and more complex models of power plants canXaen@ed using the techniques developed
in this paper.

Statistical models of the process variables and theirioglships with the states of associated components
are introduced as follows:

1) Model of boiler temperaturet.et V; be a continuous random variable that characterizes values o

V1. Let f;, (1) denote the probability density function (pdf) ot with the support

‘71 S [ 1’?11117 rrBlax]‘ (1)

In general, depending on the values taken by process vesiabkir states are often classified as normal or
anomalous. Regarding B, low temperature values are asstmnuedur due to a fracture in the insulation.

Accordingly, the interval (1) is partitioned into the folling two regions:

Lg: [V, R®) andNg @ [R®, V2 ], (2)

whereV is viewed as LowIg) and Normal Ng), respectively. To characterize the statéf (according

to (2)), we define the discrete random variablewhose universal set is given by

A
Y= {LBaNB}' (3)
The probability mass function (pmf) df; can be calculated using;, (91), Vi, Vinax: @nd R® as
RB
PVi=Le) = [ fp(01)doy,
Vinin (4)
Vihax o
P(V1 == NB) == f f‘~/'1 (Ul)d’Ul.

RB



The d.c. gain ofV; with respect to the fuel valve position is assumed to be aimoots piecewise

linear function of171, and is expressed as

ar,(V1), if Vi € [VB , R®)

ar (V) = ) oo 5)
O‘NB(Vl)ﬂ if Vi€ [RB,Vrgax],
wherear,, (V1) andax, (V1) are linear in their respective domains amg, (R®) = ax, (R®).
Thus, the model oV, is defined by the pdf of/;, pmf of Vi, and d.c. gaim(V}), whereV; €
[Vrginv Vrﬁax]'

2) Model of high pressure turbine temperatutieet the random variabl&, characterize the values of

process variabl&/,. The pdf of V, is specified byfy, (02) with the support
‘72 S [Vrg;rm rrlgx]‘ (6)

Regarding the anomalous operation of HT, it is assumed tdrbias to that of B, i.e., damage in the
insulation. As before, let the discrete random variddleeharacterize the state &f5. To define the state
space ofl;, we also take into consideration, apart from the HT anonthby,serial connection between
B and HT (introduced in Section Il), which implies that thenddion of the former affects that of the
latter. With the assumption that damage in B results in aeladgop in temperature than damage in HT

alone, the universal set 6, is specified as
A
Yo = {VLHTaL(l)HTvL(Q)HTaNHT}7 (7)

where VL, (‘Very Low’) occurs when both HT and B are damagédj),,; when only B is damaged;
L(2)4r When only HT is damaged; and,r when neither B nor HT are damaged. The regions that specify

the states oV, are given by

VLHT: [VHT RTT)7 L(I)HT: [RTT7 ST)7

min?

Loy + [RY", R3T), Nur: [R5, Vinad,

(8)

where RY" < RYT < RyT. The pmf of V, can be calculated usingy, (v2), Vi, Vi, and RET,
i€{1,2,3}, asin (4).

The d.c. gain ofVy with respect to the HT valve position is assumed to be a coatia piecewise



linear function ofV%, and is expressed as

aVLHT(Vg), if ‘72 S [VHT RTT)

min’

i) = | e 72 T Ve € (R RET) o
2\V2) —
aL(Z)HT(V2)7 if ‘72 S [RST,RST)

ong (V2), if Vo € [RYT, VL,

3 » Ymax
whereayw,, (Va), o (V2), QL. (V2), andax,, (V2) are linear in their respective domains ang,,, (R}T) =
QL) (RTT)' QL) (RST) = QL g)ur (RST)' andaL(2)HT (RST) = aNHT(RgT)'

Thus, the model oV, is defined by the pdf of,, pmf of V3, and d.c. gaimy(Va), where Vs €
[VHI VAT .

3) Model of reheat pipe temperaturénomalous operation of RP is, as before, assumed to occur due
to damage in its insulation. Further, as mentioned in Sedliowe assume that B and RP are serially
connected while ignoring the effect of HT on the latter.

Let the continuous random variabig characterize values &5. The pdf of V5 is denoted byf‘;g (03)

with the support

Vs € [VRP VIRP . (10)

min> ¥ max

As with previous statistical models, let the discrete rand@riableV; characterize the state &f3;. The

universal set ofi’; is specified as
A
Y3 = {VLRP7L(1)RP7 L(2)RP7 Nege}, (11)

where VLge occurs when both B and RP are damaged;jr, When only B is damaged; 2z, When
only RP is damaged; amdr, when neither B nor RP are damaged. The regions that représentates

of V3 are given by

VLge: [ViE, RTY), Layre: [RT7, RS,

min’

Legyre : [R5 R57), Nee: [R57, Viiau,

3 » Ymax

(12)

where RT? < R5P < REP. The pmf of V5 can be calculated as before.

The d.c. gain ofV3 with respect to the fuel valve position is assumed to be aimoots piecewise



linear function ofV, and is expressed as

avi,(V3), if V3 € [VRE REP)

~ aL(1)Rp(‘~/3)> if ‘73 € [ ?Pv RSP)
az(V3) = (13)
aL(2)RP(‘/3)7 if |ZXS [Rgpa R:JFfP)

(v (V3), i Vs € [RE™, ViRE],
whereayr,,(V3), ar . (V3), ar,,.(V3), andax,,(V3) are linear in their respective domains ang,,(R§F) =
ALy (BE), 01, (REP) = a1, (REP), andar,, (REP) = o, (BS).

Thus, the model o3 is defined by the pdf of3, pmf of Va3, and d.c. gaims(V3), where Vs e
[Viins Vina]-

4) Model of low pressure turbine temperatur&ince LT operates at a low pressure, we assume
that its insulation is immune to damage. Indeed, anomal@esation is considered to occur when LT
transfers energy to the shaft with poor efficiency, i.e. ti@accumulated in the turbine, rather than being
converted into mechanical energy. Consequently, undesratad operation, LT temperatuié, is higher
than normal. In addition, it is assumed that any rise in LT derature is not sufficient to compensate
for the loss of heat from either a damaged B, or a damaged R#ythr

Let the continuous random variablg characterize the values &f4. The pdf of V, is specified by

[y, (04) with the support

‘74 c [ LT LT ] (14)

min> ¥ max

Let the discrete random variablg represent the state &f4. Taking into account the serial connection

between B, RP, and LT (introduced in Section Il), the unigkset ofV, is expressed as
A
Yy = {VL(I)LT7 VL(Z)LT7 L(l)LT7 L(2)LT7 M(l)LT7 M(Q)LT? Nir, HLT}7 (15)

where
VL) implies LT is operating normally, RP is damaged, and B is dgeda
VL2)r implies LT is malfunctioning, RP is damaged, and B is damaged
L) implies LT is operating normally, RP is operating normaéind B is damaged;
L(2).r implies LT is malfunctioning, RP is operating normally, aBds damaged;
M1)r (‘Medium’) implies LT is operating normally, RP is damagehd B is operating normally;
M)+ implies LT is malfunctioning, RP is damaged, and B is opegatiormally;
N.r implies LT is operating normally, RP is operating normadpnd B is operating normally;

H.; (‘High’) implies LT is malfunctioning, RP is operating noally, and B is operating normally.
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The pmf of V; can be calculated like in (4).

As before, the d.c. gain oV, with respect to the LT valve position is assumed to be a cootis
piecewise linear function of;, and is denoted by, (V).

Thus, the model oV, is defined by the pdf of/;, pmf of V4, and d.c. gaimy(V}), whereVj €
[V VAT

min’ ¥ max

B. Modeling the mutual influences of process variables

The serial connections illustrated in Figure 2(b) are stighlly modeled as conditional pmf’s of the
following pairs of process variable§Vi, Vi), (V1,V3), and(Vs, V4). The conditional pmtP (V7 |142),

as it follows from Subsection IlI-A, is specified as

1 1 0 0

0 011

where the rows and columns represent the staté§ ahdV5, respectively. As it follows from Subsection
lI-A, if V; is Lg, thenV, can be eitheVLy; or Loyur with equal probabilities, and i¥; is Ng, then

V2 can be eithell(,),; or Ny, once again, with equal probabilities. Therefore,

05 0

05 0
P(ValV1) = : (17)
0 05

0 05
Regarding(V1, V3), as it follows from Subsection IlI-A, the conditional pmfB(V;|V3) and P(Vs]V7)
are the same as (16) and (17), respectively. RegardifagV,), as it follows from Subsection IlI-A, the

conditional pmf'sP(V4|V3) and P(V3|Vy) are

P(V4|V3) = (18)

o O o o o o
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and

1 10 00 0 0 O
001 1 0O0O0O0
P(WVy) = (19)
00 001100
00 0 0 O0O0T171

As mentioned in Section |, the conditional pmf’'s describdé\e are utilized to obtain inferences

about the state of one process variable, given the stateatfi@mn

C. Model of sensor subnetworks

As illustrated in Figure 1, each process variablg i € {1,2, 3,4}, is assumed to be monitored by two
sensors, denoted by;;, j € {1,2}, wherei andj index the process variable and sensor, respectively.
Let the continuous random variab%j, whose pdf isfgij(gij), characterize the measurements of sensor
S;j. The range ofSZ-j is identical to that ofV; (see (1), (6), (10), and (14)). Let the discrete random
variable S;;, with universal set identical to that df; (see (3), (7), (11) and (15)), represent the state of
S;j. The pmf of S;; is calculated as that df; (see Subsection IlI-A).

Given that sensors may be attacked, we assign to each sessataa value termed as data quality,
DQ € [0,1], where, as beford)@ = 1 implies that the sensor measurements are completely wetiyv
and D@ = 0 indicates that they are completely untrustworthy. While thethod of assignin@@’s is
described in Section 1V, data quality is used here to spexifgodel of the sensors.

SinceDQ is not a statistical quantity, a model of its effect on thatiehship between random variables
Vi and S;; should be introduced. To accomplish this, we define the sdve@vability, 3;;, as

|2 —1
Bij = —=DQij + =,
! %] T

where|X;| represents cardinality of;, and sets; are given by (3), (7), (11), and (15). Equation (20)

7: G {1727 37 4}7 j 6 {172}7 (20)

implies that if DQ = 1, believability is 1, while if DQ = 0, believability is |2—1‘ implying that all
states of the process variallg are equiprobable. The coupling betwegnand S;; is postulated using
believability as follows:

P(Vi=0;|Sij=0i) = By,

o 21)
P(Vi=0;|Sij=0i) = =%
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whereg; implies ‘noto;’ and o;,5; € 3;, i € {1,2,3,4}, j € {1,2}. For example, consider sens®y;,

which monitorsV;. Since|X;| = 2, believability is 511 = Dg” + % and, thereforeP(11]S11) is

P(Vi|S11) = P 1—=pu 7 22)
1-Bun  Bn
where the rows and columns represent the statdg,cdndS;, respectively. IfDQ1; = 1, P(V1|S11) =
diag(1,1), and if DQq; = 0, both states oV, are equally probable irrespective of the stateSef.
As it follows from Section I, the state space of sensor subodt SNy, k& € {I,II, III}, is expressed

as

X = {(1000), (0100), .., (1111) }, k € {I, 1L, III}, (23)

where the cardinality of\;, is 2 — 1 = 15.
Thus, the model of sensor subnetworks is characterized doynibdel of individual sensors and the

state spac&Xy, k € {I,11, 111}, of each subnetwork.

D. Model of attacker

As far as the attacker is concerned, it is assumed that sereasurements are modified in order to project
misleading information. In formal terms, this implies thia¢ attacker modifie$§ij(§ij), ie€{l,2,3,4},

j € {1,2}, by changing its variance, or expected value, or both. Oeliminary investigation indicated
that modifying expected values is more damaging for retilimonitoring than modifying variances.

Therefore, the model of the attacker considered in this p&phat for a sensor under attack,
E(Sij) # BE(Vi), i € {1,2,3,4}, j € {1,2}, (24)

where E(.) denotes the expected value. This implies, for example, thiaite B temperatureVy, is in
stateNp, sensorS;; may project a signal indicating that; is in stateLp.
The mean value-based attacker (24) is considered throtughisuypaper. We note, however, that other

models of the attacker could be considered using the apiprofathis work.

E. Plant model

The plant model consists of models for B, HT, RP, and LT. Sirait is mentioned at the beginning

of this section, the anomalies in each of these componemtsr dndependently, their models can be
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described as follows: Let the discrete random varialilgs Gyr, Gre, and G+, with universal sets
specified by

Gs € Y, := {Na.,Ac. }, Gur € X, = {Na.., A, }

Gre € ap = {NGy, AGe }> Gur € Zay, = {Nay, Aas b
describe the ‘health’, i.e., normal or anomalous, of B, HP, Bnd LT, respectively. Under this scenario,

(25)

we introduce the plant model for B as the conditional piil;|Gs). Regarding HT, as it follows from
the independence of component anomalies, the plant modgléa by P(V2 € {VLyr, L(2)ur}|Gur) and
P(Va € {L1yur, Nur}|Gyr). To simplify notations, define the random variabilg, whose universal set

and pmf are
V§ € {Liy, Niy ) (26)
and
P(VZ/ - L/HT) - P({V2 = VLHT} U {VZ = L(Z)HT})’
P(Vy = Ny;) = P({Va = Lyur} U {V2 = Nur}),
respectively. Utilizing (26) and (27), the plant model fof idan be re-expressed &V, |G ). Similarly,

(27)

for the other components, let

Vi € {Lap, Niot, Vi € {N(r, Hir }, (28)
where
P(V?,/ = Lgp) = P({V3 = VLgp} U{V3 = L(2)RP})7 (29)
P(V3 = Ngp) = P({V3 = L1)re} U {V3 = Nie})
and
P(V{=N{;) = P({Va = VL1)r } U{Vi = Liayr } U{Vi = M(q)s } U {Vis = Ni1}), (30)

P(V4, = H/LT) = P({Vﬁl = VL(2)LT} U {V4 = L(2)LT} U {V4 = M(2)LT} U {V4 = HLT})'
Under (28)-(30) and the independence of component anospahe plant model for RP and LT are
described byP(V5|Gre) and P(V/|G,r), respectively. Thus, the overall plant model is given by the

following vector of conditional pmf’s:
The plant condition is expressed as the ve&(prspecified by

5L

G [P(GB)v P(GHT)> P(GRP)> P(GLT)]> (32)

where the pmf’s in (32) are evaluated in Section VIII by atilig (25)-(31) and assessments of the states

of process variables.
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F. Measure of resiliency

To quantify the accuracy of plant assessment, we introduceeasure of resiliencyMR) based on
Kullback-Leibler(KL) divergencgsee [10]). This divergence is typically used to quantifg tistance’
between two pmf’s. For example, KL divergence between tleahdealth of B, denoted b¥(Gs), and
the assessed health of B, denotedif7;), is calculated as

P{Gg =0}

P{Go— o) 33)

D (P(GB)HP(GB)> = Y P{Gs=o}logpy,,

0EX gy

Utilizing the above divergence, we quantify R for B as a normalized difference betwe@r(P(GB)HPm(GB))
andD (P(GB)HP(GB)), where P,(Gp) is the estimated pmf of theon-resilient systepi.e., when the

monitoring system uses the measurements of all sensorsagp(Q);; = 1, Vi, 5. In other words,
D (P(Gs)l[Pr(Ge) ) = D (P(Ga)l| P(Gs) )
D (P(Gs)l|Pr(G)

Clearly, M Rg < 1, and the valud is attained wherﬁ(GB) = P(Gg). Similarly, M R can be calculated

MRB:

(34)

for HT, RP, and LT, which results in the following vector:
MR = [MRg, MRy, MRep, MR,]. (35)

Equations (33)-(35) are used in Section IX to quantify thiecaty of the monitoring system presented
in this work.
Thus, the model of the power plant is characterized by maafgisocess variables, serial connections,

sensors, sensor subnetworks, plant, and the attacker.

IV. DATA QUALITY ASSESSMENTLAYER

As stated previously, sens@q( is assigned using an active identification procedure deeelan [2],
which assumes knowledge of the d.c. gains of process vasalmid-points of their respective regions.
For example, consideV;. The following d.c. gains are assumed to be known, and cartilieed for

D() evaluation:

@LB é aq (Vn‘?lin + RB_QVIE]“)) )
A Ve _Re (36)
av, 2 o (R0 ),
whereq (.) is defined in (5) and’2. , R®, andV,2,, are defined in (2). According to the aforementioned

procedure, probing signals (discussed in Section |) arellsameously applied to each process variable

using appropriate valves, and observed sensor respornsemalyzed from the point of view of their
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consistency with known d.c. gains (e.g., (36)). The sengilts larger consistency are viewed as more
trustworthy, and theiDQ is assigned accordingly. For brevity, the methodology toe#sain DQ is
described below for sensors monitoring . Extension to sensors monitoring other process varialsles i
straightforward.

In general, any type of deterministic or random probing aigrtould be used. Here, utilizing the fuel
valve, we generate the simplest probea rectangular pulse of amplitud‘ﬁ%/1 and durationt;, applied

at the time instant,, i.e.,
uy (t) = Ajtrect, (t —to). (37)

The value ong1 is selected sufficiently small so that; remains in the same statkg(or Ni) before
and during the probe. Additionally, the small amplitude lo¢ forobe ensures that, while appropriately
influencingV; and V3, its effect onV, and V4 is negligible. The value of; is selected so thaV,
reaches a small vicinity of its steady state defined by théqro

Let the mean valueE(V;), of the process variabl¥; be py, - Further, let the mean valud(Sy;),
J € {1,2}, of the measurements of senshr; before the probe bﬁgu and at the end of the probe be
u’glj. If the sensor is not compromised and its mean prior to thegurwincides exactly with that of the
process variable, i.egglj = uy,, the following holds true:

Wy —ng, = Agoa(ug). 38)
= Agtoailug,),

wherea (.), as mentioned before, is defined in (5). However, if the seisscompromised, the previous
statement does not hold true. In order to distinguish batvaeeaptured sensor and one that is not, we

introduceprobing inconsistencyPIC) of S;; as follows:

A _

PICy; = |(, — 1) — Ay an (ug,) )] (39)
Whereoil(ugu) is defined as

_ AL, if ng, . € [VrgimRB)

a(pg,,) = o (40)

QNg if /j’Slj S [RB’Vn?ax]'
The d.c. gainsy;, and ay,, involved in (40), are defined in (36). Clearly,IC; is large if Sy; is
captured and is relatively small if not.

Given the aboveP I, data quality is assigned according to

DQI] _ e—F(PIC]j)’ (41)
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where F(.) is a monotonically increasing function &fIC, with £'(0) = 0. It turns out that a convenient
way of introducing this function is

Ine

F(PICy;) “PpICE

PIClj, (42)
wheree << 1 (a design parameter) is theQ assigned whe®IC' is PICy,, given by
PICy, = Ay - (ar, — an,)|- (43)

Equations (37)-(43) characterize th&) assessment layer of the power plant monitoring system.

V. PROCESSVARIABLE ASSESSMENTLAYER

As illustrated in Figure 4, the process variable assessthaget evaluates the joint pmf's of process
variables in each subplant. These calculations are bas#we@reviously mentioned h-procedure, Demp-
ster-Shafer combination rule, and intra-subplant infeesn The h-procedure is a modified stochastic
approximation algorithm developed in [3], and is utilizedcalculate the pmf of a process variable based
on the measurements of one sensor that monitors the varldbileg this procedure, multiple estimates
of the process variable pmf can be calculated by utilizing theasurements of several sensors. The
Dempster-Shafer rule is used to combine these pmf’s intcm@lesipmf. Given two serially connected
process variables of a subplant, the pmf of one can be ctdculmsed on the measurements of a sensor
that monitors the other one. This computation, termed aa-gubplant inference, is based on statistical
models of the serial connection and, once again, the h-guveeand the Dempster-Shafer rule. Details

of these calculations are provided below.

A. Process variable pmf estimation for subpl&i

1) PMF estimation based on a single sensor monitoring thegss variable:As mentioned before,
process variablé/; is monitored by two sensors, namef;; and S;». Consider senso$;;, and let

11) .“737(111) denote the sensor’s measurements up to time

its data quality beDQ1;. Further, Iets(ll), (
instantn and let P (1) be the estimate of the pmf 6f based on these measurements &rg ;. In

other words,

IID

Py = O‘1|8(11 ,sén), ---,Sgl)QDQn% (44)

P (Vi = o)
wheren € N ando; € ;. Our goal is to determine the pmﬁsﬂ(vl), defined as

P9 (Vi = 01) 2 Tim P(Vi = oqs™, SV s0D: DQyy). (45)

n— oo
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For convenience, let us denofe’ (V; = o) as h,, (n). With ¢, being a design parameter and

the initial conditions specified ak,, (0) = |211‘ = % Vo1 € X1, we introduce the following recursive

procedure for calculating,, (n):

hoy (n+1) = ho, (n) + en [, (s841) = o (m)] - (46)
Regarding the set point of (46), i.e.; (sgﬂ) it is defined, based on the sensor believability (20), as
follows:
. B, s =
W, (seit) =9 o (47)
Si-1 if Spn+1 7501.

Equations (46) and (47) characterize the h-procedure.

It was shown in [3] that as — oo, the h-procedure converges in probability to the followlimgit:

1—-DQu
2

Clearly, according to (48), the estimafésﬂ(vl) depends not only on the sensor measurements, but

he, (n) = DQu1 - P(S11 = 01) + , 01 €% (48)

also onD@);. Observe that ifDQ1; is close tol, the estimated pmf of; is close to the pmf of5;,
which is identical to what is postulated by classical statis However, ifD@Q1; is close to0, the same
measurements result ﬁsll(m) being practically uniform and independent of the sensorsmeaments.
For all intermediate values db()¢1, the estimateﬁsﬂ(vl) is an affine function ofDQ;.

The corresponding estimate of the pmfigf based on the measurements of ser$gris calculated
in the same manner as above.

As before, letP>> (V,) and P52 (V) denote the estimates of the pmf &f based on measurements
of sensorsSy; and Sy, respectively. These pmf’s are also calculated using tipeobedure described
above.

2) PMF estimation based on multiple sensors monitoring gleiprocess variablelet ]5511512(‘/’1)
denote the estimate of the pmf Bf based on the measurements of both sensors that monitorabesgr

variable, namelyS;; andS;,. In other words,
psnsm (Vl) é nh_{I;O P(‘/l‘sgll)a ceny ngll); DQll; S§12)a ceny 3212); DQI?)' (49)

To obtain the sought estimate, we combine the two pifs (V1) and P*2(V}), calculated above, into

a single pmf using Dempster-Shafer rule (see [9]):
Psll(Vl = Ul)PSm(Vl = 0'1)
Do PO (Vi =) POV = o)

g1

pSuSlz(‘/’l — 0—1) — , 01 € 21. (50)

Regarding process variabM,, the pmfﬁ521522(V2) is calculated in the same manner as above.
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3) Estimation of process variable pmf’s based on intra-saibpinferences:The two goals of these
calculations are as follows: One, as mentioned before, @iopute estimates of process variable pmf’s
based on the serial connection of the subplant. The otheisaioecompute estimates of the joint pmf of
process variables, which are utilized in the adaptatitinfal controller layer as the basis for adaptation.
Regarding subplanG, the serial connection is characterized by the conditiggmaf’s P(V7|V5) and
P(V5|Vy), introduced in (16) and (17), respectively.

Let P51 (V) denote the estimate of the pmf &f based on the measurements of a sensor that monitors

V5, namely,So;. In other words,
P51 () & tim P(Vls{, s DQo). (51)

To calculate the sought pmf, we first evaluaté (V) using the h-procedure. Next, we utilizg(V;|Vz)
and the total probability formula to compuféSM(Vl), ie.,

P¥1 (V1) =Y P(Vi|Va = 02) P (Vy = 03), 03 € L. (52)
Similarly, the pmfPS22(V1) can be calculated using the procedure described above.

Let 13511521(1/1) denote the estimate of the pmf &f based on measurements of two sensors, namely,
S11 and S»1, which monitor V; and V,, respectively. In this scenarid?sllsm(‘/’l) is obtained by
combiningPSH(Vl) and 15521(‘/’1) using, once again, the Dempster-Shafer rule. This proeecdam be
extended to compute the pmf &f based on any other combination of sensors. The same catigat
are applied to evaluate the pmf’s ©f as well.

Regarding the joint pmf of/; and V5, it is calculated by utilizing the inference model(V;|V2) and

the estimate of the pmf of,. For instance, the joint pmPSn (V1, V) is computed as
PV, Vo) = P(V4| Vo) PS4 (V3). (53)

Regarding subplant&;; and Gyj, the process variable pmf identification procedure is idahto the
one described above. The corresponding joint pmf’'s of @ecariables are calculated as in (53). For

instance, the pmf'%2(V;, V3) and P55+ (V3, V) are computed as

]5532(‘/1,‘/3) = P(Vl“/{’))Psm(%%

A i (54)
PS41342(V'37‘/4) = P(%|V4)PS4IS42(‘/‘1)’

where the inference modeRB(V;|V3) and P(V3|V,) are given in Subsection Il1-B.
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B. Example of intra-subplant inference

In this example, we illustrate the utility of intra-subplanference by quantifying the loss of information
when it is not applied.

Consider subplant;;. Assume that RP is undamaged, while LT is malfunctionirey, V3 andV, are
in statesNg, andH,, respectively. Further, assume that only sergqt which monitorsV, is utilized
to ascertain the states of both RP and LT. Let the (V4) be specified af), 0,0,0,0,0,0,1], where
the row vector indicates probabilities ¥, being in state&'Lyy.7, VL(2)1, L1yirs Lzyers My, Moy
N, andH ;. Given these data, the problem is to assess the priif.of
Scenario 1: Utilizing intra-subplant inference,

P (V) = > P(Vs|Vi = 04) P9 (V) = o), (55)
04€EY,

we obtain P54 (V3) = [0,0,0,1], which indicates accurately thafs is in stateNgp.
Scenario 2: Here, we ascertain the pmf &f;, denoted asl3(V3), without utilizing inferences. Clearly,
we possess no knowledge, whatsoever, about the staig,ofince only measurements 8f; are taken
into account. Thereforel(V3) is assigned a$l, 1,1 1], i.e, all states oV are equiprobable.

Clearly, these two scenarios illustrate the efficacy ofairgubplant inferences for process variable

assessment.

VI. ADAPTATION/RATIONAL CONTROLLER LAYER

As mentioned in Section Il, the adaptation/rational cdigrdA/RC) layer is based on rational controllers
developed in [4]-[6]. In this section, we describe the opieraof these controllers and specify their

parameters and temporal properties.

A. Rational controllers and subplant process variables psgessment

Each subnetwork is equipped with a decision making devieealy, a rational controller, which has
two propertiesergodicity and rationality. The ergodicity property implies that all states in the dexi
space are visited with a non-zero probability. The ratibpgiroperty implies that the residence time in
states with a smaller penalty function is larger than in ¢ha#th a larger one. The degree to which this
distinction takes place is referred to as theel of rationality

Regarding subplang&y, the penalty function of the rational controller is chosen a

By(zy) = I{le(vl,VQ)}, (56)
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WhererI(Vl, V5) is the estimate of the joint pmf df; andV; associated with sensor subnetwork state

x1 € X1 (see (23)) and{.} is the entropy of the pmf. For example, the entropyRif; ) is calculated

as

{P)}t=- Y

01€3,

P(Vl :Ul)logm]‘P(W 20'1). (57)

The residence timel,,, for the rational controller is specified as follows:

Tm axy

Ty =

1

N -
(ay) T 1 @1(ar) >,

If (I>1(ac1) S n (58)

whereN (level of rationality— a positive integer)y > 0 (a small number), and,.« (the largest residence

time) are design parameters. It is clear from (56) and (58) the rational controller resides longer in

states of X7 where the process variable pmf’'s possess smaller entrapy,léss uncertainty. Further,

to ensure ergodicity, the rational controller visits alites of the sensor subnetwork in a deterministic,

round-robin manner.

Denote the relative residence time of the rational cordrah stater; € X after the controller visits

all states ofX7 as,,:

Ta:

T,

pr— 7x1 .
> Tn

r1€X1

(59)

Then, based om,,, the process variable pmf's associated with subplantan be calculated as follows:

PGI(VI)

Pg,(Va)

Similarly, the pmf'sPq,, (Vi) and Pg,, (Vs),

r1€X1 ) (60)

associated witlG;, andPg,,, (V) and Pg,,, (V4), associated

with Grr, can be evaluated by utilizing rational controllers as ii)(&nd (58).

The pmf’'s Pg,(V1), Pa,(V1), Pg,(Va), Pa, (V3), Pa,,(V3), and Pg,,,(V,) are used in Section VII

to combine information from the three

subnetworks and obgainf's of process variables that are

subsequently utilized to evaluate the condition of the poplant.

B. Temporal properties of adaptation

From the temporal point of view, the three rational conéxdldescribed in Subsection VI-A are assumed

to adapt simultaneously over their respective subnetwdrkshis scenario, the A/RC layer is said to
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consist ofepochs For each subnetwork state, € X, £ € {I,IIIII}, the epoch consists of three

periods:

Dq evaluation period'pg,
Process variable pmf evaluation perid@yay,
Residence period in state,, 7,, .
If @ is the number of states in the subnetwork, tligrepochs comprise aycle At the end of each
cycle, the process variable pmf's are identified and can tiead for inter-subplant inferences.
Assuming that the sensor measurements are provided @vasec, the procedure described in Section
IV is considered to be of duratiofipg = 5sec. Using the procedures described in Section V, durafion o
process variable assessméfi,,, is about6sec. The maximum residence peridthax, can be selected
as desired. Iflhax is selected to bésec, the duration of each epoch is less than or equé2dec.
As mentioned above) = 15 epochs constitute a cycle, wherein eachCbbtates is visited. So, for
each subnetwork, the cycle duration is, at m&8t) = 180sec. Moreover, every rational controller holds
its pmf’s until the others have completed their respectiyeles. Thus, the A/RC layer evaluates the

process variable pmf’s of the three subplants within, attmi@sec.

VIlI. KNOWLEDGE FUSION LAYER

In this layer, the pmf'sPg, (V1), Pa,(V1), Pa,(Va), Pa, (Vs), Pa,,(V3), and Pg,, (V4), evaluated at
the A/RC layer, are combined using inter-subplant infeesnto obtainP*(V;), P*(Va), P*(V3), and
P*(V}). This is described below.

A. Calculations

We infer the state oV; based on the state &f3 from subplantGy;; using total probability formula:

pGIII(‘/l) = Z P(‘/1|‘/é = 0-3)pGIII(‘/3 = 03)7 (61)

03€X3
whereX; is defined in (11). Next, we combingg, (V1), Pg,, (V1), andPg,,, (V1) using Dempster-Shafer

rule to obtainPg, ,, ., (V1):
111
I Pc.(vi=01)

pGI,II,III(‘/l = 01) = k:IIH ) (62)

Z Hka(Vl = 01)

o1€X k=1
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whereX; is defined in (3).
Based on{]f’(;I (V1), Payy (V1) Py (V1), Pay o (V1) } we select”* (V) as one of them that possesses
the smallest entropy. In other words,Iif P(.)} denotes the entropy of pni?(.), then

P*(Vl) = argmin {I {pGI(‘/i)} ,I {PGII(Vl)} 7[ {pGIII(‘/i)} ,I {PGI,II,III(W)}} . (63)
As for V5, we infer its pmf based, again, on total probability formula
Py:(Va) = Y P(Va|Vi = 00)P*(Vi = o). (64)
1€,
Next, we combine the pmf'®y.- (15) and Pg, (V) using Dempster-Shafer rule to obtafie, v:- (V2):
R Pa (Vo = 09) Py (Vo =
ey (Va = 03) — GIA( 2 = 03) VK( 2 = 02) ’
> Pa,(Va = 02) Py (Vo = 09)

02E€X,

(65)

whereX, is defined in (7). Finally, based o{mﬁ’gl(%), Py (Va), PGI,V;(VQ)}, we selectP*(V;) as one

of them that possesses the smallest entropy, i.e.,
P*(v3) = argmin { 1 { Pa,(Va) b, 1{ P 2) } T { P (V2) } } (66)
The inferences aboW 3 and'V4 are obtained in a manner similar to that\é6f and'V,, respectively.
These calculations yield the pmf&*(V3) and P*(V;).

Thus, the knowledge fusion layer provides estimates of th€spof all process variables to be used

in the subsequent plant assessment layer to evaluate tliticorof B, HT, RP, and LT.

B. Accuracy

Obviously, the knowledge fusion layer combines the infaramaobtained within the overlapping decomp-
osition {G1, Gi1, Girr } in order to obtain the pmf’s of all process variabl&5,, Vo, V3, andV,. These
pmf’'s can, in principle, be obtained using the centralizgstesm of Figure??. The following question
arises: How well do the pmf’?*(Vi), i =1,2,3,4, approximate the ones that can be obtained using the
centralized system and denotedﬁa*s(vi), i =1,2,3,4. Although at present we do not have a complete
answer to this question, below we analyze a simplified praliteat provides a sufficient condition when
the pmf's P*(V;) and P*(V;) are the same.

Let V; and V5 be two serially connected process variables (similar, mitidentical, to the ones
introduced in Section IIl). Assume that the universal sét¥j0andV; are
{N1, A},
{N2, Aa1, Aga, Aos},

>
Yo

(67)

> e
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where, as before, ‘N’ is Normal and ‘A" is Anomaly. Léfy, and Z,, be the intervals wherd/; is
viewed as being in staté$; and A, respectively (see, for instance, (1)). Similarly, ¥%,, Za,,, Za,,,
and Z,,, be the corresponding intervals f&fy. Assume that the d.c. gains of the process variables are

piecewise constant in these intervals, i.e.,

- QN » if ‘71 S ZN1
al(Vl) = (68)

an,, if Vi€ Za,
and
an,, If Vy € ZN,
. ap,,, If Vy € I,

OéQ(VQ) = _ (69)
ap,,, If Vo€ Za,,

Ay 1T Vo € Za,,.

Let the serial connection &7, andV, be characterized by the conditional pmPgV;|V2) and P (V| V;),
which are given by (16) and (17), respectively. Finally,usse that each process variable is monitored
by two sensorsS;; and S1, monitor V1, while Sy; and Ses monitor V.

As before, introduce two subplani; and Gy, in order to combat the curse of dimensionali€yj
consists ofV; and associated sensors, whilg; comprisesV, and associated sensors. Two methods
for evaluating pmf’s ofl; andV; are considered below, the centralized and the decentalarel their
results are compared.

Centralized process variable assessments (CPVA): Each sensor is assignél) based on the procedure

described in Section IV. The state space of the overall semstwork is given by
X = {(1000), (0100), ...., (1111)} , (70)

which contain®2* — 1 = 15 states. Let the sensor network be equipped with a rationatalter, whose

objective is to minimize the following penalty function:
@) =1{P.(Vi,Vn)}, v € X, (71)

wherer(Vl,Vg) is computed using the h-procedure (46), total probabilityriula (52), and Dempster
-Shafer rule (50) (see Subsection V-A), ah{l.} denotes the entropy. Assume that a unique solution of

this minimization problem exists and is given by, i.e.,

2" = argmip O(x). (72)
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To solve the above problem, we specify the residence timéetontroller in state: € X as

where N is sufficiently large. In this scenario, it has been shown 4h that the rational controller
determines the optimal state’. After »* is ascertained, the pnﬂ*(vl,VQ) is marginalized to obtain
Pp-(V1) and P, (12).

Given that the above rational controller operatesXarwe henceforth refer to it as tlgdobal rational
controller.
Decentralized process variable assessments with inter-subplant inferences (DPVA-1): Assign D@ to
each sensor as before. Decompose the sensor network wighsgiace (70) into two subnetworks, with

state spaceX; and Xi; defined as follows:
X1 = {(10)17(01)17(11)1}7
X = {(10)m, (01)1r, (11)11}.

Assume that each subnetwork is equipped withcal rational controller, whose objective is to minimize

(74)

the penalty functions

Or(z) = I{le(v’l)},wleXI,

(75)
Orp(znr) = I{Pxn(vz)}, xn € X,

respectively, where®, (V;) and P, (V») are calculated using the h-procedure (46) and DempstdeSha

rule (50). Assume that unique solutions of these minimiraproblems exist and are given by and

wﬁ:
3 = arg min ®r(x
I gZ’IEXI I( 1)7 (76)
Ty = arg min Prr(wy).
II e Xy II( II)

Let the residence time of the rational controllers be spagtidis in (73). Under this scenario, the local
optima, zj and zj;, are determined, and the pmfl%c;(vl) and Pxﬁ(v’g) are utilized for inter-subplant
inferences as follows:

For Vs, the pmfo;(Vg) is computed using total probability formula:

Pp(Vo) = > P(ValVi = 01)Pp; (Vi = o). (77)
1€,
Next, the pmfP. . (V5) is calculated by combining,; (V2) and P, (V%) using Dempster-Shafer rule.
The pmf with smallest entropy amonig: (V2), Py: (V2), and P, ) (V2) is reported to the operator.

Similar calculations are applied far; as well.
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Remark 7.1:Note thatX can be expressed in terms of the concatenation of subnetwgriend Xi;:
X = {XI X XH} U {XI X (00)} U {(00) X XH}, (78)

where x denotes the Cartesian product. O

Remark 7.2:Note that, as follows from the example of Subsection V-B, pegformance of the
decentralized system without inferences is inferior td tifathe centralized one. O

Let V' be an arbitrary discrete random variable with the univessal:. Assume that there exist two
candidate pmf’sp; (V) and (V') of V. These two pmf’'s can be combined using Dempster-Shafer rule
to obtain another pmfP5(V'), of V. Using these pmf’s, we introduce:

Definition 7.1: The pmf’s P, (V') and Py(V') are termedempster-Shafer monotonf{®S-monotonic)

if the following two conditions hold:

arg max P (V =0) =arg max Py(V =o0), (79)
I{Pp(V)} <min[I{P(V)},I{P(V)}]. (80)

In other words,P; (V) and P»(V) are DS-monotonic if they indicate the same state with highes
probability, and the pmP2(V') has a smaller entropy than the constituent ones. This defirfias an
obvious extension for more than two pmf’s as well.

Theorem 7.1:Assume that the pmf’sév;(vg) and sz*I(VQ) are DS-monotonic. Ther{z}, 27;) = =¥,
and the pmf’'s ofl; and V5 calculated using CPVA and DPVA-I are, respectively, idesiti

Proof: See the Appendix. O

Based on the above theorem, we hypotheslte pmf’s of process variablé€,, V5, V3, and V4
identified using the centralized system of Fig@feand the overlapping decomposition architecture of

Figure 4 are identical if the following four groups of pmf’seaDS—monotonic:{PGI(Vl),PGH(Vl),
Paun(Vi) by { Pau(V2), Py (V) b, { P, (V5), Pa (), P (V8) | and { P, (Va), P (Vi) }.

VIIl. PLANT CONDITION ASSESSMENT LAYER

The objective of this layer is to evaluate the condition ofHE, RP, and LT based of*(V}), P*(V3),
P*(V3), and P*(V;). The calculations described below involve the plant moitlpduced in (31), and
the previously mentioned Jeffrey’s rule (see [11]).

While P*(V;) can be directly used for plant condition assessment, thesphif(V,), P*(V3), and
P*(Vy) cannot, since the model (31) specifiB$Vy|Gyr), P(V4|Gre), and P(V]|Gy) (with V/, i =
2,3, 4, defined in Subsection IlI-E) rather that(Vs|Gyr), P(Vs|Gre), andP(Vy| Gy ). Therefore P*(V;),



26

i = 2,3,4, must be re-calculated in terms ©f, i = 2,3,4. This is carried out as follows: Consider, for
example,V,. Then,
{ﬂw=mmﬂﬂw=WM+émFumm @1)
Pr(Vy = Nyp) = P*(Vp = L(l)HT) + P*(Va = Nyr),
where the right hand side of (81) is due to the evefits = VLyr}, {Vo = Layur}, {Vo=Lejur}
and {V, = Ny} being disjoint. Using (28)-(30), we carry out similar cédktions to obtainlf’*(Vg’) and
P*(V}) as well. Given these pmf’s, we ascertain the condition of B, RP, and LT as described below.
For the case of B, consider the following algorithm:

(a) Assign the initial pmf ofGy (see (25)) as

RGa) = |5 3 (82)

(b) Calculate the initial joint pmf of; and Gg:
Py(V1,Gs) = Po(Ge) P(Vi1|Ghs), (83)
where P(V1|Gg) is given in (31).

(c) Calculate the marginal probability

P(Vi)= Y Po(V1,Gs). (84)
Gs€¥ay

(d) Apply Jeffrey’s rule (see [11]):

- Pr(v1)
P(V1,Gg) = Ph(V1,G . 85
(V1,Gg) = By(V1,Gs) Ro(V) (85)
(e) Marginalize the left hand side of (85) to obtain the asswst of the condition of B:
P(Gs) = ) P(V1,Ga). (86)

Viex;
Similarly, for the other components, the pmf¥G.r), P(Gge), andP(G\+) are calculated by following
steps (a)-(e) above. Thus, the overall plant assessmerpisssed as a vector:

58

G = |P(G), P(Gyr), P(Gre), P(Gir)] . (87)

The pmf’s in (87) comprise the output of the monitoring systidat is reported to the plant operator.
The next section presents performance evaluation of thisitoring system using the power plant of

Figure 1.



27

IX. APPLICATION OF RESILIENT MONITORING SYSTEM TO POWER PLANT
A. Parameters of power plant and monitoring system

The range and d.c. gain of process variaMe i € {1,2,3,4}, are selected as follows: Referring
to (2) and (5), we assume th&®, = 5, V2, = 100, R® = 50, ar, (V1) = 0.005V; + 1.95, and
an, (Vi) = 0.0004V; + 2.18; Similarly, for the other process variablégtT = 5, VAT =25, RYT = 10,
RS = 15, R = 20, avy,, (Vo) = 0.001V + 0.495, ar,,, (V) = 0.01V5 + 0.40, ar,,, (Va) =
0.005V4 + 0.472, ax,, (Vo) = 0.001V5 4 0.56, VAP =5, V.RP =100, RFP = 20, R§" = 40, RE" = 50,
VL (V3) = 0.0016V3 + 0.492, ar .. (V3) = 0.0026V5 + 0.472, a0 (V3) = arye (V3), ang.(V3) =
0.0001V3 + 0.6, VT = 0.1, VT =20, R{" = 3, RS’ =6, Ry =9, Ry = 11, Rt' = 13, Ry = 15,

R = 17, avig,,, (Vi) = 0.0014Vs + 0.4, avi,,, (Vi) = 0.006Vy + 0.38, ar,,, (Vi) = 0.001Vy +
0.416, ar,,, (Vi) = 0.01Vy + 0.332, awm,, (Va) = 0.002V; + 0.426, amg,, (Vi) = 0.01V + 0.3,
an,, (Vi) = 0.002V; + 0.441, and g, (V4) = 0.008V; + 0.35. Note that the temperature values and d.c.
gains introduced above are just illustrative and can beedcab needed. Further, we assume fijat

i € {1,2,3,4}, is a Gaussian random variable, whose pdf is specifieNt(yLVi, nyi), with the standard
deviationoy, being sufficiently small so that realizations \6f outside of the corresponding interval (e.g.,
V2., Vinax]) can be ignored.

The random variablé*ij, i€{1,2,3,4}, j € {1,2}, which characterizes the measurements of sensor
Sij, Is assumed to be distributed according\fc(ﬂgw,agw). The sampling period of all sensors is taken
as0.01sec.

Regarding the probing signals associated with i@ layer, their magnitudes are assigned as follows:
AY'=2and A}? = A}® = AY* = 0.7. The DQ parametek, involved in (42), is selected as02.

Regarding the process variable pmf evaluation proceduegparameted;, involved in (46), is assigned

as0.01. The stopping rule of (46) is given by
|hg, (n + 1) — he,(n)] < 1074, (88)

The level of rationalityN of the rational controllers is chosen to Be The parameterg and Ty,
involved in (58), are taken a&04 and1, respectively.
Regarding the plant model, the conditional pmf’s involvad31) are assumed as follows:
e P(Vi = Ng|Gg = Ng,) = P(V1 = Lg|Gs = Ag,) = 0.95 and other probabilities ar@05;
e P(Vy =N|;|Gur =Ng,,) = P(V§ = L;;|Gur = Ag,,) = 0.90 and other probabilities are1;
o P(V4 = Nip|Grp = Ng,,) = 0.88, P(V5 = Lip|Grp = Ag,.) = 0.91, P(V§ = Li,|Gre = Ng,.) =
0.12, and P(V4 = Ni,|Gre = Ag,,) = 0.09;
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® P(Vél/ - N'/LT’(;LT - NGLT) - 091' P(Vél/ - H/LT‘GLT - AGLT) - 092' P(Vél/ - H/LT‘GLT - NGLT) -
0.09, and P(V] = N/;|Gx = Ac,,) = 0.08.
In all scenarios considered, the plant condition is eveldi@nd expressed as

G2 [P(Ga), P(Gur), P(Gre), P(Gir)], (89)

wherein the pmf's are represented by the row vectBf&’;) = [P(Gs = Ng,),P(Gs = Ag,)],
P(Gur) [P(Gur = Na,), P(Gur = Ag,)l, P(Gre) = [P(Gre = Na,,), P(Gre = Ag,,)), and
P(GLT) [P(GLT = NGLT)JS(GLT = Acy )]

B. Performance evaluation

In all figures of this subsection, states of the sensor swmks (see (23)) are indexed as follows: For
k e {111, I11},

1: (1111), 2: (1110)g, 3¢ (1101)), 4: (1011),
5: (1010), 6: (1001), 7: (0111), 8: (0110),
9: (0101)), 10: (1000);, 11: (0100),, 12 : (1100)y,
13 : (0010)y, 14 : (0001)g, 15 : (0011);.

(90)

Regarding the non-resilient system to which the resiliere & compared, it so happens that in some
situations, Dempster-Shafer rule cannot be applied to awertivo candidate pmf’'s. For example, suppose
PS5 (V1) = [1,0] and P52 (V1) = [0, 1]; Clearly, combining these two pmf’s using Dempster-Shaiie
is not possible since it results iff, 3]. Therefore, to comput@s*:2(V7), we utilize the following

rule:
. 1/~ ~
PESe () = 5 (B3 (V) + B3 (V). (91)

The performance of the monitoring system designed in thgepes evaluated in the framework of the
following three scenarios:
Scenario 1: All power plant components are operating normally, with = 80, py, = 21, uy, = 60,
py, = 15.3, ando—f/1 = oy, = oy, = oy, = 0.0L SensorsS11, So1, S31, andSy; are captured and forced
to indicate malfunctioning of LT and fractures in the ingidas of B, HT, and RP. The sensor distributions
are characterized byg = 285, 05 = 0.2, ug =179, 05 = 021, pg = 85, oz = 0.12,
K3, = 22.3, 05, = 0.1, Kg, = 16.2, 05, = 0.1, K3, = 61, 05, = 0.11, ng, = 5.1, 05, = 0.1,
pg,, = 153, andog = 0.1. Based on these data, sendo)’s are evaluated a®)@1; = 0.015,
DQ12 =0.99, DQ21 =~ 0, DQas = 0.96, DQ31 ~ 0, DQ32 = 0.96, DQ41 ~ 0, and DQ 45 = 0.95.
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Fig. 5: Relative residence time for Scenatio

The performance of the monitoring system is illustrated iguFe 5. It indicates that the residence
time in states, which take into account measurements of oaptured sensors is small. The plant
component pmf's are computed &4G5) = [0.95,0.05], P(Gyr) = [0.89,0.11], P(Gge) = [0.91,0.09),
and P(Gy7) = [0.91,0.09], which indicate accurately that all components are opegatormally.

Given that four sensors indicate normal, while the other fioulicate damage/malfunctioning, the
non-resilient system evaluates the above pmf’s to be appedgly uniform (0.5, 0.5]). This leads to the
measure of resiliencﬂf?> =10.93,0.83,0.85, 0.87], testifying to the efficacy of the resilient monitoring
system.

Scenario 2: LT is malfunctioning and other components operate normalith p;; = 80, puy, = 24.5,
By, = 75, Wy, = 18.4, and oy, = oy, = oy, = Oy, = 0.01. SensorsSi1, Si2, So1, and Soy are
captured and forced to indicate that B and HT are damaged.s&hsor distributions are assumed to
be characterized byagn = 31, o5, = 0.2, Bg, = 31, 05, = 0.21, pg, = 15.1, 05, = 0.12,
Kg,, = 15.2, 05, = 0.1, Bg, = 74, 05, = 0.11, Bg,, = 74.1, 05, = 0.1, Kg, = 18.1, 05, = 0.1,
pg,, = 18.6, 05 = 0.1. Based on these data, sendof)’'s are evaluated a®@Q1; = D@12 = 0.015,
D@21 = DQas = 0.006, DQ31 = DQ32 = 1, and DQ41 = DQ42 = 0.99.

The performance of the monitoring system is illustratediguFe 6. The residence time in all states of
subnetworkX is the same, since all its sensors are captured. Despitadk®f reliable information from
the sensors of B, the monitoring system calculdtés's) = [0.95,0.05]. This is due to the inter-subplant
inferences (see Subsection VII). Further, the g ,;) is calculated af.49, 0.51], since it is impossible
to determine the condition of HT using sensors of other campts. Finally, regarding RP and LT, the

following pmf's are computedP(Gre) = [0.91,0.09] and P(G.r) = [0.09,0.91]. The above pmf’s
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indicate accurately that B and RP operate normally, whilesLmalfunctioning.

The non-resilient system evaluatgs (G;) = [0.05, 0.95] and P, (Gyr) = [0.1,0.9], which erroneously
indicate that the insulations of B and HT are damaged. Thiddeo the measure of resilienﬁﬁ =
[0.98,0.7,—, —], where —’ is used to indicate that none of the sensors of a particudanponent are
captured. Once again, these results demonstrate the gffidahe monitoring system presented in this
work.

Scenario 3: All power plant components function normally, wifla; = 80, puy, = 24.5, uy, = 75,

py, = 16, andoy, = oy, = oy, = oy, = 0.01. All sensors are captured and indicate malfunctioning
of all power plant components. The sensor distributions chr@racterized by.g = 31, o5 = 0.2,
pg, =31, 05 =021, pg =151, 05 =012, pg =152, 05 =01, pg =5 05 = 0.1,
B, = 5.1, 035, = 0.1, Bg,, = 4.1, 05, = 0.1, B, = 4.2, 05, = 0.2. Based on these data, dllQ’s

are computed to be close

The performance of the monitoring system is illustratedigufe 7. As expected, the residence time in
all subnetwork states is the same. The pnit&3;), P(Gyr), P(Gge), and P(G,;) are computed to be
uniform ([0.5,0.5]), which is reasonable since no trustworthy informationwkamy of the components
is available.

The non-resilient system evaluates (Gg) = [0.05, 0.95], Por(Gyr) = [0.1,0.9], Por(Gre) = [0.12,0.88],
and P,,(Gr) = [0.09,0.91], which erroneously indicate that all components are dachafiee measure
of resiliency is computed AR = [0.76,0.7,0.69, 0.72], which testifies to the efficacy of the monitoring

system presented in this work.
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X. CONCLUSIONS AND FUTURE WORK

This paper developed an approach to resilient monitoringpefer plants based on a five-layer architecture,
which includes an overlapping decomposition with intrad émer-subplant inferences. The calculations
used at each layer are described and justified. Numerictdrpgance evaluation of the system developed
testifies to its efficacy.

Numerous problems in this area still remain open. The ma@ omour opinion, is the relatively low
rate of plant condition assessment. In the current impléatiem, plant assessment results are obtained
every180sec. At least an order of magnitude improvement would bealesi. This may be accomplished
using more efficient rational controllers for adaptatiorihe process variable assessment layer and more
expedient data quality assessment algorithms. Other opdniems include:

« Development of the overlapping decomposition approacplamts with cyclic (rather than tree-type)

influence diagrams among the plant components.

« Improving models of process variables, plant, and the legtaby making them more general and

practical. For example, attackers other than mean-basmddsbe introduced and analyzed.

« Practical application of the developed resilient monitgrsystems is a challenging task for future

research.

Solution of these problems will lead to a relatively compland useful theory of resilient monitoring

systems for plants under cyber-physical attacks.
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APPENDIX
The proof of Theorem 7.1 is based on the following five lemmas.
Lemma A.1:Let P, (V}) be the pmf ofV; calculated as mentioned in Subsection VII-B afd(Vs)
be calculated using total probability formula:

P, (Vo) = Y P(ValVi = 01) Py (Vi = 01), (92)
01EY

where P(V5|V1) andX; are specified by (17) and (67), respectively. Then,

I {PxI(VQ)} - I{le(‘;)} i 1, 71 € X1, (93)

whereI{.} is the entropy.

Proof: Due to the structure oP(V5|V1), equation (92) can be expressedgs(Vy = Ny) = P, (Va =
As1) = 1P, (Vi = Ny) and P, (Va = Ags) = Py, (Vo = Agg) = 3P, (Vi = A;). Consequently, the
entropy of P,,(V;) can be evaluated as

1 {PxI(Vl)} = - Z pxI(VQ = 02)10g2 PxI(VQ = 0'2) - 1, (94)

02E€X,

whereY, is defined in (67). Then, applying the change of base formujg, > = {ggzz the right hand
side (RHS) of (94) becomeB{PxI(Vg)} logyd — 1 =21 {PII(VQ)} -~ 0
Lemma A.2:Let Px(Vl,Vg) be the joint pmf ofV; and V5 calculated as mentioned in Subsection

VII-B and P,(V5) be the pmf ofV; obtained by marginalizing®,(Vi, V»). Then,

. 3 (.
1{f.e)} = s1{P.i, W)}, v ex, (95)
whereI{.} is, as before, the entropy.
The proof of this lemma is similar to that of Lemma A.1. O

Since P,.(V1, V) and Px;(Vl) possess the smallest entropy in the state space of theieatasp
networks (see (72) and (76)), Lemmas A.1 and A.2 indicatettieglobal and local rational controllers
adapt in such a manner that the entropy of the pm¥Fpfs minimized.

The following three lemmas provide technical conditionstfte proof of Theorem 7.1:

Lemma A.3:Assume thaf,, (V2) andP,,, (V2), 21 € X1, 21 € X1, are DS-monotonic and, .., (V)

is their concatenation using Dempster-Shafer rule. Then,

AL { Py, 0y (V2) } oang™ { Py (V2)}
ar{,,(va)} a1 { P, ()}

> 0. (96)



33

Proof: Introduce notations?,, (V) = [p1,p2,ps,ps] and P, (Va) = [q1,q2, g3, q4]. Without loss of
generality, assume thatiax{pi,ps,ps,p1} = p1 andmax{qi,q2,q3,q} = q1. The entropy ofP;, (V3)

is
4
1{Po(2) } ==Y pilogs i ©7)
=1
The differential ofI {le(x@)} is

{0} =3 21 (P =

where, due to the constraint; + ps + p3 + ps = 1,

4
> dp; = 0. (99)
i=1
Using (99), equation (98) can be re-written as follows:
X 3.1 9 9 R
a1 { P, (v2) } = > [ G a—m] 1{P.,(v2) } dpi. (100)

Since, as it follows from (97), the patrtial denvanvﬁ[{ e ( Vg)} =—1—log,pi, 1 =1,2,3,4. From
(100), we obtain the following differential for the denorator of the first expression of (96):

ar{P,,(v2)} = 233 {log4 o

} dp;. (101)
=1

2

In a similar manner, it can be shown that the numerator ofekjgession is given by:

3 , ‘ 102)
Dqy — paq3 Pada Dgq; — piq? Pidi (
Z{ — 7 (1+10g4 o )— — 2 <1+lo 817, > dpi,
=1
where
4
D =Y pig (103)
=1

Supposedp; > 0 anddps = dps = 0. Then, the RHS of (101) becom%]syg4 ;’—‘1‘] dpy, implying that
dl{ ml(w)} < 0. Using (102), it can also be shown thﬂt{ﬁ(xl,xn)(%)} < 0. Moreover, in all other
situations wherell {PxI(Vg)} is less than zero (for instance, whépm, > 0, dps > 0, dps = 0, ps > p4,

andgs > q4), it can be shown thad/ {P(mhxn)(vg)} is less than zero as well. These arguments imply

AI{ Pley 0y (V2) }
dI{P, (V2)}

The second expression in (96) can be proved in a similar nmtanne O

that > 0.



34

Lemma A.4:Let x4, k = 1,11, be a state inXy, with all active sensors being captured. Let the pmf
P, (V») be computed as mentioned in Subsection VII-B. Finallyclet< 1 be the parameter involved
in the data quality exponent (42). Thah{ mk(‘é)} =1—14(e), 6(¢) — 0 ase — 0.

Proof: We prove this lemma for the statg € X;. The proof forzy € Xy is similar.

Supposez; = (10);. Let the pmf of the corresponding sensor, nam&ly, be P(S11) = [PI%l?Pl\?;l}'
Since this sensor is captured, its data quality is assigse@;; = ¢ based on the d.c. gain model
(68) and the procedure described in Section IV. In this &itnathe pmfo (V1), calculated using the

h-procedure, is as follows (see (48)):

Py (Vi) = [PS“ Ll — Be+ ! R (104)
The entropy ofP,, (V;) is
I {PxI(Vl)} = —aq(e)logy ai(€) — az(€)logy as(e), (105)
where
= pSu
ar(e) : (106)
az(e) = Pl\”?:e + 1%
Taking into account (105) and using Lemma A.1, we have
A 1
I {PxI(Vg)} =3 [1 — ai(e)logy aj(€) — az(e) logy as(e)] . (107)
As it follows from (106), the expressiorai(e€)log, ai(€) — az(€)logy az(e) — 1 ase — 0.
Differentiating both sides of (107) with respectdowe obtain
d ~ S 1 CLQ(E)
—I4P, =P — =1 . 108
de { I(‘é)} ( Ls 2> 082 aq (€) (108)

It follows from (106) and (108) thagil{ s ( Vg)} < 0, and the equality is attained Whé?fs“ = % In
other words, the entropy af,, (;) is a decreasing function af

Equation (107) can be re-expressed as

I{PxI(Vz)} _ 14 —Loa(g)log, al(;) — az(¢) logy az(€) (109)

Denote ~1=ax(91og, “1(5)_“2(5) 08,9209 as5(e). It is seen that(e) — 0 ase — 0.
Similarly, if 1 is either(01); or (11)y, it can be shown thai{ xl(‘/g)} is equal tol — d(¢), where

d(e) = 0 ase — 0. O
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Lemma A.5:Let the pmf’st;(Vg) and pxﬁ(Vg) be DS-monotonic. Further, lat; and z;; be states
in X7 and Xy, respectively, with their corresponding active sensorageaptured. Then, the following

is satisfied:

1{ Plaz (V) } < min | 1{ P (Vo) } I { Py (Vo) } T { Py (V) }| - (120)

Proof: If the sensors corresponding ta; are captured, it follows from Lemma A.4 that,, (V) =
[2+61(e), ¥+ 02(e), T + d3(€), + + da(e)], whered;(e) — 0 ase — 0, i = 1,2,3,4. Consequently, the
entropy of the pmfP,. ...\ (V2), which is obtained by concatenatinig; (V2) and P, (V2) using, as
before, Dempster-Shafer rule, can be shown to have theniolipproperty: Withe being the parameter

involved in the D@ exponent (42),

H{ P; (V2 } = [ = 01(] T { P (V) } + 0 (e), (111)

whered;(e) — 0 ase — 0, i = 1,2. Using (111), the difference between the entropfe%ﬁ(xf,xn)(%)}
and/ {P(mf,xﬁ)(VQ)}, can be expressed as

H{ Pl i (V2) } = T{ Plag i (V2) } = 1= 81N T { P (V2) } = T{ Prag (Vo) } + 82(e). (112)

Since the pmf’sﬁx;(vg) and Pw;I(Vé) are DS-monotonic, andis chosen arbitrarily small, the RHS of
(112) is greater than zero. This implies tHa{P(xf,xﬁ)(VQ)} <I {P(xmn)(VQ)}.

Using the above approach and Lemma A.4, it can also be shath {Pﬁ(zf,xﬁ)(Vg)} <I { (ml,xﬁ)(VQ)}
andI{P(mf,wﬁ)(Vg)} <I {If’(%mz)(vg)}. O
Proof of Theorem 7:1The pmf of V; is evaluated using DPVA-I and CPVA as follows:

DPVA-I: Recall thatP,:(V3) and P,. (V) are DS-monotonic, due to which the praf,. .. (V3)
possesses the smallest entropy among the three of them, ﬂyflggﬁ)(vg) is reported as the pmf
of V.

CPVA: Sincez; minimizes the penalty functio®(zr), it can be shown using Lemma A.1 that

I {P(zf,(oo))(VQ)} <I {If’(%(oo))(%)}, Vzr € X1. Similarly, it can also be shown thAt{P((OO)%)(Vg)}
<I {P((OO)JH)(VQ)}, Van € Xyr. Further, since the pmf'®,: (V2) and P, (V2) are DS-monotonic, it

is clear that
I{P(x;,x;)(vz)} < I{P(J:I,(OO))(‘/Z)}a Vo € X1,
I {P(x;,xﬁ)(w)} <1 {15((00)@11)(1/2)} , Vau € Xi1.

From (113) and Lemma A.2, it is obvious that the global optimu*, belongs to the seftX7 x Xii}.

(113)

Now, we investigate whether* is, indeed,(z7, z;) in the following two cases:
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« Casel: For arbitraryz; andzyy, let the pmf'sP,, (V2) and P, (V») be DS-monotonic. From previous

arguments, we know thalt{ (Vg)} { e (V2) } andl{ (Va) } {PzH(Vg)}. Then,
using Lemma A.3, it can be shown thﬁt{P(x ) (V2) } < I{

1’1 SL‘II

} Thus, in this case,

*is, indeed,(zf, z;).

Case2: Let P, (V») and P, (V») be non-monotonic due to all active sensors of either or both

statesy; andxyr, being captured. Then, it can be shown using Lemma A.Sﬁf{di’(xf,xﬁ)(VQ)} <
I {P(mn)(VQ)}. Thus, in this case alsa;" is, indeed,(x], x17).

From these two cases, it is clear thét= (zf, zf;). ThereforeP(xmﬁ)(Vg) is reported as the pmf of

Va.

Similarly, it can be shown that the pmf’s &f, calculated using DPVA-I and CPVA, are the same.
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