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Combating Curse of Dimensionality in Resilient Plant Monitoring Systems:

Overlapping Decomposition with Intra- and Inter-Subplant Inferences

Humberto E. Garcia∗, Semyon M. Meerkov† andMaruthi T. Ravichandran†

Abstract

This paper is intended to design and evaluate the performance of a power plant monitoring system (sensor

network) that degrades gracefully under a cyber-physical attack. Such a system is referred to as resilient.

While several features of the resilient system considered here have been developed in the previous work,

the current paper addresses the “curse of dimensionality”,which arises due to the exponential growth of

the systems’ state space as a function of the number of sensors. To combat this problem, we develop

an overlapping decomposition of the power plant into a set ofsubplants, inducing a corresponding

decomposition of the sensor network. Using both intra- and inter-subplant inferences, the paper mitigates

the effect of information losses due to the decomposition. The efficiency of the resulting monitoring

system is demonstrated by simulations.

I. INTRODUCTION

Resilient plant monitoring systems are sensor networks that degrade gracefully under cyber-physical

attacks, which cause them to project misleading information. In the previous work [1]–[3], we have

developed an approach to designing such systems based on theideas of active data quality assessment

[2] and rational control [4]–[6]. The former is used to identify sensors under cyber-physical attack, and

the latter to adapt to the network state resulting in minimalentropy of the monitored plant assessment.

While the steady state performance of such systems has been shown to be satisfactory, the transients

have not: the adaptation time grows exponentially as a function of the network size (i.e., number of

sensors in the network). This phenomenon, which arises in many engineering problems and which R.

Bellman called the “curse of dimensionality”, is the main topic addressed the current paper. Specifically,

we develop an approach to combating the curse of dimensionality in resilient monitoring systems based
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on the ideas of overlapping plant decomposition (developedin control-theoretic literature [7], [8]) and

Dempster-Shafer combination rule [9] (used in artificial intelligence). The former induces an overlapping

decomposition of the sensor network and, thus, reduces the state space of the adaptation; the latter allows

for recovering information losses due to the decomposition.

To support this approach, we develop a plant monitoring system consisting of five layers: one of them

remains the same as in the previous work (data quality assessment layer [2]), three others are modifications

of those used previously (process variable assessment, adaptation, and plant assessment layers [1], [3]),

and one is novel (knowledge fusion layer).

A specific system, in terms of which the development is carried out, is a simplified power plant shown

in Figure 1, where B is the boiler, HT and LT are the high and lowpressure turbines, respectively,

Fig. 1: Schematics of the power plant

RP is the reheat pipe, C is the condenser, FP is the feedwater pump, andSij ’s are the sensors; C and

FP are assumed to operate normally, and, therefore, their sensors are not included; B, HT, RP, LT, C,

and FP are referred to throughout this paper ascomponentsof the power plant. Having eight sensors,

and assuming that the measurements of at least one of them is utilized for plant condition assessment,

the cardinality of the sensor network state space is28 − 1 = 255. Decoupling the network into three

overlapping subnetworks with four sensors each, leads to the cardinality24 − 1 = 15 and, thus, to

dramatic improvement of the adaptation speed, in some caseswithout, as it is shown in this paper, loss in

quality of plant condition assessment. Quantified by the Kullback-Leibler divergence [10], in all scenarios
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considered, the resulting system exhibits high level of resiliency in comparison with non-resilient ones.

A brief review of the literature on other approaches to resilient plant monitoring systems is in order.

(Humberto). However, the issue of combating the curse of dimensionality has not been addressed. This

is carried out in this paper.

The remainder of this paper is structured as follows: The above mentioned overlapping decomposition

architecture is developed in Section II. The model of the power plant considered is presented in Section

III. The layers of the monitoring system are described in Sections IV-VIII. Results from numerical

performance analysis of the overall system are presented inSection IX. Conclusions and directions of

future work are given in Section X. The proofs are included inthe Appendix.

II. OVERLAPPING DECOMPOSITIONARCHITECTURE

In this section, we describe the overlapping decompositionusing as an example the power plant of Figure

1. Other plants could be addressed in a similar manner as well. Also, for the sake of simplicity, we assume

that each component of the plant, which can be attacked, i.e., B, HT, RP, and LT, is characterized by a

single process variable, e.g., its temperature, denoted asV1, V2, V3, andV4, respectively.

Mutual influences of the temperature among plant componentscan be represented by acyclic graph

shown in Figure 2(a). Assuming that B heat-generating capacity is large enough to maintain RP temperature

independent of HT condition (normal or anomalous), the influence HT→ RP can be ignored. Similarly,

(a) Cyclic graph representation (b) Tree graph representation

Fig. 2: Influence diagrams

under the above assumption, one can also ignore RP→ B, since B is capable of maintaining its own

temperature independent of HT and RP conditions. Further, if C heat-absorbing capacity is large enough

to maintain constant water temperature at its outlet independent of LT conditions, the influence LT→

B can also be ignored. Under these assumptions, the cyclic graph of Figure 2(a) is reduced to thetree
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graph illustrated in Figure 2(b). This implies that all components of the power plant can be viewed as

“serially connected”, and the overlapping decomposition into threesubplants, GI, GII, andGIII, shown

in Figure 3, is possible. Such a decomposition, while reducing the dimensionality of the original problem,

B

RP

LT

HT

GI GII

GIII

Fig. 3: Overlapping subplantsGI, GII, andGIII

preserves all mutual influences of the process variables andleads (under appropriate conditions− see

Subsection VII-B) to the same quality of plant condition assessment as the centralized architecture of

Figure??. Note that overlapping decomposition, as a simplification tool, has been widely used in control

theory for analysis and design of complex systems (see, for example, [7] and [8]).

As indicated in Figure 3, plantG is partitioned into three overlapping subplants,GI, GII, andGIII.

This partitioning induces a corresponding partitioning ofthe sensor networkSN into threesubnetworks,

SNI, SNII, andSNIII, consisting of{S11,S12,S21,S22}, {S11,S12,S31,S32}, and{S31,S32,S41,S42},

respectively. IfXk, k = I, II, III, denotes the state space of each subnetwork, then the number of states

in each of them is24 − 1 = 15, rather than255 as inX. In this situation, if the evaluation of each state

takes, as before,10sec, a report to the operator is produced in less than3min (rather than42min, as in

the centralized case). Note that under this decomposition,the aforementioned report would consist of

four pmf’s, P̂ (B), P̂ (HT), P̂ (RP), andP̂ (LT), rather than of a single pmf̂P (G).

Turning now to the issue of computing these pmf’s, we introduce thefive-layer architectureshown

in Figure 4, where the additional, new layer is intended to utilize inter-subplant inferencesto produce

assessments similar to those that could be produced within the centralized architecture of Figure??. We

refer to this new layer as theknowledge fusion layer.
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The system of Figure 4 consists of three parallel sub-architectures, where the first three layers in each

of them are similar, but not identical, toDQ assessment, process variable assessment, and A/RC layers

of the centralized architecture. While the first of these layers operates in the same manner as in the

Fig. 4: Overlapping five-layer monitoring system architecture

centralized architecture, the latter two are different. Namely, the process variable assessment layer uses

intra-subplantinferences to calculate joint pmf’s of process variables ofeach subplant (i.e.,̂P (V1, V2)

in GI, P̂ (V1, V3) in GII, andP̂ (V3, V4) in GIII). The A/RC layer is different because it uses these joint

pmf’s as a basis of adaptation, rather than the plant pmf. Thereason is that the subplant pmf’s are not

yet available at this stage of computation, since they require inter-subplant inferences. These inferences

are utilized in the fourth (knowledge fusion) layer, which combines information from all subplants and

evaluates pmf’s of all process variables involved in the power plant. Finally, based on these pmf’s and

statistical models of power plant components, the fifth layer assesses their conditions and provides a

report to the plant operator.
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As mentioned before, details of these calculations are described in Sections IV-VIII.

III. M ODELING

In this section, we model process variables of the power plant shown in Figure 1 for various conditions

− normal and anomalous. While we assume that anomalies in eachcomponent of the plant occur

independently, the process variables under various conditions are, in fact, coupled as shown in Figure

2(b), and this coupling leads to the models of process variables developed below.

A. Models of process variables

As mentioned before, states of B, HT, RP, and LT are assumed tobe characterized by the following process

variables: boiler temperature (V1), high pressure turbine temperature (V2), reheat pipe temperature (V3),

and low pressure turbine temperature (V4), respectively. It should be noted that this assumption is not

restrictive, and more complex models of power plants can be examined using the techniques developed

in this paper.

Statistical models of the process variables and their relationships with the states of associated components

are introduced as follows:

1) Model of boiler temperature:Let Ṽ1 be a continuous random variable that characterizes values of

V1. Let fṼ1
(ṽ1) denote the probability density function (pdf) ofṼ1 with the support

Ṽ1 ∈ [V B
min, V

B
max]. (1)

In general, depending on the values taken by process variables, their states are often classified as normal or

anomalous. Regarding B, low temperature values are assumedto occur due to a fracture in the insulation.

Accordingly, the interval (1) is partitioned into the following two regions:

LB : [V B
min, R

B) andNB : [RB, V B
max], (2)

whereV1 is viewed as Low (LB) and Normal (NB), respectively. To characterize the state ofV1 (according

to (2)), we define the discrete random variableV1 whose universal set is given by

Σ1
△
= {LB,NB}. (3)

The probability mass function (pmf) ofV1 can be calculated usingfṼ1
(ṽ1), V B

min, V B
max, andRB as

P (V1 = LB) =
RB
∫

V B

min

fṼ1
(ṽ1)dṽ1,

P (V1 = NB) =
V B

max
∫

RB

fṼ1
(ṽ1)dṽ1.

(4)
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The d.c. gain ofV1 with respect to the fuel valve position is assumed to be a continuous piecewise

linear function ofṼ1, and is expressed as

α1(Ṽ1) =











αLB
(Ṽ1), if Ṽ1 ∈ [V B

min, R
B)

αNB
(Ṽ1), if Ṽ1 ∈ [RB, V B

max],

(5)

whereαLB
(Ṽ1) andαNB

(Ṽ1) are linear in their respective domains andαLB
(RB) = αNB

(RB).

Thus, the model ofV1 is defined by the pdf of̃V1, pmf of V1, and d.c. gainα1(Ṽ1), where Ṽ1 ∈

[V B
min, V

B
max].

2) Model of high pressure turbine temperature:Let the random variablẽV2 characterize the values of

process variableV2. The pdf of Ṽ2 is specified byfṼ2
(ṽ2) with the support

Ṽ2 ∈ [V HT
min, V

HT
max]. (6)

Regarding the anomalous operation of HT, it is assumed to be similar to that of B, i.e., damage in the

insulation. As before, let the discrete random variableV2 characterize the state ofV2. To define the state

space ofV2, we also take into consideration, apart from the HT anomaly,the serial connection between

B and HT (introduced in Section II), which implies that the condition of the former affects that of the

latter. With the assumption that damage in B results in a larger drop in temperature than damage in HT

alone, the universal set ofV2 is specified as

Σ2
△
= {VLHT,L(1)HT,L(2)HT,NHT}, (7)

whereVLHT (‘Very Low’) occurs when both HT and B are damaged;L(1)HT when only B is damaged;

L(2)HT when only HT is damaged; andNHT when neither B nor HT are damaged. The regions that specify

the states ofV2 are given by

VLHT : [V HT
min, R

HT
1 ), L(1)HT : [RHT

1 , RHT
2 ),

L(2)HT : [RHT
2 , RHT

3 ), NHT : [RHT
3 , V HT

max],
(8)

where RHT
1 < RHT

2 < RHT
3 . The pmf of V2 can be calculated usingfṼ2

(ṽ2), V HT
min, V HT

max, and RHT
i ,

i ∈ {1, 2, 3}, as in (4).

The d.c. gain ofV2 with respect to the HT valve position is assumed to be a continuous piecewise
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linear function ofṼ2, and is expressed as

α2(Ṽ2) =







































αVLHT
(Ṽ2), if Ṽ2 ∈ [V HT

min, R
HT
1 )

αL(1)HT
(Ṽ2), if Ṽ2 ∈ [RHT

1 , RHT
2 )

αL(2)HT
(Ṽ2), if Ṽ2 ∈ [RHT

2 , RHT
3 )

αNHT
(Ṽ2), if Ṽ2 ∈ [RHT

3 , V HT
max],

(9)

whereαVLHT
(Ṽ2), αL(1)HT

(Ṽ2), αL(2)HT
(Ṽ2), andαNHT

(Ṽ2) are linear in their respective domains andαVLHT
(RHT

1 ) =

αL(1)HT
(RHT

1 ), αL(1)HT
(RHT

2 ) = αL(2)HT
(RHT

2 ), andαL(2)HT
(RHT

3 ) = αNHT
(RHT

3 ).

Thus, the model ofV2 is defined by the pdf of̃V2, pmf of V2, and d.c. gainα2(Ṽ2), where Ṽ2 ∈

[V HT
min, V

HT
max].

3) Model of reheat pipe temperature:Anomalous operation of RP is, as before, assumed to occur due

to damage in its insulation. Further, as mentioned in Section II, we assume that B and RP are serially

connected while ignoring the effect of HT on the latter.

Let the continuous random variablẽV3 characterize values ofV3. The pdf ofṼ3 is denoted byfṼ3
(ṽ3)

with the support

Ṽ3 ∈ [V RP
min, V

RP
max]. (10)

As with previous statistical models, let the discrete random variableV3 characterize the state ofV3. The

universal set ofV3 is specified as

Σ3
△
= {VLRP,L(1)RP,L(2)RP,NRP}, (11)

whereVLRP occurs when both B and RP are damaged;L(1)RP when only B is damaged;L(2)RP when

only RP is damaged; andNRP when neither B nor RP are damaged. The regions that representthe states

of V3 are given by

VLRP : [V RP
min, R

RP
1 ), L(1)RP : [RRP

1 , RRP
2 ),

L(2)RP : [RRP
2 , RRP

3 ), NRP : [RRP
3 , V RP

max],
(12)

whereRRP
1 < RRP

2 < RRP
3 . The pmf ofV3 can be calculated as before.

The d.c. gain ofV3 with respect to the fuel valve position is assumed to be a continuous piecewise
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linear function ofṼ3, and is expressed as

α3(Ṽ3) =







































αVLRP
(Ṽ3), if Ṽ3 ∈ [V RP

min, R
RP
1 )

αL(1)RP
(Ṽ3), if Ṽ3 ∈ [RRP

1 , RRP
2 )

αL(2)RP
(Ṽ3), if Ṽ3 ∈ [RRP

2 , RRP
3 )

αNRP
(Ṽ3), if Ṽ3 ∈ [RRP

3 , V RP
max],

(13)

whereαVLRP
(Ṽ3), αL(1)RP

(Ṽ3), αL(2)RP
(Ṽ3), andαNRP

(Ṽ3) are linear in their respective domains andαVLRP
(RRP

1 ) =

αL(1)RP
(RRP

1 ), αL(1)RP
(RRP

2 ) = αL(2)RP
(RRP

2 ), andαL(2)RP
(RRP

3 ) = αNRP
(RRP

3 ).

Thus, the model ofV3 is defined by the pdf of̃V3, pmf of V3, and d.c. gainα3(Ṽ3), where Ṽ3 ∈

[V RP
min, V

RP
max].

4) Model of low pressure turbine temperature:Since LT operates at a low pressure, we assume

that its insulation is immune to damage. Indeed, anomalous operation is considered to occur when LT

transfers energy to the shaft with poor efficiency, i.e., heat is accumulated in the turbine, rather than being

converted into mechanical energy. Consequently, under abnormal operation, LT temperatureV4 is higher

than normal. In addition, it is assumed that any rise in LT temperature is not sufficient to compensate

for the loss of heat from either a damaged B, or a damaged RP, orboth.

Let the continuous random variablẽV4 characterize the values ofV4. The pdf of Ṽ4 is specified by

fṼ4
(ṽ4) with the support

Ṽ4 ∈ [V LT
min, V

LT
max]. (14)

Let the discrete random variableV4 represent the state ofV4. Taking into account the serial connection

between B, RP, and LT (introduced in Section II), the universal set ofV4 is expressed as

Σ4
△
= {VL(1)LT ,VL(2)LT ,L(1)LT ,L(2)LT ,M(1)LT ,M(2)LT ,NLT ,HLT}, (15)

where

VL(1)LT implies LT is operating normally, RP is damaged, and B is damaged;

VL(2)LT implies LT is malfunctioning, RP is damaged, and B is damaged;

L(1)LT implies LT is operating normally, RP is operating normally,and B is damaged;

L(2)LT implies LT is malfunctioning, RP is operating normally, andB is damaged;

M(1)LT (‘Medium’) implies LT is operating normally, RP is damaged,and B is operating normally;

M(2)LT implies LT is malfunctioning, RP is damaged, and B is operating normally;

NLT implies LT is operating normally, RP is operating normally,and B is operating normally;

HLT (‘High’) implies LT is malfunctioning, RP is operating normally, and B is operating normally.
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The pmf ofV4 can be calculated like in (4).

As before, the d.c. gain ofV4 with respect to the LT valve position is assumed to be a continuous

piecewise linear function of̃V4, and is denoted byα4(Ṽ4).

Thus, the model ofV4 is defined by the pdf of̃V4, pmf of V4, and d.c. gainα4(Ṽ4), where Ṽ4 ∈

[V LT
min, V

LT
max].

B. Modeling the mutual influences of process variables

The serial connections illustrated in Figure 2(b) are statistically modeled as conditional pmf’s of the

following pairs of process variables:(V1,V2), (V1,V3), and(V3,V4). The conditional pmfP (V1|V2),

as it follows from Subsection III-A, is specified as

P (V1|V2) =





1 1 0 0

0 0 1 1



 , (16)

where the rows and columns represent the states ofV1 andV2, respectively. As it follows from Subsection

III-A, if V1 is LB, thenV2 can be eitherVLHT or L(1)HT with equal probabilities, and ifV1 is NB, then

V2 can be eitherL(2)HT or NHT, once again, with equal probabilities. Therefore,

P (V2|V1) =

















0.5 0

0.5 0

0 0.5

0 0.5

















. (17)

Regarding(V1,V3), as it follows from Subsection III-A, the conditional pmf’sP (V1|V3) andP (V3|V1)

are the same as (16) and (17), respectively. Regarding(V3,V4), as it follows from Subsection III-A, the

conditional pmf’sP (V4|V3) andP (V3|V4) are

P (V4|V3) =









































0.5 0 0 0

0.5 0 0 0

0 0.5 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0.5 0

0 0 0 0.5

0 0 0 0.5









































(18)
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and

P (V3|V4) =

















1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

















. (19)

As mentioned in Section I, the conditional pmf’s described above are utilized to obtain inferences

about the state of one process variable, given the state of another.

C. Model of sensor subnetworks

As illustrated in Figure 1, each process variableVi, i ∈ {1, 2, 3, 4}, is assumed to be monitored by two

sensors, denoted bySij , j ∈ {1, 2}, wherei and j index the process variable and sensor, respectively.

Let the continuous random variablẽSij, whose pdf isfS̃ij
(s̃ij), characterize the measurements of sensor

Sij . The range ofS̃ij is identical to that ofṼi (see (1), (6), (10), and (14)). Let the discrete random

variableSij, with universal set identical to that ofVi (see (3), (7), (11) and (15)), represent the state of

Sij . The pmf ofSij is calculated as that ofVi (see Subsection III-A).

Given that sensors may be attacked, we assign to each sensor ascalar value termed as data quality,

DQ ∈ [0, 1], where, as before,DQ = 1 implies that the sensor measurements are completely trustworthy

andDQ = 0 indicates that they are completely untrustworthy. While the method of assigningDQ’s is

described in Section IV, data quality is used here to specifya model of the sensors.

SinceDQ is not a statistical quantity, a model of its effect on the relationship between random variables

Vi andSij should be introduced. To accomplish this, we define the sensor believability, βij , as

βij =
|Σi| − 1

|Σi|
DQij +

1

|Σi|
, i ∈ {1, 2, 3, 4}, j ∈ {1, 2}, (20)

where|Σi| represents cardinality ofΣi, and setsΣi are given by (3), (7), (11), and (15). Equation (20)

implies that if DQ = 1, believability is 1, while if DQ = 0, believability is 1
|Σi|

, implying that all

states of the process variableVi are equiprobable. The coupling betweenVi andSij is postulated using

believability as follows:

P (Vi = σi |Sij = σi) = βij ,

P (Vi = σ̄i |Sij = σi) = 1−βij

|Σi|−1 ,
(21)
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whereσ̄i implies ‘notσi’ and σi, σ̄i ∈ Σi, i ∈ {1, 2, 3, 4}, j ∈ {1, 2}. For example, consider sensorS11,

which monitorsV1. Since|Σ1| = 2, believability isβ11 =
DQ11

2 + 1
2 , and, therefore,P (V1|S11) is

P (V1|S11) =





β11 1− β11

1− β11 β11



 , (22)

where the rows and columns represent the states ofV1 andS11, respectively. IfDQ11 = 1, P (V1|S11) =

diag(1, 1), and if DQ11 = 0, both states ofV1 are equally probable irrespective of the state ofS11.

As it follows from Section I, the state space of sensor subnetwork SNk, k ∈ {I, II, III}, is expressed

as

Xk = {(1000)k , (0100)k , ..., (1111)k} , k ∈ {I, II, III}, (23)

where the cardinality ofXk is 24 − 1 = 15.

Thus, the model of sensor subnetworks is characterized by the model of individual sensors and the

state spaceXk, k ∈ {I, II, III}, of each subnetwork.

D. Model of attacker

As far as the attacker is concerned, it is assumed that sensormeasurements are modified in order to project

misleading information. In formal terms, this implies thatthe attacker modifiesfS̃ij
(s̃ij), i ∈ {1, 2, 3, 4},

j ∈ {1, 2}, by changing its variance, or expected value, or both. Our preliminary investigation indicated

that modifying expected values is more damaging for resilient monitoring than modifying variances.

Therefore, the model of the attacker considered in this paper is that for a sensor under attack,

E(S̃ij) 6= E(Ṽi), i ∈ {1, 2, 3, 4}, j ∈ {1, 2}, (24)

whereE(.) denotes the expected value. This implies, for example, that, while B temperature,V1, is in

stateNB, sensorS11 may project a signal indicating thatV1 is in stateLB.

The mean value-based attacker (24) is considered throughout this paper. We note, however, that other

models of the attacker could be considered using the approach of this work.

E. Plant model

The plant model consists of models for B, HT, RP, and LT. Since, as it is mentioned at the beginning

of this section, the anomalies in each of these components occur independently, their models can be
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described as follows: Let the discrete random variablesGB, GHT, GRP, and GLT , with universal sets

specified by

GB ∈ ΣGB
:= {NGB

,AGB
}, GHT ∈ ΣGHT

:= {NGHT
,AGHT

},

GRP ∈ ΣGRP
:= {NGRP

,AGRP
}, GLT ∈ ΣGLT

:= {NGLT
,AGLT

},
(25)

describe the ‘health’, i.e., normal or anomalous, of B, HT, RP, and LT, respectively. Under this scenario,

we introduce the plant model for B as the conditional pmfP (V1|GB). Regarding HT, as it follows from

the independence of component anomalies, the plant model isgiven byP (V2 ∈ {VLHT,L(2)HT}|GHT) and

P (V2 ∈ {L(1)HT,NHT}|GHT). To simplify notations, define the random variableV ′
2 , whose universal set

and pmf are

V ′
2 ∈ {L′

HT,N
′
HT} (26)

and

P (V ′
2 = L′

HT) = P ({V2 = VLHT} ∪ {V2 = L(2)HT}),

P (V ′
2 = N′

HT) = P ({V2 = L(1)HT} ∪ {V2 = NHT}),
(27)

respectively. Utilizing (26) and (27), the plant model for HT can be re-expressed asP (V ′
2 |GHT). Similarly,

for the other components, let

V ′
3 ∈ {L′

RP,N
′
RP}, V

′
4 ∈ {N′

LT ,H
′
LT}, (28)

where

P (V ′
3 = L′

RP) = P ({V3 = VLRP} ∪ {V3 = L(2)RP}),

P (V ′
3 = N′

RP) = P ({V3 = L(1)RP} ∪ {V3 = NRP})
(29)

and

P (V ′
4 = N′

LT) = P ({V4 = VL(1)LT} ∪ {V4 = L(1)LT} ∪ {V4 = M(1)LT} ∪ {V4 = NLT}),

P (V ′
4 = H′

LT) = P ({V4 = VL(2)LT} ∪ {V4 = L(2)LT} ∪ {V4 = M(2)LT} ∪ {V4 = HLT}).
(30)

Under (28)-(30) and the independence of component anomalies, the plant model for RP and LT are

described byP (V ′
3 |GRP) and P (V ′

4 |GLT), respectively. Thus, the overall plant model is given by the

following vector of conditional pmf’s:

[

P (V1|GB), P (V ′
2 |GHT), P (V ′

3 |GRP), P (V ′
4 |GLT)

]

. (31)

The plant condition is expressed as the vector~G, specified by

~G
△
= [P (GB), P (GHT), P (GRP), P (GLT)] , (32)

where the pmf’s in (32) are evaluated in Section VIII by utilizing (25)-(31) and assessments of the states

of process variables.
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F. Measure of resiliency

To quantify the accuracy of plant assessment, we introduce ameasure of resiliency(MR) based on

Kullback-Leibler(KL) divergence(see [10]). This divergence is typically used to quantify the ‘distance’

between two pmf’s. For example, KL divergence between the actual health of B, denoted byP (GB), and

the assessed health of B, denoted byP̂ (GB), is calculated as

D
(

P (GB)||P̂ (GB)
)

=
∑

σ∈ΣGB

P{GB = σ} log|ΣGB |

P{GB = σ}

P̂{GB = σ}
. (33)

Utilizing the above divergence, we quantifyMR for B as a normalized difference betweenD
(

P (GB)||P̂nr(GB)
)

andD
(

P (GB)||P̂ (GB)
)

, whereP̂nr(GB) is the estimated pmf of thenon-resilient system, i.e., when the

monitoring system uses the measurements of all sensors assuming DQij = 1, ∀i, j. In other words,

MRB =
D

(

P (GB)||P̂nr(GB)
)

−D
(

P (GB)||P̂ (GB)
)

D
(

P (GB)||P̂nr(GB)
) . (34)

Clearly,MRB ≤ 1, and the value1 is attained when̂P (GB) = P (GB). Similarly, MR can be calculated

for HT, RP, and LT, which results in the following vector:

#      »

MR = [MRB, MRHT, MRRP, MRLT ] . (35)

Equations (33)-(35) are used in Section IX to quantify the efficacy of the monitoring system presented

in this work.

Thus, the model of the power plant is characterized by modelsof process variables, serial connections,

sensors, sensor subnetworks, plant, and the attacker.

IV. DATA QUALITY ASSESSMENTLAYER

As stated previously, sensorDQ is assigned using an active identification procedure developed in [2],

which assumes knowledge of the d.c. gains of process variables at mid-points of their respective regions.

For example, considerV1. The following d.c. gains are assumed to be known, and can be utilized for

DQ evaluation:

ᾱLB

△
= α1

(

V B
min +

RB−V B
min

2

)

,

ᾱNB

△
= α1

(

RB + V B
max−RB

2

)

,
(36)

whereα1(.) is defined in (5) andV B
min, RB, andV B

max are defined in (2). According to the aforementioned

procedure, probing signals (discussed in Section I) are simultaneously applied to each process variable

using appropriate valves, and observed sensor responses are analyzed from the point of view of their
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consistency with known d.c. gains (e.g., (36)). The sensorswith larger consistency are viewed as more

trustworthy, and theirDQ is assigned accordingly. For brevity, the methodology to ascertainDQ is

described below for sensors monitoringV1. Extension to sensors monitoring other process variables is

straightforward.

In general, any type of deterministic or random probing signals could be used. Here, utilizing the fuel

valve, we generate the simplest probe− a rectangular pulse of amplitudeAV1

0 and durationT1, applied

at the time instantt0, i.e.,

u1(t) = AV1

0 rectT1
(t− t0). (37)

The value ofAV1

0 is selected sufficiently small so thatV1 remains in the same state (LB or NB) before

and during the probe. Additionally, the small amplitude of the probe ensures that, while appropriately

influencingV1 andV3, its effect onV2 andV4 is negligible. The value ofT1 is selected so thatV1

reaches a small vicinity of its steady state defined by the probe.

Let the mean value,E(Ṽ1), of the process variableV1 be µṼ1
. Further, let the mean value,E(S̃1j),

j ∈ {1, 2}, of the measurements of sensorS1j before the probe beµS̃1j
and at the end of the probe be

µ′
S̃1j

. If the sensor is not compromised and its mean prior to the probe coincides exactly with that of the

process variable, i.e.,µS̃1j
= µṼ1

, the following holds true:

µ′
S̃1j

− µS̃1j
= AV1

0 α1(µṼ1
),

= AV1

0 α1(µS̃1j
),

(38)

whereα1(.), as mentioned before, is defined in (5). However, if the sensor is compromised, the previous

statement does not hold true. In order to distinguish between a captured sensor and one that is not, we

introduceprobing inconsistency(PIC) of S1j as follows:

PIC1j
△
=

∣

∣

∣
(µ′

S̃1j
− µS̃1j

)−AV1

0 ᾱ1

(

µS̃1j

)
∣

∣

∣
, (39)

whereᾱ1(µS̃1j
) is defined as

ᾱ1(µS̃1j
) =







ᾱLB
, if µS̃1j

∈ [V B
min, R

B)

ᾱNB
, if µS̃1j

∈ [RB, V B
max].

(40)

The d.c. gainsᾱLB
and ᾱNB

, involved in (40), are defined in (36). Clearly,PIC1j is large if S1j is

captured and is relatively small if not.

Given the abovePIC, data quality is assigned according to

DQ1j = e−F (PIC1j), (41)
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whereF (.) is a monotonically increasing function ofPIC, with F (0) = 0. It turns out that a convenient

way of introducing this function is

F (PIC1j) = −
ln ǫ

PIC2
M1

PIC2
1j , (42)

whereǫ << 1 (a design parameter) is theDQ assigned whenPIC is PICM1
, given by

PICM1
= |AV1

0 ·(ᾱLB
− ᾱNB

)|. (43)

Equations (37)-(43) characterize theDQ assessment layer of the power plant monitoring system.

V. PROCESSVARIABLE ASSESSMENTLAYER

As illustrated in Figure 4, the process variable assessmentlayer evaluates the joint pmf’s of process

variables in each subplant. These calculations are based onthe previously mentioned h-procedure, Demp-

ster-Shafer combination rule, and intra-subplant inferences. The h-procedure is a modified stochastic

approximation algorithm developed in [3], and is utilized to calculate the pmf of a process variable based

on the measurements of one sensor that monitors the variable. Using this procedure, multiple estimates

of the process variable pmf can be calculated by utilizing the measurements of several sensors. The

Dempster-Shafer rule is used to combine these pmf’s into a single pmf. Given two serially connected

process variables of a subplant, the pmf of one can be calculated based on the measurements of a sensor

that monitors the other one. This computation, termed as intra-subplant inference, is based on statistical

models of the serial connection and, once again, the h-procedure and the Dempster-Shafer rule. Details

of these calculations are provided below.

A. Process variable pmf estimation for subplantGI

1) PMF estimation based on a single sensor monitoring the process variable:As mentioned before,

process variableV1 is monitored by two sensors, namely,S11 andS12. Consider sensorS11, and let

its data quality beDQ11. Further, lets(11)1 , s
(11)
2 , ..., s

(11)
n denote the sensor’s measurements up to time

instantn and letP̂S11
n (V1) be the estimate of the pmf ofV1 based on these measurements andDQ11. In

other words,

P̂S11

n (V1 = σ1)
△
= P (V1 = σ1|s

(11)
1 , s

(11)
2 , ..., s(11)n ;DQ11), (44)

wheren ∈ N andσ1 ∈ Σ1. Our goal is to determine the pmf̂PS11(V1), defined as

P̂S11(V1 = σ1)
△
= lim

n→∞
P (V1 = σ1|s

(11)
1 , s

(11)
2 , ..., s(11)n ;DQ11). (45)
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For convenience, let us denotêPS11
n (V1 = σ1) as hσ1

(n). With ǫh being a design parameter and

the initial conditions specified ashσ1
(0) = 1

|Σ1|
= 1

2 , ∀σ1 ∈ Σ1, we introduce the following recursive

procedure for calculatinghσ1
(n):

hσ1
(n + 1) = hσ1

(n) + ǫh

[

h∗σ1

(

s
(11)
n+1

)

− hσ1
(n)

]

. (46)

Regarding the set point of (46), i.e.,h∗σ1

(

s
(11)
n+1

)

, it is defined, based on the sensor believability (20), as

follows:

h∗σ1

(

s
(11)
n+1

)

=







β11, if s
(11)
n+1 = σ1

1−β11

|Σ1|−1 , if s
(11)
n+1 6= σ1.

(47)

Equations (46) and (47) characterize the h-procedure.

It was shown in [3] that asn → ∞, the h-procedure converges in probability to the followinglimit:

hσ1
(n)

P
→ DQ11 ·P (S11 = σ1) +

1−DQ11

2
, σ1 ∈ Σ1. (48)

Clearly, according to (48), the estimatêPS11(V1) depends not only on the sensor measurements, but

also onDQ11. Observe that ifDQ11 is close to1, the estimated pmf ofV1 is close to the pmf ofS11,

which is identical to what is postulated by classical statistics. However, ifDQ11 is close to0, the same

measurements result in̂PS11(V1) being practically uniform and independent of the sensor measurements.

For all intermediate values ofDQ11, the estimateP̂S11(V1) is an affine function ofDQ11.

The corresponding estimate of the pmf ofV1 based on the measurements of sensorS12 is calculated

in the same manner as above.

As before, letP̂S21(V2) and P̂S22(V2) denote the estimates of the pmf ofV2 based on measurements

of sensorsS21 andS22, respectively. These pmf’s are also calculated using the h-procedure described

above.

2) PMF estimation based on multiple sensors monitoring a single process variable:Let P̂S11S12(V1)

denote the estimate of the pmf ofV1 based on the measurements of both sensors that monitor the process

variable, namely,S11 andS12. In other words,

P̂S11S12(V1)
△
= lim

n→∞
P (V1|s

(11)
1 , ..., s(11)n ;DQ11; s

(12)
1 , ..., s(12)n ;DQ12). (49)

To obtain the sought estimate, we combine the two pmf’sP̂S11(V1) andP̂S12(V1), calculated above, into

a single pmf using Dempster-Shafer rule (see [9]):

P̂S11S12(V1 = σ1) =
P̂S11(V1 = σ1)P̂

S12(V1 = σ1)
∑

σ1

P̂S11(V1 = σ1)P̂
S12(V1 = σ1)

, σ1 ∈ Σ1. (50)

Regarding process variableV2, the pmf P̂S21S22(V2) is calculated in the same manner as above.
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3) Estimation of process variable pmf’s based on intra-subplant inferences:The two goals of these

calculations are as follows: One, as mentioned before, is tocompute estimates of process variable pmf’s

based on the serial connection of the subplant. The other oneis to compute estimates of the joint pmf of

process variables, which are utilized in the adaptation/rational controller layer as the basis for adaptation.

Regarding subplantGI, the serial connection is characterized by the conditionalpmf’s P (V1|V2) and

P (V2|V1), introduced in (16) and (17), respectively.

Let P̂S21(V1) denote the estimate of the pmf ofV1 based on the measurements of a sensor that monitors

V2, namely,S21. In other words,

P̂S21(V1)
△
= lim

n→∞
P (V1|s

(21)
1 , ..., s(21)n ;DQ21). (51)

To calculate the sought pmf, we first evaluateP̂S21(V2) using the h-procedure. Next, we utilizeP (V1|V2)

and the total probability formula to computêPS21(V1), i.e.,

P̂S21(V1) =
∑

σ2

P (V1|V2 = σ2)P̂
S21(V2 = σ2), σ2 ∈ Σ2. (52)

Similarly, the pmfP̂S22(V1) can be calculated using the procedure described above.

Let P̂S11S21(V1) denote the estimate of the pmf ofV1 based on measurements of two sensors, namely,

S11 and S21, which monitorV1 and V2, respectively. In this scenario,̂PS11S21(V1) is obtained by

combiningP̂S11(V1) and P̂S21(V1) using, once again, the Dempster-Shafer rule. This procedure can be

extended to compute the pmf ofV1 based on any other combination of sensors. The same calculations

are applied to evaluate the pmf’s ofV2 as well.

Regarding the joint pmf ofV1 andV2, it is calculated by utilizing the inference modelP (V1|V2) and

the estimate of the pmf ofV2. For instance, the joint pmf̂PS11(V1, V2) is computed as

P̂S11(V1, V2) = P (V1|V2)P̂
S11(V2). (53)

Regarding subplantsGII andGIII, the process variable pmf identification procedure is identical to the

one described above. The corresponding joint pmf’s of process variables are calculated as in (53). For

instance, the pmf’ŝPS32(V1, V3) and P̂S41S42(V3, V4) are computed as

P̂S32(V1, V3) = P (V1|V3)P̂
S32(V3),

P̂S41S42(V3, V4) = P (V3|V4)P̂
S41S42(V4),

(54)

where the inference modelsP (V1|V3) andP (V3|V4) are given in Subsection III-B.
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B. Example of intra-subplant inference

In this example, we illustrate the utility of intra-subplant inference by quantifying the loss of information

when it is not applied.

Consider subplantGIII. Assume that RP is undamaged, while LT is malfunctioning, i.e.,V3 andV4 are

in statesNRP andHLT , respectively. Further, assume that only sensorS41, which monitorsV4, is utilized

to ascertain the states of both RP and LT. Let the pmfP̂S41(V4) be specified as[0, 0, 0, 0, 0, 0, 0, 1], where

the row vector indicates probabilities ofV4 being in statesVL(1)LT , VL(2)LT , L(1)LT , L(2)LT , M(1)LT , M(2)LT ,

NLT, andHLT . Given these data, the problem is to assess the pmf ofV3.

Scenario 1: Utilizing intra-subplant inference,

P̂S41(V3) =
∑

σ4∈Σ4

P (V3|V4 = σ4)P̂
S41(V4 = σ4), (55)

we obtainP̂S41(V3) = [0, 0, 0, 1], which indicates accurately thatV3 is in stateNRP.

Scenario 2: Here, we ascertain the pmf ofV3, denoted aŝP (V3), without utilizing inferences. Clearly,

we possess no knowledge, whatsoever, about the state ofV3, since only measurements ofS41 are taken

into account. Therefore,̂P (V3) is assigned as
[

1
4 ,

1
4 ,

1
4 ,

1
4

]

, i.e., all states ofV3 are equiprobable.

Clearly, these two scenarios illustrate the efficacy of intra-subplant inferences for process variable

assessment.

VI. A DAPTATION/RATIONAL CONTROLLER LAYER

As mentioned in Section II, the adaptation/rational controller (A/RC) layer is based on rational controllers

developed in [4]–[6]. In this section, we describe the operation of these controllers and specify their

parameters and temporal properties.

A. Rational controllers and subplant process variables pmfassessment

Each subnetwork is equipped with a decision making device, namely, a rational controller, which has

two properties:ergodicityand rationality. The ergodicity property implies that all states in the decision

space are visited with a non-zero probability. The rationality property implies that the residence time in

states with a smaller penalty function is larger than in those with a larger one. The degree to which this

distinction takes place is referred to as thelevel of rationality.

Regarding subplantGI, the penalty function of the rational controller is chosen as

ΦI(xI) = I
{

P̂xI
(V1, V2)

}

, (56)
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whereP̂xI
(V1, V2) is the estimate of the joint pmf ofV1 andV2 associated with sensor subnetwork state

xI ∈ XI (see (23)) andI{.} is the entropy of the pmf. For example, the entropy ofP (V1) is calculated

as

I {P (V1)} = −
∑

σ1∈Σ1

P (V1 = σ1) log|Σ1| P (V1 = σ1). (57)

The residence time,TxI
, for the rational controller is specified as follows:

TxI
=







Tmax, if ΦI(xI) ≤ η
(

η
ΦI(xI)

)N

Tmax, if ΦI(xI) > η,
(58)

whereN (level of rationality− a positive integer),η > 0 (a small number), andTmax (the largest residence

time) are design parameters. It is clear from (56) and (58) that the rational controller resides longer in

states ofXI where the process variable pmf’s possess smaller entropy, i.e., less uncertainty. Further,

to ensure ergodicity, the rational controller visits all states of the sensor subnetwork in a deterministic,

round-robin manner.

Denote the relative residence time of the rational controller in statexI ∈ XI after the controller visits

all states ofXI asτxI
:

τxI
=

TxI
∑

xI∈XI

TxI

. (59)

Then, based onτxI
, the process variable pmf’s associated with subplantGI can be calculated as follows:

P̂GI
(V1) =

∑

xI∈XI

τxI
P̂xI

(V1),

P̂GI
(V2) =

∑

xI∈XI

τxI
P̂xI

(V2).
(60)

Similarly, the pmf’sP̂GII
(V1) andP̂GII

(V3), associated withGII, andP̂GIII
(V3) andP̂GIII

(V4), associated

with GIII, can be evaluated by utilizing rational controllers as in (56) and (58).

The pmf’s P̂GI
(V1), P̂GII

(V1), P̂GI
(V2), P̂GII

(V3), P̂GIII
(V3), and P̂GIII

(V4) are used in Section VII

to combine information from the three subnetworks and obtain pmf’s of process variables that are

subsequently utilized to evaluate the condition of the power plant.

B. Temporal properties of adaptation

From the temporal point of view, the three rational controllers described in Subsection VI-A are assumed

to adapt simultaneously over their respective subnetworks. In this scenario, the A/RC layer is said to
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consist ofepochs; For each subnetwork statexk ∈ Xk, k ∈ {I, II, III}, the epoch consists of three

periods:

DQ evaluation period,TDQ,

Process variable pmf evaluation period,Teval,

Residence period in statexk, Txk
.

If Q is the number of states in the subnetwork, thenQ epochs comprise acycle. At the end of each

cycle, the process variable pmf’s are identified and can be utilized for inter-subplant inferences.

Assuming that the sensor measurements are provided every0.01sec, the procedure described in Section

IV is considered to be of durationTDQ = 5sec. Using the procedures described in Section V, duration of

process variable assessment,Teval, is about6sec. The maximum residence period,Tmax, can be selected

as desired. IfTmax is selected to be1sec, the duration of each epoch is less than or equal to12sec.

As mentioned above,Q = 15 epochs constitute a cycle, wherein each ofQ states is visited. So, for

each subnetwork, the cycle duration is, at most,12Q = 180sec. Moreover, every rational controller holds

its pmf’s until the others have completed their respective cycles. Thus, the A/RC layer evaluates the

process variable pmf’s of the three subplants within, at most, 180sec.

VII. K NOWLEDGE FUSION LAYER

In this layer, the pmf’sP̂GI
(V1), P̂GII

(V1), P̂GI
(V2), P̂GII

(V3), P̂GIII
(V3), and P̂GIII

(V4), evaluated at

the A/RC layer, are combined using inter-subplant inferences to obtainP̂ ∗(V1), P̂ ∗(V2), P̂ ∗(V3), and

P̂ ∗(V4). This is described below.

A. Calculations

We infer the state ofV1 based on the state ofV3 from subplantGIII using total probability formula:

P̂GIII
(V1) =

∑

σ3∈Σ3

P (V1|V3 = σ3)P̂GIII
(V3 = σ3), (61)

whereΣ3 is defined in (11). Next, we combinêPGI
(V1), P̂GII

(V1), andP̂GIII
(V1) using Dempster-Shafer

rule to obtainP̂GI,II,III
(V1):

P̂GI,II,III
(V1 = σ1) =

III
∏

k=I

P̂Gk
(V1 = σ1)

∑

σ1∈Σ1

III
∏

k=I

P̂Gk
(V1 = σ1)

, (62)
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whereΣ1 is defined in (3).

Based on
{

P̂GI
(V1), P̂GII

(V1), P̂GIII
(V1), P̂GI,II,III

(V1)
}

, we select̂P ∗(V1) as one of them that possesses

the smallest entropy. In other words, ifI {P (.)} denotes the entropy of pmfP (.), then

P̂ ∗(V1) = argmin
{

I
{

P̂GI
(V1)

}

, I
{

P̂GII
(V1)

}

, I
{

P̂GIII
(V1)

}

, I
{

P̂GI,II,III
(V1)

}}

. (63)

As for V2, we infer its pmf based, again, on total probability formula:

P̂V ∗

1
(V2) =

∑

σ1∈Σ1

P (V2|V1 = σ1)P̂
∗(V1 = σ1). (64)

Next, we combine the pmf’ŝPV ∗

1
(V2) and P̂GI

(V2) using Dempster-Shafer rule to obtain̂PGI,V
∗

1
(V2):

P̂GI,V ∗

1
(V2 = σ2) =

P̂GI
(V2 = σ2)P̂V ∗

1
(V2 = σ2)

∑

σ2∈Σ2

P̂GI
(V2 = σ2)P̂V ∗

1
(V2 = σ2)

, (65)

whereΣ2 is defined in (7). Finally, based on
{

P̂GI
(V2), P̂V ∗

1
(V2), P̂GI,V ∗

1
(V2)

}

, we selectP̂ ∗(V2) as one

of them that possesses the smallest entropy, i.e.,

P̂ ∗(V2) = argmin
{

I
{

P̂GI
(V2)

}

, I
{

P̂V ∗

1
(V2)

}

, I
{

P̂GI,V
∗

1
(V2)

}}

. (66)

The inferences aboutV3 andV4 are obtained in a manner similar to that ofV1 andV2, respectively.

These calculations yield the pmf’ŝP ∗(V3) and P̂ ∗(V4).

Thus, the knowledge fusion layer provides estimates of the pmf’s of all process variables to be used

in the subsequent plant assessment layer to evaluate the condition of B, HT, RP, and LT.

B. Accuracy

Obviously, the knowledge fusion layer combines the information obtained within the overlapping decomp-

osition{GI,GII,GIII} in order to obtain the pmf’s of all process variables,V1, V2, V3, andV4. These

pmf’s can, in principle, be obtained using the centralized system of Figure??. The following question

arises: How well do the pmf’ŝP ∗(Vi), i = 1, 2, 3, 4, approximate the ones that can be obtained using the

centralized system and denoted asP̂ ∗
c (Vi), i = 1, 2, 3, 4. Although at present we do not have a complete

answer to this question, below we analyze a simplified problem that provides a sufficient condition when

the pmf’s P̂ ∗(Vi) and P̂ ∗
c (Vi) are the same.

Let V1 and V2 be two serially connected process variables (similar, but not identical, to the ones

introduced in Section III). Assume that the universal sets of V1 andV2 are

Σ1
△
= {N1,A1} ,

Σ2
△
= {N2,A21,A22,A23} ,

(67)
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where, as before, ‘N’ is Normal and ‘A’ is Anomaly. LetZN1
andZA1

be the intervals whereV1 is

viewed as being in statesN1 andA1, respectively (see, for instance, (1)). Similarly, letZN2
, ZA21

, ZA22
,

andZA23
be the corresponding intervals forV2. Assume that the d.c. gains of the process variables are

piecewise constant in these intervals, i.e.,

α1(Ṽ1) =











αN1
, if Ṽ1 ∈ ZN1

αA1
, if Ṽ1 ∈ ZA1

,

(68)

and

α2(Ṽ2) =







































αN2
, if Ṽ2 ∈ ZN2

αA21
, if Ṽ2 ∈ ZA21

αA22
, if Ṽ2 ∈ ZA22

αA23
, if Ṽ2 ∈ ZA23

.

(69)

Let the serial connection ofV1 andV2 be characterized by the conditional pmf’sP (V1|V2) andP (V2|V1),

which are given by (16) and (17), respectively. Finally, assume that each process variable is monitored

by two sensors:S11 andS12 monitorV1, while S21 andS22 monitorV2.

As before, introduce two subplants,GI andGII, in order to combat the curse of dimensionality;GI

consists ofV1 and associated sensors, whileGII comprisesV2 and associated sensors. Two methods

for evaluating pmf’s ofV1 andV2 are considered below, the centralized and the decentralized, and their

results are compared.

Centralized process variable assessments (CPVA): Each sensor is assignedDQ based on the procedure

described in Section IV. The state space of the overall sensor network is given by

X = {(1000), (0100), ...., (1111)} , (70)

which contains24 − 1 = 15 states. Let the sensor network be equipped with a rational controller, whose

objective is to minimize the following penalty function:

Φ(x) = I
{

P̂x(V1, V2)
}

, x ∈ X, (71)

whereP̂x(V1, V2) is computed using the h-procedure (46), total probability formula (52), and Dempster

-Shafer rule (50) (see Subsection V-A), andI {.} denotes the entropy. Assume that a unique solution of

this minimization problem exists and is given byx∗, i.e.,

x∗ = argmin
x∈X

Φ(x). (72)
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To solve the above problem, we specify the residence time of the controller in statex ∈ X as

Tx =

(

1

Φ(x)

)N

, (73)

where N is sufficiently large. In this scenario, it has been shown in [4] that the rational controller

determines the optimal statex∗. After x∗ is ascertained, the pmf̂Px∗(V1, V2) is marginalized to obtain

P̂x∗(V1) and P̂x∗(V2).

Given that the above rational controller operates onX, we henceforth refer to it as theglobal rational

controller.

Decentralized process variable assessments with inter-subplant inferences (DPVA-I): AssignDQ to

each sensor as before. Decompose the sensor network with state space (70) into two subnetworks, with

state spacesXI andXII defined as follows:

XI = {(10)I, (01)I, (11)I} ,

XII = {(10)II, (01)II, (11)II} .
(74)

Assume that each subnetwork is equipped with alocal rational controller, whose objective is to minimize

the penalty functions

ΦI(xI) = I
{

P̂xI
(V1)

}

, xI ∈ XI,

ΦII(xII) = I
{

P̂xII
(V2)

}

, xII ∈ XII,
(75)

respectively, wherêPxI
(V1) andP̂xII

(V2) are calculated using the h-procedure (46) and Dempster-Shafer

rule (50). Assume that unique solutions of these minimization problems exist and are given byx∗I and

x∗II:

x∗I = arg min
xI∈XI

ΦI(xI),

x∗II = arg min
xII∈XII

ΦII(xII).
(76)

Let the residence time of the rational controllers be specified as in (73). Under this scenario, the local

optima,x∗I andx∗II, are determined, and the pmf’ŝPx∗

I
(V1) and P̂x∗

II
(V2) are utilized for inter-subplant

inferences as follows:

For V2, the pmfP̂x∗

I
(V2) is computed using total probability formula:

P̂x∗

I
(V2) =

∑

σ1∈Σ1

P (V2|V1 = σ1)P̂x∗

I
(V1 = σ1). (77)

Next, the pmfP̂(x∗

I ,x
∗

II)
(V2) is calculated by combininĝPx∗

I
(V2) andP̂x∗

II
(V2) using Dempster-Shafer rule.

The pmf with smallest entropy amonĝPx∗

I
(V2), P̂x∗

II
(V2), andP̂(x∗

I ,x
∗

II)
(V2) is reported to the operator.

Similar calculations are applied forV1 as well.
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Remark 7.1:Note thatX can be expressed in terms of the concatenation of subnetworksXI andXII:

X = {XI ×XII} ∪ {XI × (00)} ∪ {(00) ×XII} , (78)

where× denotes the Cartesian product. 2

Remark 7.2:Note that, as follows from the example of Subsection V-B, theperformance of the

decentralized system without inferences is inferior to that of the centralized one. 2

Let V be an arbitrary discrete random variable with the universalsetΣ. Assume that there exist two

candidate pmf’s,P1(V ) andP2(V ), of V . These two pmf’s can be combined using Dempster-Shafer rule

to obtain another pmf,P12(V ), of V . Using these pmf’s, we introduce:

Definition 7.1: The pmf’sP1(V ) andP2(V ) are termedDempster-Shafer monotonic(DS-monotonic)

if the following two conditions hold:

argmax
σ∈Σ

P1(V = σ) = argmax
σ∈Σ

P2(V = σ), (79)

I {P12(V )} < min [I {P1(V )} , I {P2(V )}] . (80)

In other words,P1(V ) and P2(V ) are DS-monotonic if they indicate the same state with highest

probability, and the pmfP12(V ) has a smaller entropy than the constituent ones. This definition has an

obvious extension for more than two pmf’s as well.

Theorem 7.1:Assume that the pmf’ŝPx∗

I
(V2) and P̂x∗

II
(V2) are DS-monotonic. Then,(x∗I , x

∗
II) = x∗,

and the pmf’s ofV1 andV2 calculated using CPVA and DPVA-I are, respectively, identical.

Proof: See the Appendix. 2

Based on the above theorem, we hypothesize:The pmf’s of process variablesV1, V2, V3, andV4

identified using the centralized system of Figure?? and the overlapping decomposition architecture of

Figure 4 are identical if the following four groups of pmf’s are DS-monotonic:
{

P̂GI
(V1), P̂GII

(V1),

P̂GIII
(V1)

}

,
{

P̂GI
(V2), P̂V ∗

1
(V2)

}

,
{

P̂GI
(V3), P̂GII

(V3), P̂GIII
(V3)

}

, and
{

P̂GIII
(V4), P̂V ∗

3
(V4)

}

.

VIII. P LANT CONDITION ASSESSMENT LAYER

The objective of this layer is to evaluate the condition of B,HT, RP, and LT based on̂P ∗(V1), P̂ ∗(V2),

P̂ ∗(V3), andP̂ ∗(V4). The calculations described below involve the plant model,introduced in (31), and

the previously mentioned Jeffrey’s rule (see [11]).

While P̂ ∗(V1) can be directly used for plant condition assessment, the pmf’s P̂ ∗(V2), P̂ ∗(V3), and

P̂ ∗(V4) cannot, since the model (31) specifiesP (V ′
2 |GHT), P (V ′

3 |GRP), andP (V ′
4 |GLT) (with V ′

i , i =

2, 3, 4, defined in Subsection III-E) rather thanP (V2|GHT), P (V3|GRP), andP (V4|GLT). Therefore,P̂ ∗(Vi),
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i = 2, 3, 4, must be re-calculated in terms ofV ′
i , i = 2, 3, 4. This is carried out as follows: Consider, for

example,V2. Then,

P̂ ∗(V ′
2 = L′

HT) = P̂ ∗(V2 = VLHT) + P̂ ∗(V2 = L(2)HT),

P̂ ∗(V ′
2 = N′

HT) = P̂ ∗(V2 = L(1)HT) + P̂ ∗(V2 = NHT),
(81)

where the right hand side of (81) is due to the events{V2 = VLHT},
{

V2 = L(1)HT

}

,
{

V2 = L(2)HT

}

,

and{V2 = NHT} being disjoint. Using (28)-(30), we carry out similar calculations to obtainP̂ ∗(V ′
3) and

P̂ ∗(V ′
4) as well. Given these pmf’s, we ascertain the condition of B, HT, RP, and LT as described below.

For the case of B, consider the following algorithm:

(a) Assign the initial pmf ofGB (see (25)) as

P0(GB) =

[

1

2
,
1

2

]

. (82)

(b) Calculate the initial joint pmf ofV1 andGB:

P0(V1, GB) = P0(GB)P (V1|GB), (83)

whereP (V1|GB) is given in (31).

(c) Calculate the marginal probability

P0(V1) =
∑

GB∈ΣGB

P0(V1, GB). (84)

(d) Apply Jeffrey’s rule (see [11]):

P̂ (V1, GB) = P0(V1, GB)
P̂ ∗(V1)

P0(V1)
. (85)

(e) Marginalize the left hand side of (85) to obtain the assessment of the condition of B:

P̂ (GB) =
∑

V1∈Σ1

P̂ (V1, GB). (86)

Similarly, for the other components, the pmf’ŝP (GHT), P̂ (GRP), andP̂ (GLT) are calculated by following

steps (a)-(e) above. Thus, the overall plant assessment is expressed as a vector:

~̂G
△
=

[

P̂ (GB), P̂ (GHT), P̂ (GRP), P̂ (GLT)
]

. (87)

The pmf’s in (87) comprise the output of the monitoring system that is reported to the plant operator.

The next section presents performance evaluation of this monitoring system using the power plant of

Figure 1.



27

IX. A PPLICATION OFRESILIENT MONITORING SYSTEM TO POWER PLANT

A. Parameters of power plant and monitoring system

The range and d.c. gain of process variableVi, i ∈ {1, 2, 3, 4}, are selected as follows: Referring

to (2) and (5), we assume thatV B
min = 5, V B

max = 100, RB = 50, αLB
(Ṽ1) = 0.005Ṽ1 + 1.95, and

αNB
(Ṽ1) = 0.0004Ṽ1 +2.18; Similarly, for the other process variables,V HT

min = 5, V HT
max = 25, RHT

1 = 10,

RHT
2 = 15, RHT

3 = 20, αVLHT
(Ṽ2) = 0.001Ṽ2 + 0.495, αL(1)HT

(Ṽ2) = 0.01Ṽ2 + 0.40, αL(2)HT
(Ṽ2) =

0.005Ṽ2 + 0.472, αNHT
(Ṽ2) = 0.001Ṽ2 + 0.56, V RP

min = 5, V RP
max = 100, RRP

1 = 20, RRP
2 = 40, RRP

3 = 50,

αVLRP
(Ṽ3) = 0.0016Ṽ3 + 0.492, αL(1)RP

(Ṽ3) = 0.0026Ṽ3 + 0.472, αL(2)RP
(Ṽ3) = αL(1)RP

(Ṽ3), αNRP
(Ṽ3) =

0.0001Ṽ3 + 0.6, V LT
min = 0.1, V LT

max = 20, RLT
1 = 3, RLT

2 = 6, RLT
3 = 9, RLT

4 = 11, RLT
5 = 13, RLT

6 = 15,

RLT
7 = 17, αVL(1)LT

(Ṽ4) = 0.0014Ṽ4 + 0.4, αVL(2)LT
(Ṽ4) = 0.006Ṽ4 + 0.38, αL(1)LT

(Ṽ4) = 0.001Ṽ4 +

0.416, αL(2)LT
(Ṽ4) = 0.01Ṽ4 + 0.332, αM(1)LT

(Ṽ4) = 0.002Ṽ4 + 0.426, αM(2)LT
(Ṽ4) = 0.01Ṽ4 + 0.3,

αNLT
(Ṽ4) = 0.002Ṽ4 + 0.441, andαHLT

(Ṽ4) = 0.008Ṽ4 + 0.35. Note that the temperature values and d.c.

gains introduced above are just illustrative and can be scaled as needed. Further, we assume thatṼi,

i ∈ {1, 2, 3, 4}, is a Gaussian random variable, whose pdf is specified byN
(

µṼi
, σṼi

)

, with the standard

deviationσṼi
being sufficiently small so that realizations ofṼi outside of the corresponding interval (e.g.,

[V B
min, V

B
max]) can be ignored.

The random variablẽSij, i ∈ {1, 2, 3, 4}, j ∈ {1, 2}, which characterizes the measurements of sensor

Sij , is assumed to be distributed according toN
(

µS̃ij
, σS̃ij

)

. The sampling period of all sensors is taken

as0.01sec.

Regarding the probing signals associated with theDQ layer, their magnitudes are assigned as follows:

AV1

0 = 2 andAV2

0 = AV3

0 = AV4

0 = 0.7. TheDQ parameterǫ, involved in (42), is selected as0.02.

Regarding the process variable pmf evaluation procedure, the parameterǫh, involved in (46), is assigned

as0.01. The stopping rule of (46) is given by

|hσ1
(n+ 1)− hσ1

(n)| < 10−4. (88)

The level of rationalityN of the rational controllers is chosen to be2. The parametersη andTmax,

involved in (58), are taken as0.04 and1, respectively.

Regarding the plant model, the conditional pmf’s involved in (31) are assumed as follows:

• P (V1 = NB|GB = NGB
) = P (V1 = LB|GB = AGB

) = 0.95 and other probabilities are0.05;

• P (V ′
2 = N′

HT|GHT = NGHT
) = P (V ′

2 = L′
HT|GHT = AGHT

) = 0.90 and other probabilities are0.1;

• P (V ′
3 = N′

RP|GRP = NGRP
) = 0.88, P (V ′

3 = L′
RP|GRP = AGRP

) = 0.91, P (V ′
3 = L′

RP|GRP = NGRP
) =

0.12, andP (V ′
3 = N′

RP|GRP = AGRP
) = 0.09;
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• P (V ′
4 = N′

LT |GLT = NGLT
) = 0.91, P (V ′

4 = H′
LT |GLT = AGLT

) = 0.92, P (V ′
4 = H′

LT |GLT = NGLT
) =

0.09, andP (V ′
4 = N′

LT |GLT = AGLT
) = 0.08.

In all scenarios considered, the plant condition is evaluated and expressed as

~̂G
△
=

[

P̂ (GB), P̂ (GHT), P̂ (GRP), P̂ (GLT)
]

, (89)

wherein the pmf’s are represented by the row vectorsP̂ (GB) = [P̂ (GB = NGB
), P̂ (GB = AGB

)],

P̂ (GHT) = [P̂ (GHT = NGHT
), P̂ (GHT = AGHT

)], P̂ (GRP) = [P̂ (GRP = NGRP
), P̂ (GRP = AGRP

)], and

P̂ (GLT) = [P̂ (GLT = NGLT
), P̂ (GLT = AGLT

)].

B. Performance evaluation

In all figures of this subsection, states of the sensor subnetworks (see (23)) are indexed as follows: For

k ∈ {I, II, III},

1 : (1111)k , 2 : (1110)k , 3 : (1101)k , 4 : (1011)k ,

5 : (1010)k , 6 : (1001)k , 7 : (0111)k , 8 : (0110)k ,

9 : (0101)k , 10 : (1000)k , 11 : (0100)k , 12 : (1100)k ,

13 : (0010)k , 14 : (0001)k , 15 : (0011)k .

(90)

Regarding the non-resilient system to which the resilient one is compared, it so happens that in some

situations, Dempster-Shafer rule cannot be applied to combine two candidate pmf’s. For example, suppose

P̂S11
nr (V1) = [1, 0] andP̂S12

nr (V1) = [0, 1]; Clearly, combining these two pmf’s using Dempster-Shaferrule

is not possible since it results in
[

0
0 ,

0
0

]

. Therefore, to computêPS11S12
nr (V1), we utilize the following

rule:

P̂S11S12

nr (V1) =
1

2

(

P̂S11

nr (V1) + P̂S12

nr (V1)
)

. (91)

The performance of the monitoring system designed in this paper is evaluated in the framework of the

following three scenarios:

Scenario 1: All power plant components are operating normally, withµṼ1
= 80, µṼ2

= 21, µṼ3
= 60,

µṼ4
= 15.3, andσṼ1

= σṼ2
= σṼ3

= σṼ4
= 0.01. SensorsS11, S21, S31, andS41 are captured and forced

to indicate malfunctioning of LT and fractures in the insulations of B, HT, and RP. The sensor distributions

are characterized byµS̃11
= 28.5, σS̃11

= 0.2, µS̃12
= 79, σS̃12

= 0.21, µS̃21
= 8.5, σS̃21

= 0.12,

µS̃22
= 22.3, σS̃22

= 0.1, µS̃31
= 16.2, σS̃31

= 0.1, µS̃32
= 61, σS̃32

= 0.11, µS̃41
= 5.1, σS̃41

= 0.1,

µS̃42
= 15.3, and σS̃42

= 0.1. Based on these data, sensorDQ’s are evaluated asDQ11 = 0.015,

DQ12 = 0.99, DQ21 ≈ 0, DQ22 = 0.96, DQ31 ≈ 0, DQ32 = 0.96, DQ41 ≈ 0, andDQ42 = 0.95.
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Fig. 5: Relative residence time for Scenario1

The performance of the monitoring system is illustrated in Figure 5. It indicates that the residence

time in states, which take into account measurements of onlycaptured sensors is small. The plant

component pmf’s are computed aŝP (GB) = [0.95, 0.05], P̂ (GHT) = [0.89, 0.11], P̂ (GRP) = [0.91, 0.09],

and P̂ (GLT) = [0.91, 0.09], which indicate accurately that all components are operating normally.

Given that four sensors indicate normal, while the other four indicate damage/malfunctioning, the

non-resilient system evaluates the above pmf’s to be approximately uniform ([0.5, 0.5]). This leads to the

measure of resiliency
#      »

MR = [0.93, 0.83, 0.85, 0.87], testifying to the efficacy of the resilient monitoring

system.

Scenario 2: LT is malfunctioning and other components operate normally, with µ
Ṽ1

= 80, µ
Ṽ2

= 24.5,

µṼ3
= 75, µṼ4

= 18.4, and σṼ1
= σṼ2

= σṼ3
= σṼ4

= 0.01. SensorsS11, S12, S21, and S22 are

captured and forced to indicate that B and HT are damaged. Thesensor distributions are assumed to

be characterized byµS̃11
= 31, σS̃11

= 0.2, µS̃12
= 31, σS̃12

= 0.21, µS̃21
= 15.1, σS̃21

= 0.12,

µS̃22
= 15.2, σS̃22

= 0.1, µS̃31
= 74, σS̃31

= 0.11, µS̃32
= 74.1, σS̃32

= 0.1, µS̃41
= 18.1, σS̃41

= 0.1,

µS̃42
= 18.6, σS̃42

= 0.1. Based on these data, sensorDQ’s are evaluated asDQ11 = DQ12 = 0.015,

DQ21 = DQ22 = 0.006, DQ31 = DQ32 = 1, andDQ41 = DQ42 = 0.99.

The performance of the monitoring system is illustrated in Figure 6. The residence time in all states of

subnetworkXI is the same, since all its sensors are captured. Despite the lack of reliable information from

the sensors of B, the monitoring system calculatesP̂ (GB) = [0.95, 0.05]. This is due to the inter-subplant

inferences (see Subsection VII). Further, the pmfP̂ (GHT) is calculated as[0.49, 0.51], since it is impossible

to determine the condition of HT using sensors of other components. Finally, regarding RP and LT, the

following pmf’s are computed:̂P (GRP) = [0.91, 0.09] and P̂ (GLT) = [0.09, 0.91]. The above pmf’s
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Fig. 6: Relative residence time for Scenario2

indicate accurately that B and RP operate normally, while LTis malfunctioning.

The non-resilient system evaluatesP̂nr(GB) = [0.05, 0.95] andP̂nr(GHT) = [0.1, 0.9], which erroneously

indicate that the insulations of B and HT are damaged. This leads to the measure of resiliency
#      »

MR =

[0.98, 0.7,−,−], where ‘−’ is used to indicate that none of the sensors of a particular component are

captured. Once again, these results demonstrate the efficacy of the monitoring system presented in this

work.

Scenario 3: All power plant components function normally, withµṼ1
= 80, µṼ2

= 24.5, µṼ3
= 75,

µṼ4
= 16, andσṼ1

= σṼ2
= σṼ3

= σṼ4
= 0.01. All sensors are captured and indicate malfunctioning

of all power plant components. The sensor distributions arecharacterized byµS̃11
= 31, σS̃11

= 0.2,

µS̃12
= 31, σS̃12

= 0.21, µS̃21
= 15.1, σS̃21

= 0.12, µS̃22
= 15.2, σS̃22

= 0.1, µS̃31
= 5, σS̃31

= 0.11,

µS̃32
= 5.1, σS̃32

= 0.1, µS̃41
= 4.1, σS̃41

= 0.1, µS̃42
= 4.2, σS̃42

= 0.2. Based on these data, allDQ’s

are computed to be close to0.

The performance of the monitoring system is illustrated in Figure 7. As expected, the residence time in

all subnetwork states is the same. The pmf’sP̂ (GB), P̂ (GHT), P̂ (GRP), andP̂ (GLT) are computed to be

uniform ([0.5, 0.5]), which is reasonable since no trustworthy information about any of the components

is available.

The non-resilient system evaluatesP̂nr(GB) = [0.05, 0.95], P̂nr(GHT) = [0.1, 0.9], P̂nr(GRP) = [0.12, 0.88],

and P̂nr(GLT) = [0.09, 0.91], which erroneously indicate that all components are damaged. The measure

of resiliency is computed as
#      »

MR = [0.76, 0.7, 0.69, 0.72], which testifies to the efficacy of the monitoring

system presented in this work.
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Fig. 7: Relative residence time for Scenario3

X. CONCLUSIONS AND FUTURE WORK

This paper developed an approach to resilient monitoring ofpower plants based on a five-layer architecture,

which includes an overlapping decomposition with intra- and inter-subplant inferences. The calculations

used at each layer are described and justified. Numerical performance evaluation of the system developed

testifies to its efficacy.

Numerous problems in this area still remain open. The main one, in our opinion, is the relatively low

rate of plant condition assessment. In the current implementation, plant assessment results are obtained

every180sec. At least an order of magnitude improvement would be desirable. This may be accomplished

using more efficient rational controllers for adaptation atthe process variable assessment layer and more

expedient data quality assessment algorithms. Other open problems include:

• Development of the overlapping decomposition approach forplants with cyclic (rather than tree-type)

influence diagrams among the plant components.

• Improving models of process variables, plant, and the attacker by making them more general and

practical. For example, attackers other than mean-based should be introduced and analyzed.

• Practical application of the developed resilient monitoring systems is a challenging task for future

research.

Solution of these problems will lead to a relatively complete and useful theory of resilient monitoring

systems for plants under cyber-physical attacks.
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APPENDIX

The proof of Theorem 7.1 is based on the following five lemmas.

Lemma A.1:Let P̂xI
(V1) be the pmf ofV1 calculated as mentioned in Subsection VII-B andP̂xI

(V2)

be calculated using total probability formula:

P̂xI
(V2) =

∑

σ1∈Σ1

P (V2|V1 = σ1)P̂xI
(V1 = σ1), (92)

whereP (V2|V1) andΣ1 are specified by (17) and (67), respectively. Then,

I
{

P̂xI
(V2)

}

=
I
{

P̂xI
(V1)

}

+ 1

2
, xI ∈ XI, (93)

whereI{.} is the entropy.

Proof: Due to the structure ofP (V2|V1), equation (92) can be expressed asP̂xI
(V2 = N2) = P̂xI

(V2 =

A21) = 1
2 P̂xI

(V1 = N1) and P̂xI
(V2 = A22) = P̂xI

(V2 = A23) = 1
2 P̂xI

(V1 = A1). Consequently, the

entropy ofP̂xI
(V1) can be evaluated as

I
{

P̂xI
(V1)

}

= −
∑

σ2∈Σ2

P̂xI
(V2 = σ2) log2 P̂xI

(V2 = σ2)− 1, (94)

whereΣ2 is defined in (67). Then, applying the change of base formula,loga x = logb x
logb a

, the right hand

side (RHS) of (94) becomesI
{

P̂xI
(V2)

}

log2 4− 1 = 2I
{

P̂xI
(V2)

}

− 1. 2

Lemma A.2:Let P̂x(V1, V2) be the joint pmf ofV1 and V2 calculated as mentioned in Subsection

VII-B and P̂x(V2) be the pmf ofV2 obtained by marginalizinĝPx(V1, V2). Then,

I
{

P̂x(V2)
}

=
3

2
I
{

P̂x(V1, V2)
}

, x ∈ X, (95)

whereI{.} is, as before, the entropy.

The proof of this lemma is similar to that of Lemma A.1. 2

Since P̂x∗(V1, V2) and P̂x∗

I
(V1) possess the smallest entropy in the state space of their respective

networks (see (72) and (76)), Lemmas A.1 and A.2 indicate that the global and local rational controllers

adapt in such a manner that the entropy of the pmf ofV2 is minimized.

The following three lemmas provide technical conditions for the proof of Theorem 7.1:

Lemma A.3:Assume that̂PxI
(V2) andP̂xII

(V2), xI ∈ XI, xII ∈ XII, are DS-monotonic and̂P(xI,xII)(V2)

is their concatenation using Dempster-Shafer rule. Then,

dI
{

P̂(xI,xII)(V2)
}

dI
{

P̂xI
(V2)

} > 0 and
dI

{

P̂(xI,xII)(V2)
}

dI
{

P̂xII
(V2)

} > 0. (96)
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Proof: Introduce notations:̂PxI
(V2) = [p1, p2, p3, p4] and P̂xII

(V2) = [q1, q2, q3, q4]. Without loss of

generality, assume thatmax{p1, p2, p3, p4} = p1 andmax{q1, q2, q3, q4} = q1. The entropy ofP̂xI
(V2)

is

I
{

P̂xI
(V2)

}

= −
4

∑

i=1

pi log4 pi. (97)

The differential ofI
{

P̂xI
(V2)

}

is

dI
{

P̂xI
(V2)

}

=
4

∑

i=1

∂

∂pi
I
{

P̂xI
(V2)

}

dpi, (98)

where, due to the constraint,p1 + p2 + p3 + p4 = 1,

4
∑

i=1

dpi = 0. (99)

Using (99), equation (98) can be re-written as follows:

dI
{

P̂xI
(V2)

}

=

3
∑

i=1

[

∂

∂pi
−

∂

∂p4

]

I
{

P̂xI
(V2)

}

dpi. (100)

Since, as it follows from (97), the partial derivative,∂
∂pi

I
{

P̂xI
(V2)

}

= −1− log4 pi, i = 1, 2, 3, 4. From

(100), we obtain the following differential for the denominator of the first expression of (96):

dI
{

P̂xI
(V2)

}

=

3
∑

i=1

[

log4
p4

pi

]

dpi. (101)

In a similar manner, it can be shown that the numerator of thisexpression is given by:

dI
{

P̂(xI,xII)(V2)
}

=
3

∑

i=1

[(

Dq4 − p4q
2
4

D2

)

(

1 + log4
p4q4

D

)

−

(

Dqi − piq
2
i

D2

)

(

1 + log4
piqi

D

)

]

dpi,
(102)

where

D =

4
∑

i=1

piqi. (103)

Suppose,dp1 > 0 anddp2 = dp3 = 0. Then, the RHS of (101) becomes
[

log4
p4

p1

]

dp1, implying that

dI
{

P̂xI
(V2)

}

< 0. Using (102), it can also be shown thatdI
{

P̂(xI,xII)(V2)
}

< 0. Moreover, in all other

situations wheredI
{

P̂xI
(V2)

}

is less than zero (for instance, whendp1 > 0, dp2 > 0, dp3 = 0, p2 > p4,

andq2 > q4), it can be shown thatdI
{

P̂(xI,xII)(V2)
}

is less than zero as well. These arguments imply

that
dI{P̂(xI,xII)

(V2)}
dI{P̂xI

(V2)}
> 0.

The second expression in (96) can be proved in a similar manner. 2
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Lemma A.4:Let xk, k = I, II, be a state inXk, with all active sensors being captured. Let the pmf

P̂xk
(V2) be computed as mentioned in Subsection VII-B. Finally, letǫ << 1 be the parameter involved

in the data quality exponent (42). Then,I
{

P̂xk
(V2)

}

= 1− δ(ǫ), δ(ǫ) → 0 as ǫ → 0.

Proof: We prove this lemma for the statexI ∈ XI. The proof forxII ∈ XII is similar.

Suppose,xI = (10)I. Let the pmf of the corresponding sensor, namely,S11, beP (S11) =
[

PS11

LB
, PS11

NB

]

.

Since this sensor is captured, its data quality is assigned as DQ11 = ǫ based on the d.c. gain model

(68) and the procedure described in Section IV. In this situation, the pmfP̂xI
(V1), calculated using the

h-procedure, is as follows (see (48)):

P̂xI
(V1) =

[

PS11

LB
ǫ+

1− ǫ

2
, PS11

NB
ǫ+

1− ǫ

2

]

. (104)

The entropy ofP̂xI
(V1) is

I
{

P̂xI
(V1)

}

= −a1(ǫ) log2 a1(ǫ)− a2(ǫ) log2 a2(ǫ), (105)

where

a1(ǫ) := PS11

LB
ǫ+ 1−ǫ

2 ,

a2(ǫ) := PS11

NB
ǫ+ 1−ǫ

2 .
(106)

Taking into account (105) and using Lemma A.1, we have

I
{

P̂xI
(V2)

}

=
1

2
[1− a1(ǫ) log2 a1(ǫ)− a2(ǫ) log2 a2(ǫ)] . (107)

As it follows from (106), the expression−a1(ǫ) log2 a1(ǫ)− a2(ǫ) log2 a2(ǫ) → 1 as ǫ → 0.

Differentiating both sides of (107) with respect toǫ, we obtain

d

dǫ
I
{

P̂xI
(V2)

}

=

(

PS11

LB
−

1

2

)

log2
a2(ǫ)

a1(ǫ)
. (108)

It follows from (106) and (108) thatd
dǫ
I
{

P̂xI
(V2)

}

≤ 0, and the equality is attained whenPS11

LB
= 1

2 . In

other words, the entropy of̂PxI
(V2) is a decreasing function ofǫ.

Equation (107) can be re-expressed as

I
{

P̂xI
(V2)

}

= 1 +
−1− a1(ǫ) log2 a1(ǫ)− a2(ǫ) log2 a2(ǫ)

2
. (109)

Denote−1−a1(ǫ) log2 a1(ǫ)−a2(ǫ) log2 a2(ǫ)
2 asδ(ǫ). It is seen thatδ(ǫ) → 0 as ǫ → 0.

Similarly, if xI is either(01)I or (11)I, it can be shown thatI
{

P̂xI
(V2)

}

is equal to1− δ(ǫ), where

δ(ǫ) → 0 as ǫ → 0. 2
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Lemma A.5:Let the pmf’s P̂x∗

I
(V2) and P̂x∗

II
(V2) be DS-monotonic. Further, letxI andxII be states

in XI andXII, respectively, with their corresponding active sensors being captured. Then, the following

is satisfied:

I
{

P̂(x∗

I ,x
∗

II)
(V2)

}

< min
[

I
{

P̂(x∗

I ,xII)(V2)
}

, I
{

P̂(xI,x∗

II)
(V2)

}

, I
{

P̂(xI,xII)(V2)
}]

. (110)

Proof: If the sensors corresponding toxII are captured, it follows from Lemma A.4 that̂PxII
(V2) =

[

1
4 + δ1(ǫ),

1
4 + δ2(ǫ),

1
4 + δ3(ǫ),

1
4 + δ4(ǫ)

]

, whereδi(ǫ) → 0 as ǫ → 0, i = 1, 2, 3, 4. Consequently, the

entropy of the pmfP̂(x∗

I ,xII)(V2), which is obtained by concatenatinĝPx∗

I
(V2) and P̂xII

(V2) using, as

before, Dempster-Shafer rule, can be shown to have the following property: Withǫ being the parameter

involved in theDQ exponent (42),

I
{

P̂(x∗

I ,xII)(V2)
}

= [1− δ1(ǫ)] I
{

P̂x∗

I
(V2)

}

+ δ2(ǫ), (111)

whereδi(ǫ) → 0 asǫ → 0, i = 1, 2. Using (111), the difference between the entropies,I
{

P̂(x∗

I ,xII)(V2)
}

andI
{

P̂(x∗

I ,x
∗

II)
(V2)

}

, can be expressed as

I
{

P̂(x∗

I ,xII)(V2)
}

− I
{

P̂(x∗

I ,x
∗

II)
(V2)

}

= [1− δ1(ǫ)] I
{

P̂x∗

I
(V2)

}

− I
{

P̂(x∗

I ,x
∗

II)
(V2)

}

+ δ2(ǫ). (112)

Since the pmf’sP̂x∗

I
(V2) and P̂x∗

II
(V2) are DS-monotonic, andǫ is chosen arbitrarily small, the RHS of

(112) is greater than zero. This implies thatI
{

P̂(x∗

I ,x
∗

II)
(V2)

}

< I
{

P̂(x∗

I ,xII)(V2)
}

.

Using the above approach and Lemma A.4, it can also be shown thatI
{

P̂(x∗

I ,x
∗

II)
(V2)

}

< I
{

P̂(x1,x
∗

II)
(V2)

}

andI
{

P̂(x∗

I ,x
∗

II)
(V2)

}

< I
{

P̂(x1,x2)(V2)
}

. 2

Proof of Theorem 7.1: The pmf ofV2 is evaluated using DPVA-I and CPVA as follows:

DPVA-I: Recall that P̂x∗

I
(V2) and P̂x∗

II
(V2) are DS-monotonic, due to which the pmf̂P(x∗

I ,x
∗

II)
(V2)

possesses the smallest entropy among the three of them. Thus, P̂(x∗

I ,x
∗

II)
(V2) is reported as the pmf

of V2.

CPVA: Sincex∗I minimizes the penalty functionΦI(xI), it can be shown using Lemma A.1 that

I
{

P̂(x∗

I ,(00))
(V2)

}

< I
{

P̂(xI,(00))(V2)
}

, ∀xI ∈ XI. Similarly, it can also be shown thatI
{

P̂((00),x∗

II)
(V2)

}

< I
{

P̂((00),xII)(V2)
}

, ∀xII ∈ XII. Further, since the pmf’ŝPx∗

I
(V2) and P̂x∗

II
(V2) are DS-monotonic, it

is clear that

I
{

P̂(x∗

I ,x
∗

II)
(V2)

}

< I
{

P̂(xI,(00))(V2)
}

, ∀xI ∈ XI,

I
{

P̂(x∗

I ,x
∗

II)
(V2)

}

< I
{

P̂((00),xII)(V2)
}

, ∀xII ∈ XII.
(113)

From (113) and Lemma A.2, it is obvious that the global optimum, x∗, belongs to the set{XI ×XII}.

Now, we investigate whetherx∗ is, indeed,(x∗I , x
∗
II) in the following two cases:
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• Case1: For arbitraryxI andxII, let the pmf’sP̂xI
(V2) andP̂xII

(V2) be DS-monotonic. From previous

arguments, we know thatI
{

P̂x∗

I
(V2)

}

< I
{

P̂xI
(V2)

}

and I
{

P̂x∗

II
(V2)

}

< I
{

P̂xII
(V2)

}

. Then,

using Lemma A.3, it can be shown thatI
{

P̂(x∗

I ,x
∗

II)
(V2)

}

< I
{

P̂(xI,xII)(V2)
}

. Thus, in this case,

x∗ is, indeed,(x∗I , x
∗
II).

• Case2: Let P̂xI
(V2) and P̂xII

(V2) be non-monotonic due to all active sensors of either or both

states,xI andxII, being captured. Then, it can be shown using Lemma A.5 thatI
{

P̂(x∗

I ,x
∗

II)
(V2)

}

<

I
{

P̂(xI,xII)(V2)
}

. Thus, in this case also,x∗ is, indeed,(x∗I , x
∗
II).

From these two cases, it is clear thatx∗ = (x∗I , x
∗
II). Therefore,P̂(x∗

I ,x
∗

II)
(V2) is reported as the pmf of

V2.

Similarly, it can be shown that the pmf’s ofV1, calculated using DPVA-I and CPVA, are the same.2
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