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Abstract

This paper is intended to formulate the so-called production lead time problem as the prob-
lem of throughput optimization under a constraint on production lead time. A solution is
provided for serial lines with Bernoulli machines and infinite buffers. Specifically, analytical
formulas are derived for raw material release rates, which guarantee the desired lead time,
while maximizing the throughput. Based on this solution, a method for selecting design pa-
rameters of kanban- and CONWIP-controlled systems, which ensure the desired lead time, is
provided.
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1 Introduction

Production Systems Engineering ([1]) addresses two fundamental problems. The first one is the

problem of throughput (TP) optimization. Its solution is provided by the improvability theory, i.e.,

TP optimization under the constraints on workforce and/or buffer capacity ([2]), and by bottleneck

identification techniques, i.e., identification of a machine/operation that affects TP in the strongest

manner ([3]). The second one is the problem of leanness, which is the problem of buffer capacity

minimization under the constraint that TP takes a desired value. Its solution is provided by ana-

lytical formulas for the smallest buffer capacities, which are necessary and sufficient to ensure the

desired TP ([4]).

In practice, there is another problem of critical importance – that of production lead time.

The production lead time (also referred to as “flow time”, “system cycle time”, “process time”,

“residence time”, etc.) is the average time a part spends in the system, being processed and waiting

for processing. Excessively long lead time (LT ) results in numerous quality, on-time delivery, and

economic losses and, thus, should be avoided as much as possible. This problem is of particular

importance in systems with “unlimited” buffers, where LT may also become unlimited.

The current paper is intended to formulate the production lead time problem as the problem of

TP maximization under a constraint on LT and to provide its solution for serial lines with Bernoulli

machines and infinite buffers. (Note that the Bernoulli reliability model implies that a machine

produces a part during its cycle time with probability p and fails to do so with probability 1 − p;

as it is shown in [1], this model is applicable to operations, where machines downtime is relatively

short and commensurate with the cycle time.)

The lead time in systems with infinite buffers can be controlled in two ways: (1) by limiting

in-process inventory (e.g., using kanban or CONWIP system) or (2) by limiting release rates of

raw materials. While the former have been analyzed in numerous publications (see, e.g., [5–18]),

the latter remains practically unexplored. This paper is intended to contribute to the release rate

approach and, in addition, provide a contribution to kanban and CONWIP systems. Specifically,

• we derive analytical formulas for LT as a function of the release rate and machine parameters;

• characterize achievable (i.e., feasible) sets of lead times;
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• provide expressions for raw material release rates that guarantee any desired LT from the

feasible set, while maximizing the throughput;

• based on the above results, offer a method for calculating the number of kanbans and the

value of CONWIP that ensure a desired LT in kanban- and CONWIP-controlled systems.

Analytically, this work is based on a recursive aggregation procedure for performance evalua-

tion of serial lines developed in [2]. In the current paper, this procedure is modified to account for

infinite buffers. Since this recursive procedure provides estimates, rather than exact values of TP

and work-in-process (WIP), the results obtained here are also approximate. The accuracy of these

results is quantified by simulations and shown to be sufficiently high (well within 5%).

The outline of this paper is as follows: Section 2 formulates the model considered and the prob-

lems addressed. Sections 3 and 4 present the developments for Bernoulli serial lines with identical

and non-identical machines, respectively. Deterministic (e.g., hourly) release is considered in Sec-

tion 5, while the CONWIP and kanban systems are discussed in Section 6. Section 7 provides the

conclusions and directions for future work. All proofs are given in the Appendix.

2 Modeling and Problem Formulation

Consider the serial line shown in Figure 2.1, where the circles represent the machines and the

open rectangles are the buffers. While m1,m2, . . . ,mM and b1, b2, . . . , bM−1 are the usual producing

machines and work-in-process buffers, respectively, m0 and b0 represent the mechanism of parts

release and raw material storage (to indicate this, m0 and b0 are shown in gray). In other words, we

model the raw material release rate by the efficiency, p0, of the release machine, m0. As mentioned

above, the efficiency, p, of a Bernoulli machine is the probability to produce a part during a cycle

time, while 1 − p is the probability of failing to do so. Thus, controlling 0 < p0 < 1, one can

control the release rate in the system; in this case, the occupancy of buffer b0 represents the raw

material available for production.

To formalize this modeling approach, introduce the following assumptions:

(i) The system consists of M producing machines m1,m2, . . . ,mM, a release machine m0, M − 1
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Figure 2.1: Serial production line with a release machine

work-in-process buffers b1, b2, . . . , bM−1, and the raw material buffer b0. All machines have

identical cycle time, τ, and obey the Bernoulli reliability model. All buffers are of infinite

capacity.

(ii) While the efficiencies of the producing machines, i.e., p1, p2, . . . , pM, are fixed, the efficiency

of the release machine, p0, is free and can be selected at will.

(iii) The discrete event model is assumed, i.e., the time is slotted with the slot duration τ; the

status of the machines (up or down) is determined at the beginning of each time slot, and the

state (occupancy) of the buffers is determined at the end of each time slot.

(iv) A machine is starved, if the buffer in front of it is empty; a machine is blocked if the buffer

after it is full and the subsequent machine does not take the material from this buffer; m0 is

never starved; mM is never blocked.

(v) Machine failures are time-dependent, i.e., a machine can be down if it is blocked or starved.

Given the production system defined by these assumptions, the production lead time prob-

lem is formulated as follows: determine the release rate of raw material, p∗0, such that LT =

LT (p∗0, p1, . . . , pM) takes a desired value, while TP = TP(p∗0, p1, . . . , pM) is maximized.

Below we provide a solution of this problem. We begin with serial lines having identical

producing machines and then extend the results to non-identical machines. For both identical and

non-identical machines, we derive analytical expressions for the lead time as a function of machine

parameters, evaluate the set of feasible lead times and, on this basis, derive analytical expressions

for release rates that ensure the desired lead time and maximize the throughput.
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3 Solution of Production Lead Time Problem for Serial Lines

with Identical Machines

3.1 Lead time as a function of machine parameters

Theorem 3.1 Consider a Bernoulli serial line defined by assumptions (i)-(v). Assume that all

producing machines are identical, i.e., pi = p, i = 1, 2, . . . , M, and the release machine is less

efficient than the producing machines, i.e., p0 < p. Then, an estimate of the lead time (in units of

cycle time, τ) is given by

L̂T =
M(1 − p0)

p − p0
. (3.1)

Proof: See the Appendix.

Thus, L̂T is increasing linearly in M and tends to infinity hyperbolically as p0 → p. To further

investigate the behavior of L̂T as a function of the release rate and machine efficiency, introduce

the following parameterizations:

ρ :=
p0

p
, (3.2)

l̂t :=
L̂T
M
. (3.3)

Clearly, 0 < ρ < 1 is the relative workload imposed on the system by the release, and l̂t > 1 is the

relative lead time, i.e., the lead time in units of the smallest possible lead time in the system (i.e.,

M). Then, (3.1) can be re-written as follows:

l̂t =
p−1 − ρ
1 − ρ . (3.4)

The accuracy of this estimate is illustrated in Table 3.1, where lt = LT
M is obtained by simulating

10-machine lines (20, 000 time slots of warm-up time, 220, 000 time slots of simulation, and 20

repetitions). Clearly, the accuracy of (3.1) is quite high: up to the relative workload 0.99, it is well

within 5%.

Figure 3.1 illustrates the behavior of l̂t as a function of ρ for several p’s. All curves in this
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Table 3.1: Accuracy of estimate (3.4)

p p0 ρ lt l̂t l̂t−lt
lt × 100%

0.5

0.2 0.40 2.66 2.67 0.38%
0.4 0.80 5.99 6.00 0.17%

0.45 0.90 10.90 11.00 0.92%
0.495 0.99 97.79 101.00 3.28%

0.7

0.2 0.29 1.60 1.60 0
0.4 0.57 2.00 2.00 0
0.6 0.86 4.00 4.00 0

0.65 0.92 7.02 7.00 −0.28%
0.69 0.99 31.79 31.00 −2.49%

0.9

0.2 0.22 1.15 1.14 −0.87%
0.4 0.44 1.20 1.20 0
0.6 0.67 1.33 1.33 0
0.8 0.89 2.00 2.00 0

0.85 0.94 3.00 3.00 0
0.89 0.99 10.58 11.00 3.97%

figure have a “knee” beyond which l̂t grows extremely fast. It is of interest to characterize “safe”

release rates, i.e., release rates below the knee. To accomplish this, consider the (ρ, l̂t)-plane, where

a unit interval of ρ-axis corresponds to A > 1 units of l̂t-axis (in Figure 3.1, A = 20). Introduce the

scaling ratio, α, defined by

α :=
1
A

(3.5)

and recall that the curvature, κ, of a twice differentiable function, f (x), is given by (see [19])

κ( f (x)) =

∣∣∣ f ′′xx

∣∣∣
(1 + f ′2x )

3
2

. (3.6)

Definition 3.1 The knee, ρ̂knee, of l̂t on the (ρ, l̂t)-plane with the scaling ratio α is the point on

[0, 1), at which the curvature of αl̂t(ρ) reaches its maximum.

Corollary 3.1 Under the assumptions of Theorem 3.1,

ρ̂knee = 1 −
√
α(p−1 − 1). (3.7)

Proof: See the Appendix.
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The pairs (ρ̂knee, l̂t(ρknee)) are indicated in Figure 3.1 by black dots. Thus, releasing raw material

with the rate

p0 < p(1 −
√
α(p−1 − 1)) (3.8)

results in l̂t below the knee.

A precise characterization of the release rate that ensures the desired lead time is given next.
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Figure 3.1: Relative lead time, l̂t, as a function of relative workload, ρ, and machine efficiency, p

3.2 Release rates as a function of desired lead time

From Theorem 3.1 we derive:

Corollary 3.2 Under the assumptions of Theorem 3.1, the set of feasible lead times, FLT , is

given by

L̂T > Mp−1. (3.9)

Proof: See the Appendix.

This implies, in particular, that for low machine efficiency, lead time is substantially larger than

the number of machines in the system. For instance, if p = 0.5, L̂T > 2M, no matter how low the

release rate is.
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Corollary 3.3 Under the assumptions of Theorem 3.1, for any desired lead time, LTd, satisfying

(3.9), the release rate is given by

p̂∗0 =
pLTd − M
LTd − M

. (3.10)

For this release rate,

T̂P
∗

= p̂∗0, ŴIP
∗
i =

p̂∗0(1 − p̂∗0)
p − p̂∗0

, i = 0, 1, . . . , M − 1. (3.11)

Proof: Follows immediately from (3.1), the proof of Theorem 3.1, and Little’s law ([20]). �

Note that since p0 > p̂∗0 results in L̂T > L̂T d, it follows from (3.11) that the release rate p̂∗0

maximizes the throughput under the lead constraint LT = L̂T d and, thus, solves the production lead

time problem.

The behavior of ρ̂∗ as a function of the desired relative lead time is illustrated in Figure 3.2 for

several values of p. From this figure, we conclude that requiring small ltd may lead to small ρ̂∗,

and therefore, low throughput. For instance, if ltd = 3, the throughput is 0.25 for p = 0.5; 0.55 for

p = 0.7; and 0.85 for p = 0.9; increasing ltd to 10, leads to the throughput close to the machine

efficiency; further increase of ltd results in practically no throughput improvement. This leads to

the following:

Rule-of-thumb 3.1 In serial lines with identical Bernoulli machines, having lead time larger

than 10 processing times, results in practically no throughput improvement.

4 Solution of Production Lead Time Problem for Serial Lines

with Non-identical Machines

4.1 Lead time as a function of machine parameters

Theorem 4.1 Consider a Bernoulli serial line defined by assumptions (i)-(v). Assume that the

release machine is less efficient than the producing machines, i.e., p0 < min
16i6M

pi. Then the estimate
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Figure 3.2: Relative workload, ρ̂∗, as a function of the desired relative lead time, ltd, and machine
efficiency, p

of the lead time (in units of cycle time, τ) is given by

L̂T =

M∑

i=1

1 − p0

pi − p0
. (4.1)

Proof: See the Appendix.

As one can see from this formula, L̂T is monotonically increasing in M and tends hyperbolically

to infinity as p0 → min
16i6M

pi. Note also that L̂T is independent of the machine position in the line

and, thus, the reversibility law ([1]) holds as far as L̂T is concerned.

To investigate the accuracy of estimate (4.1), introduce the notion of maximum relative work-

load,

ρmax =
p0

min
16i6M

pi
, (4.2)

and consider three lines,

L1 : p = [0.89, 0.78, 0.84, 0.82, 0.88, 0.86, 0.82, 0.75, 0.87, 0.82],

L2 : p = [0.84, 0.87, 0.89, 0.86, 0.78, 0.81, 0.89, 0.89, 0.81, 0.88],

L3 : p = [0.76, 0.80, 0.87, 0.75, 0.77, 0.78, 0.78, 0.84, 0.79, 0.78],

(4.3)

where the machine efficiency, pi, is selected randomly and equiprobably from the set [0.75, 0.9].

Using these lines, the accuracy of L̂T , evaluated based on the same simulation procedure as in
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Section 3, is characterized in Table 4.1. Again, up to ρmax = 0.99, the accuracy remains high.

Table 4.1: Accuracy of estimate (4.1)

p0 ρmax
line L1 line L2 line L3

LT L̂T L̂T−LT
LT × 100% LT L̂T L̂T−LT

LT × 100% LT L̂T L̂T−LT
LT × 100%

0.1 0.13 12.39 12.32 −0.56% 11.98 12.00 0.17% 13.01 13.04 0.23%
0.2 0.27 12.74 12.70 −0.31% 12.26 12.31 0.41% 13.65 13.56 −0.66%
0.3 0.40 13.20 13.22 0.15% 12.76 12.74 −0.16% 14.37 14.29 −0.56%
0.4 0.53 13.98 14.00 0.14% 13.36 13.37 0.07% 15.43 15.42 −0.06%
0.5 0.67 15.26 15.28 0.13% 14.40 14.38 −0.14% 17.32 17.34 0.12%
0.6 0.80 17.68 17.84 0.90% 16.30 16.28 −0.12% 21.43 21.44 0.05%
0.7 0.93 26.39 26.28 −0.42% 21.38 21.39 0.05% 36.78 36.78 0
0.74 0.99 52.75 52.61 −0.27% 27.82 27.75 −0.25% 81.54 81.30 −0.29%

4.2 Release rates as a function of desired lead time

From Theorem 4.1 we derive:

Corollary 4.1 Under the assumptions of Theorem 4.1, the set of feasible lead times, FLT , is

given by

L̂T >

M∑

i=1

p−1
i . (4.4)

Proof: See the Appendix.

Corollary 4.2 Under the assumptions of Theorem 4.1, for any desired lead time, LTd, satisfying

(4.4), the release rate p̂∗0 that ensures this lead time is the unique real root less than min
16i6M

pi of the

following M-th order polynomial equation:

(LTd − M)
M∏

i=1

(pi − p0) −
M∑

i=1

(
(1 − pi)

M∏

j=1, j,i

(p j − p0)
)

= 0, (4.5)

and

T̂P
∗

= p̂∗0, ŴIP
∗
i =

p̂∗0(1 − p̂∗0)
pi+1 − p̂∗0

, i = 0, 1, . . . , M − 1. (4.6)

Proof: See the Appendix.

For the case of M = 2, equation (4.5) takes the form

(LTd − 2)p2
0 − [(LTd − 1)(p1 + p2) − 2]p0 + LTd p1 p2 − (p1 + p2) = 0, (4.7)
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and, thus, the release rate is given by

p̂∗0 =
(LTd − 1)(p1 + p2) − 2 −

√
(LTd − 1)2(p1 − p2)2 + 4(1 − p1)(1 − p2)

2(LTd − 2)
. (4.8)

4.3 Lower bound approach

Expression (4.5) and the subsequent evaluation of its roots may be too involved for practical ap-

plications. Therefore, we propose the following lower bound approach that can be useful in these

situations:

Given a Bernoulli line with machines defined by p1, p2, . . . , pM, introduce

pmin := min
16i6M

pi, (4.9)

and, along with the original line, consider an auxiliary one with identical machines defined by pmin.

Using Corollaries 3.3 and 4.2, select L̂T d in the feasible set for both the original and auxiliary lines

and calculate the corresponding release rates ( p̂∗0 for the original line and p̂∗0,min for the auxiliary

one). Clearly, due to the monotonicity of L̂T with respect to machine efficiency,

p̂∗0,min 6 p̂∗0, (4.10)

and, therefore,

L̂T (p1, p2, . . . , pM) 6 L̂T (pmin) = L̂T d. (4.11)

Thus, releasing raw material in the original line according to the lower bound, p̂∗0,min, does not result

in a lead time longer than desired. Unfortunately, however, it may result in a lower throughput,

since

T̂P(p̂∗0,min) 6 T̂P( p̂∗0). (4.12)

To evaluate how much of throughput is lost due to raw material releasing according to the

lower bound, consider the three lines defined in (4.3) and calculate p̂∗0 and p̂∗0,min for various l̂t’s.

The results are shown in Table 4.2. Clearly, throughput losses are large for small ltd’s (almost 50%
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for ltd = 1.5), but relatively insignificant for large ltd (about 5% for ltd = 6).

Table 4.2: Performance degradation due to lower bound release rates

ltd
line L1 line L2 line L3

p̂∗0 p̂∗0,min
p̂∗0−p̂∗0,min

p̂∗0
× 100% p̂∗0 p̂∗0,min

p̂∗0−p̂∗0,min

p̂∗0
× 100% p̂∗0 p̂∗0,min

p̂∗0−p̂∗0,min

p̂∗0
× 100%

1.5 0.483 0.250 48.24% 0.541 0.340 37.15% 0.368 0.250 32.07%
2 0.643 0.500 22.24% 0.683 0.560 18.01% 0.574 0.500 12.89%
3 0.715 0.625 12.59% 0.747 0.670 10.31% 0.675 0.625 7.41%
4 0.732 0.667 8.88% 0.764 0.707 7.46% 0.708 0.667 5.79%
5 0.739 0.688 6.90% 0.770 0.725 5.84% 0.723 0.688 4.84%
6 0.742 0.700 5.66% 0.773 0.736 4.79% 0.731 0.700 4.24%

5 Deterministic Release

In some cases, random raw material release may be inconvenient in practical implementations. In

such situations, results of Sections 3 and 4 can be used to define strategies for deterministic, e.g.,

hourly, release.

To model the hourly release, let the desired lead time be defined in minutes and denoted as

LT d. Then the desired lead time in units of cycle time is given by

LTd =
LT d

τ
, (5.1)

where τ is also in minutes. For example, if LT d = 120 min, LTd = 120 if τ = 1 min and

LTd = 1200 if τ = 0.1 min. Given LTd defined by (5.1), the corresponding release rate per cycle,

p̂∗0, can be calculated using either Corollary 3.3 or 4.2. Then, the hourly release, R∗, is defined as

R∗ =
⌊
Hp̂∗0(LTd)

⌋
, (5.2)

where bxc is the largest integer not greater than x and H is the number of cycles in an hour, i.e.,

H =
60
τ
. (5.3)

Releasing each hour the amount of raw material defined by (5.2), leads to the following in-
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equalities:

L̂T ( p̂∗0) < L̂T (R∗) < L̂T (p̂∗0) + H, (5.4)

where L̂T (R∗) and L̂T ( p̂∗0) are lead time estimates under hourly and per-cycle release, respectively.

Multiplying these inequalities by τ gives

L̂T d < L̂T (R∗) < L̂T d + 60. (5.5)

This indicates that, although releasing on the hourly basis results in lead times larger than

desired, the difference becomes insignificant when LT d � 60 min.

6 Selecting Design Parameters of CONWIP and Kanban Sys-

tems to Ensure Desired Lead Time

Consider a CONWIP-controlled serial line, i.e., the system where a new part is released only when

an old part has been processed by the last machine ([13]). Clearly, such a system maintains a

constant number of parts, K∗. How should K∗ be selected so that the throughput is maximized,

while the lead time takes a desired value? To answer this question using the results derived above,

assume that the desired lead time (in minutes) is LT d . Then, using (5.1) calculate the lead time

in units of cycle time, LTd. Based on this LTd, calculate the release rate p̂∗0 using either Corollary

3.3 or 4.2. Under this release rate, the total WIP in the system can be evaluated using either (3.11)

or (4.6). In other words,

ŴIP
∗

= Mp̂∗0
1 − p̂∗0
p − p̂∗0

for identical machine case, (6.1)

ŴIP
∗

= p̂∗0
M∑

i=1

1 − p̂∗0
pi − p̂∗0

for non-identical machine case. (6.2)

Since under this WIP the throughput is maximized and the lead time takes the desired value
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LT d, the number K∗ in a CONWIP-controlled system should be selected as

K∗ =
⌊
ŴIP

∗⌋
. (6.3)

Assuming that raw material is always available in a kanban-controlled system, similar argu-

ments lead to the conclusion that the number of kanbans that maximizes TP under a constraint on

LT also should be selected as in (6.3).

The following examples illustrate these conclusions.

Consider the kanban- or CONWIP-controlled serial line with 10 identical Bernoulli machines

having p = 0.7 and τ = 1 min. Assume LT d = 60 min and, using (3.10), (6.1), and (6.3) calculate

K∗, which turns out to be 38. Simulating the resulting system (for 50, 000 time slots with 25, 000

time slots of warm-up period and 20 repetitions) results in LT kanban = LT CONWIP = 58.82 min.

A similar result is obtained by simulating L1 of (4.3) for the same LT d and τ as above. In this

case, K∗ turns out to be 44 and the simulations result in LT kanban = LT CONWIP = 58.64 min.

Thus, selecting K∗ using (6.3) indeed leads to an acceptable lead time performance of kanban-

and CONWIP-controlled systems.

7 Conclusions and Future Research

This paper posed the problem of production lead time control as the problem of throughput opti-

mization under the constraint that the lead time takes a desired value. The approach is based on

limiting release rate of raw material so that the desired performance is achieved. This approach

is of particular importance for small and mid-size manufacturing organizations, where neither

hardware-constrained buffers nor kanban or CONWIP systems are available to limit the in-process

inventory, but hourly release can be implemented relatively easily. For the case of kanban and

CONWIP systems, however, this paper provided a method for calculating the number of kanbans

and the value of CONWIP that ensure a desired LT .

Since this paper addressed only the case of serial lines with Bernoulli machines, future research

on the lead time problem is abound. It includes
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• extending the results to exponential and non-exponen- tial machines;

• extending the results to assembly systems;

• developing a solution of the production lead time problem for re-entrant lines; due to their

complex dynamics (see [21]), it seems that the approach pursued in the current paper may

not be appropriate, and a fundamentally new modeling approach would be necessary.

Appendix

The analysis of L̂T reported in this paper is based on the recursive aggregation procedure described

in [1]. For serial lines with M + 1 Bernoulli machines defined by p0, p1, . . . , pM and M buffers

with capacity N0,N1, . . . ,NM−1, the steady state of this procedure, p f
i , i = 1, 2, . . . , M, and pb

i ,

i = 0, 1, . . . , M − 1, is the unique solution of the following system of transcendental equations:

p f
i =pi[1 − Q(p f

i−1, pb
i ,Ni−1)], 1 6 i 6 M,

pb
i =pi[1 − Q(pb

i+1, p f
i ,Ni)], 0 6 i 6 M − 1,

(A.1)

with the boundary conditions p f
0 = p0 and pb

M = pM and

Q(x, y,N) =



1−x
N+1−x , if x = y,

(1−x)(1−α)
1− x

yα
N , if x , y,

(A.2)

α =
x(1 − y)
y(1 − x)

. (A.3)

The proofs of Theorems 3.1 and 4.1 are based on (A.1)-(A.3). Therefore, below we evaluate

(A.2) and the solution of (A.1) for Ni = ∞ (Lemmas A.1 and A.2, respectively) and then prove the

above mentioned theorems.
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Lemma A.1 Function Q(x, y,N), defined by (A.2), (A.3), has the following limit:

lim
N→∞

Q(x, y,N) =



0, if x > y,

1 − x
y , if x < y.

(A.4)

Proof: From (A.2),

• if x = y, it is clear that

lim
N→∞

Q(x, y,N) = 0; (A.5)

• if x > y, then α > 1, and, therefore,

lim
N→∞

Q(x, y,N) = 0; (A.6)

• if x < y, then α < 1, and, therefore,

lim
N→∞

Q(x, y,N) = (1 − x)(1 − α) = 1 − x
y
. (A.7)

�

Lemma A.2 Let p j = min
16i6M

pi. Then, for Ni = ∞, i = 0, 1, . . . , M − 1, the unique solution of

(A.1) is given by

p f
i =



pi, if i < j,

p j, if i > j,

pb
i =



p j, if i 6 j,

pi, if i > j.

(A.8)

Proof: First we show that (A.8) is the solution of (A.1) and then comment its uniqueness.

• If i < j, then based on (A.4) and (A.8), for the left- and right-hand side of the first equation

of (A.1), we have, respectively,

p f
i = pi (A.9)

15



and

pi[1 − Q(p f
i−1, pb

i ,∞)] = pi[1 − Q(pi, p j,∞)] = pi, (A.10)

implying that (A.8) solve the first equation of (A.1) for i < j. Similarly, for the left- and

right-hand side of the second equation of (A.1), we have

pb
i = p j (A.11)

and

pi[1 − Q(pb
i+1, p f

i ,∞)] = pi[1 − Q(p j, pi,∞)] = p j, (A.12)

implying that the second equation of (A.1) is also solved for i < j.

• If i = j, the left- and right-hand side of equations of (A.1) are

p f
i = p j,

pi[1 − Q(p f
i−1, pb

i ,∞)] = p j[1 − Q(p j−1, p j,∞)] = p j,

pb
i = p j,

pi[1 − Q(pb
i+1, p f

i ,∞)] = p j[1 − Q(p j+1, p j,∞)] = p j,

(A.13)

implying that (A.1) is solved for i = j.

• If i > j, the left- and right-hand side of equations of (A.1) are

p f
i = p j,

pi[1 − Q(p f
i−1, pb

i ,∞)] = pi[1 − Q(p j, pi,∞)] = p j,

pb
i = pi,

pi[1 − Q(pb
i+1, p f

i ,∞)] = pi[1 − Q(pi+1, p j,∞)] = pi,

(A.14)

which also implies that (A.1) is solved.

As far as the uniqueness of (A.8) is concerned, it follows directly from Theorem 4.2 of [1]. �
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Proof of Theorem 3.1: For the production line defined by assumptions (i)-(v) with pi = p, i =

1, 2, . . . , M and p0 < p, based on Lemma A.2 we obtain:

p f
i =p0, i = 0, 1, . . . , M − 1, (A.15)

pb
i =p, i = 1, 2, . . . , M, (A.16)

which, using Theorem 4.1 of [1], implies that the occupancy of each buffer is

ŴIP0 =
p0(1 − p0)

p − p0
(A.17)

and

ŴIPi =
p f

i (1 − p f
i )

pb
i+1 − p f

i

=
p0(1 − p0)

p − p0
, i = 1, 2, . . . , M − 1. (A.18)

Thus, taking into account that

P̂R = p0 (A.19)

and using Little’s law, from (A.17), (A.18) we obtain (3.1). �

Proof of Corollary 3.1: Let

f (ρ) := αl̂t(ρ) = α
( p−1 − 1

1 − ρ + 1
)
. (A.20)

Then

f ′(ρ) =
α(p−1 − 1)

(1 − ρ)2 ,

f ′′(ρ) =
2α(p−1 − 1)

(1 − ρ)3 ,

and, therefore,

κ( f (ρ)) =

∣∣∣ f ′′ρρ
∣∣∣

(1 + f ′2ρ )
3
2

=
2α(p−1 − 1)

[
(1 − ρ)2 +

α2(p−1−1)2

(1−ρ)2

] 3
2

. (A.21)

Since

ρknee = arg max κ( f (ρ)), (A.22)
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from (A.21) we obtain:

ρ̂knee = 1 −
√
α(p−1 − 1). (A.23)

�

Proof of Corollary 3.2: From (3.4) it follows that

ρ = 1 − p−1 − 1

l̂t − 1
. (A.24)

Since 0 < ρ < 1, this implies that

l̂t > p−1. (A.25)

�

Proof of Corollary 3.2: From (3.4) it follows that

ρ = 1 − p−1 − 1

l̂t − 1
. (A.26)

Since 0 < ρ < 1, this implies that

l̂t > p−1. (A.27)

�

Proof of Theorem 4.1: Similar to the proof of Theorem 3.1, with the only difference that, instead

of equation (A.16), we have

pb
i = pi, i = 1, 2, . . . , M (A.28)

and, therefore,

ŴIP0 =
p0(1 − p0)

p1 − p0
, (A.29)

ŴIPi =
p f

i (1 − p f
i )

pb
i+1 − p f

i

=
p0(1 − p0)
pi+1 − p0

, i = 1, 2, . . . , M − 1. (A.30)

�
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Proof of Corollary 4.1: Re-writing (4.1) as

L̂T − M =

M∑

i=1

1 − pi

pi − p0
, (A.31)

and taking into account that p0 < min
16i6M

pi, we observe that the right-hand side of (A.31) is a

monotonically increasing function of p0. Thus,

L̂T − M >

M∑

i=1

1 − pi

pi
, (A.32)

i.e., (4.4) holds. �

Proof of Corollary 4.2: Under the assumptions of Theorem 4.1, for any desired lead time LTd

satisfying (4.4), the release rate p̂∗0 that ensures this lead time is a real root less than min
16i6M

pi of the

equation

LTd =

M∑

i=1

1 − p0

pi − p0
(A.33)

or

LTd − M =

M∑

i=1

1 − pi

pi − p0
. (A.34)

Since the right-hand side of (A.34) is monotonically increasing with p0 when 0 < p0 < min
16i6M

pi,

equation (A.34) has a unique real solution less than min
16i6M

pi ensuring the desired lead time LTd.

Multiplying (A.34) by
M∏
j=1

(p j − p0), we have

(LTd − M)
M∏

i=1

(pi − p0) =

M∑

i=1

(
(1 − pi)

M∏

j=1, j,i

(p j − p0)
)
, (A.35)

i.e.,

(LTd − M)
M∏

i=1

(pi − p0) −
M∑

i=1

(
(1 − pi)

M∏

j=1, j,i

(p j − p0)
)

= 0. (A.36)

In other words, for any desired lead time LTd satisfying (4.4), the release rate p̂∗0 that ensures this

lead time is the unique real root less than min
16i6M

pi of the M-th order polynomial equation (4.5).

The statements on P̂R
∗

and ŴIP
∗

follow from the proof of Theorem 4.1. �
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