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Abstract— Quasilinear Control (QLC) is a set of methods
for designing reference tracking and disturbance rejection con-
trollers for systems with nonlinear actuators and sensors. While
most QLC methods are applicable to systems with symmetric
nonlinearities, the current paper provides a technique for
asymmetric ones, specifically, asymmetric saturating actuators.
As in the symmetric case, the approach is based on the method
of stochastic linearization, which reduces nonlinear systems to
quasilinear ones. In the symmetric case, each nonlinear element
is replaced by a gain. In the asymmetric case, however, each
nonlinear element is replaced not only by a gain, but also by
a bias. The latter leads to steady state errors incompatible
with the usual error coefficients. Therefore, the performance of
these quasilinear systems must be characterized not only by a
root locus, but by another locus as well – the tracking error
locus. In this paper these performance loci are characterized,
methods for their calculation and sketching are presented, and
the results are utilized for designing tracking controllers for
random and deterministic reference signals.

I. INTRODUCTION

Quasilinear Control (QLC) is a set of methods for design-
ing linear controllers for systems with linear (or linearized)
plants and nonlinear actuators and sensors. We refer to such
systems as linear plant/nonlinear instrumentation (LPNI) sys-
tems. The main results of QLC are summarized in [1]. The
approach is based on the method of stochastic linearization
(SL), which reduces LPNI systems to quasilinear ones, with
actuators and sensors represented by their equivalent gains.
Unlike the usual, Jacobian linearization, SL is global; the
price to pay is that the equivalent gains depend not only
on the operating point but on all functional blocks and
exogenous signals of the system. SL was first introduced
in [2], [3]. A modern introduction to SL can be found in
[4] and its pioneering applications to feedback control in
[5], [6]. Conceptually, SL is akin the method of describing
functions [7], but intended for transient and steady state
analyses of nonlinear systems, rather than investigation of
periodic solutions.

In [1], QLC theory has been developed for systems, where
nonlinearities in actuators and sensors are odd functions and
all exogenous signals have zero mean; roughly speaking, we
refer to such systems as S-LPNI, where “S” stands for sym-
metric (see Section II for a precise definition). In practice,
however, LPNI systems often have asymmetric nonlineari-
ties, or non-zero mean reference signals, or both; we refer to
such systems as A-LPNI, where “A” stands for asymmetric.
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Examples of these systems abound: air-conditioning/heating
systems, flow control, automotive torque and idle speed
control, wind turbine control, etc. Each of these systems
has a saturating actuator and, for most operating points, this
saturation is asymmetric. Therefore, extension of QLC to
A-LPNI systems is of practical importance; clearly it is of
theoretical importance as well.

Such an extension is not a trivial problem. The reason
is that SL of asymmetric functions results in not only an
equivalent gain but also an equivalent bias. In feedback
environment, this bias leads to steady state errors incom-
patible with the usual error coefficients and may result in
considerable loss of steady state performance. Investigation
of quasilinear systems with equivalent gains and equivalent
biases is the central problem of QLC for A-LPNI systems.

In the current paper such an investigation is carried out for
A-LPNI systems with saturating actuators in the framework
of the reference tracking problem. Along with the derivation
of quasilinear gain and bias equations for such systems,
we develop a method for tracking controllers design based
on the so-called performance loci. These loci include the
root locus for asymmetric saturating systems (AS-root locus)
and tracking error locus (TE locus). Together, these loci are
used for designing controllers that place closed loop poles
and steady state tracking errors of quasilinear systems in
appropriate admissible domains (defined by design specifi-
cations). Using this approach, the paper provides methods
for designing controllers that track random and deterministic
(e.g., step) signals. While the resulting controllers ensure the
desired dynamic and steady state performance of quasilinear
systems, stability properties of A-LPNI systems with these
controllers can be ascertained using the usual methods of
absolute stability [7]–[9], semi-global stability [10], [11],
LMI-based approaches [12]–[14], etc.

Thus, the main contributions of this paper are:
• Introduction and development of performance loci for

A-LPNI systems consisting of AS-root locus and TE
locus.

• Methods for utilizing these loci for random and deter-
ministic reference tracking controllers design.

Note that reference tracking controllers for systems con-
sidered in this paper can be designed using model predictive
control [15]–[18] and anti-windup control [19]–[22]. Com-
pared with the former, QLC is less computationally intensive
– it does not require on-line solution of optimization prob-
lems. Compared with the latter, QLC provides a method for
linear controller design in systems with saturating actuators,
while anti-windup does not address the issue of controller
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Fig. 2. Saturation function satβα(u).

design, but offers a mechanism to limit controller windup
due to a pole at the origin.

The outline of this paper is as follows: Section II intro-
duces a formal definition of symmetric and asymmetric LPNI
systems. In Section III, equations for equivalent gain and
bias in A-LPNI systems are discussed. AS-root locus and
TE locus are introduced and developed in Section IV. Using
these loci, Sections V and VI present methods for tracking
controllers design of random and deterministic reference
signals, respectively. Conclusions and topics for future work
are given in Section VII. All proofs are included in the
Appendix.

II. DEFINITION OF S- AND A-LPNI SYSTEMS

Consider the SISO LPNI system shown in Fig. 1, where
P (s) and C(s) are the plant and the controller, r0(t) is a
zero-mean finite-power signal, µr is a constant, e, u, v, and
y are the error signal, controller, actuator, and plant outputs,
respectively, and satβα(·) is the saturation function (Fig. 2),
with α and β being the lower and upper limits of saturation.

Definition 1. The LPNI system of Fig. 1 is symmetric (or
S-LPNI) if

C0

1 + C0P0
µr =

α+ β

2
, (1)

where P0 and C0 are the dc-gains of the plant and controller,
respectively. Otherwise, it is asymmetric (or A-LPNI).

The reason for this definition is that under (1), the expected
value of the signal u at the input of the saturation is at the
center of its symmetry, i.e., µu = α+β

2 . Thus, even if the
saturation is symmetric (β = −α), the system may or may
not be symmetric depending on the dc-gains of the plant
and controller and, most importantly, the average value of
the reference signal (i.e., the set point, which may change
during system operation).

As mentioned in the Introduction, symmetric systems with
µr = 0 and β = −α have been addressed in [1]. In the
current paper, we consider the general case.

III. STOCHASTIC LINEARIZATION OF A-LPNI SYSTEMS
WITH SATURATING ACTUATORS

This section reviews stochastic linearization of the LPNI
systems considered in this paper. The details can be found
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Fig. 3. LPNI system and its stochastic linearization.

in [23].
Consider the closed loop system of Fig. 3(a), where P (s)

is the plant, KC(s) (K > 0) is the controller, satβα(u) is
the saturation function shown in Fig. 2, and FΩr (s) is the
third order Butterworth filter with bandwidth Ωr and dc-gain
selected to yield H2 norm equal to 1, i.e.,

FΩr (s) =

√
3

Ω

Ω3

s3 + 2Ωs2 + 2Ω2s+ Ω3
. (2)

We assume that the reference r(t) is a random process
obtained by filtering the Gaussian white noise wr(t) through
FΩr (s) and scaling and shifting the output by σr and µr,
respectively. To define stochastic linearization of this system,
introduce the following two functions:

FN (σ, µ) =
1

2

[
erf
(
β − µ√

2σ

)
− erf

(
α− µ√

2σ

)]
, (3)

FM (σ, µ) =
α+ β

2
− β − µ

2
erf
(
β − µ√

2σ

)
+
α− µ

2
erf
(
α− µ√

2σ

)
− σ√

2π
×[

exp
(
−(
β − µ√

2σ
)2

)
− exp

(
−(
α− µ√

2σ
)2

)]
,

(4)

where σ and µ are running variables, and erf(x) =
2√
π

∫ x
0
e−t

2

dt is the error function. Then, as derived in [23],
the stochastically linearized version of this system is shown
in Fig. 3(b), where

ma =
µr
P0
− (

1

KC0P0
+Na)µû, (5)

and Na and µû are the solutions of the two transcendental
equations

Na −FN
(
K
∥∥∥ FΩr (s)C(s)

1 + P (s)KNaC(s)

∥∥∥
2
σr, µû

)
= 0, (6)

µr
P0
− µû
KC0P0

−FM
(
K
∥∥∥ FΩr (s)C(s)

1 + P (s)KNaC(s)

∥∥∥
2
σr, µû

)
= 0,

(7)

with FN and FM given in (3) and (4). Here, ‖·‖2 denotes
the H2 norm, µû is the expected value of signal û in Fig.
3(b), and K‖ FΩrC

1+PKNaC
‖2σr is the standard deviation of û.

It is shown in [23] that 0 < Na < 1. The gain Na and bias



ma in Fig. 3(b) are referred to as quasilinear (or equivalent)
gain and bias, respectively.

A sufficient condition for existence of a solution of (6),
(7), derived in [23], is:
(a) 1 + γP (s)C(s) has all zeros in the open left half plane

for all γ ∈ (0, 1).
(b) If C0 =∞ or P0 =∞, then α < µr

P0
< β.

Solutions of (6), (7) may be found using a plethora of
numerical techniques, e.g., the 2-variable bisection algo-
rithm. In the Matlab computational environment, the “fsolve”
function provides a convenient method for solving these
equations.

It is shown in [23] that, if the plant is sufficiently slow
as compared with the bandwidth of the input reference,
stochastic linearization provides an accurate approximation
of the original LPNI system as far as prediction of the
mean and standard deviation of the output y is concerned.
Therefore, the stochastically linearized system can be used
for the purpose of controller design.

IV. PERFORMANCE LOCI FOR A-LPNI SYSTEMS

As one can see from Figure 3(b), the quasilinear gain,
Na, and the quasilinear bias, ma, enter the system as an
additional gain and input disturbance, respectively. Also, as
can be seen from (6) and (7), both of them are functions
of the controller gain, K. Thus, to characterize the system
behavior as K changes from 0 to ∞, the behavior of
quasilinear poles and quasilinear steady state errors as a
function of K must be investigated. As mentioned in the
Introduction, this leads to two loci: the usual one – root
locus, and a novel one – tracking error locus. Together, they
are referred to as performance loci. In this section, these loci,
referred to as AS-root locus and TE locus, respectively, are
characterized and methods for their calculation and sketching
are presented. In the subsequent sections these loci are used
for tracking controllers design.

A. Preliminaries

To begin, we group together the controller gain K and
quasilinear gain Na in Fig. 3(b) and denote the product by
the effective gain Ke:

Ke(K) = KNa(K).

Clearly, using (6), (7), for each K > 0, Ke(K) and µû can
be obtained by solving

Ke −KFN (K
∥∥∥ FΩr (s)C(s)

1 + P (s)KeC(s)

∥∥∥
2
σr, µû) = 0, (8)

µr

P0
−

µû

KC0P0
−FM (K

∥∥∥ FΩr (s)C(s)

1 + P (s)KeC(s)

∥∥∥
2
σr, µû) = 0. (9)

Throughout this paper, we assume that the solution of the
above equations exists and is unique.

Denote by µê the mean of the error signal ê in the
quasilinear system, which can be expressed as

µê(K) =
µû(K)

KC0
. (10)

Based on the above notations, we introduce the following
definitions.

Definition 2. The saturated closed loop poles (AS-poles) of
the system of Fig. 3(a) are the poles of the system of Fig.
3(b), i.e., the poles of the transfer function from r to ŷ:

T (s) =
Ke(K)C(s)P (s)

1 +Ke(K)C(s)P (s)
. (11)

Definition 3. The AS-root locus is the path traced by the
AS-poles when K changes from 0 to ∞.

Definition 4. The TE locus is the plot of |µê(K)| as K
changes from 0 to ∞.

Below, we develop the AS-root locus and the TE locus
and investigate their properties.

B. The AS-root locus

In equation (11), Ke(K) enters the transfer function as
a usual gain. Furthermore, since 0 < Na < 1, we have
that 0 ≤ Ke(K) < K. Therefore, the AS-root locus is
a proper subset of the usual linear root locus. As in the
linear root locus, we are interested in the points of origin and
termination of the AS-root locus. Clearly, since Ke(K) = 0
when K = 0, the points of origin of the AS-root locus are the
same as the linear root locus (i.e., at the poles of P (s)C(s)).
The termination points, however, may not necessarily be at
the open loop zeros. This is because Ke(K) may not tend
to infinity as K tends to infinity. Therefore, we equip the
AS-root locus with the so-called AS-termination points. In
addition, saturation may lead to output truncation. To account
for this phenomenon, we equip the AS-root locus with the so-
called AS-truncation points, beyond which the output does
not follow the reference. Below, methods for computing both
AS-termination and AS-truncation points are provided.

1) Calculating AS-termination points: Denote by K∗e the
limiting effective gain, i.e.,

K∗e = lim
K→∞

Ke(K).

Clearly, if K∗e = ∞, the termination points are the open
loop zeros and the AS-root locus coincides with the usual
root locus. However, if K∗e < ∞, the root locus terminates
prematurely. As it turns out, to compute K∗e , the following
two equations in the unknowns φ∗ and η∗ must first be
solved:

φ∗ −
∥∥∥∥∥ FΩr (s)C(s)

1 + β−α√
2πφ∗

e−
η∗2

2 P (s)C(s)

∥∥∥∥∥
2

σr = 0, (12)

µr
P0
− φ∗η∗

C0P0
=
α+ β

2
+
β − α

2
erf(

η∗√
2

). (13)

Note that (12) always has a solution φ∗ = 0. There may
be positive solutions as well, which lead to the following
theorem.

Theorem 1. Assume that Ke(K) and µû(K) exist and
unique for all K. Then,

1) if φ∗ = 0 is the only solution of (12), (13), K∗e =∞.



2) if there exists another solution, φ∗ > 0, then

K∗e =
β − α√

2πφ∗
e−( η

∗2
2 ). (14)

Proof. See Appendix. �

Definition 5. If K∗e <∞, the AS-termination points are the
poles of the transfer function

Tter(s) =
K∗eC(s)P (s)

1 +K∗eC(s)P (s)
. (15)

Equations (14) and (15) are used to calculate the AS-
termination points, which are marked by white squares on
the AS-root locus. In Section V, we use this locus to select
the gain K of the controller, which satisfies the dynamic
tracking quality specifications.

2) The AS-truncation points: The AS-truncation points
are introduced based on the notion of Trackable Domain,
TD, which is the set of all step functions that can be tracked
at steady state, with the usual linear tracking error 1

1+C0P0
µr.

Trackable domain for the symmetric case has been quantified
in [1]. It is possible to show that for the asymmetric case,
TD is given by

TD =
{
r0 :

∣∣∣∣ 1

KC0
+ P0

∣∣∣∣α < r0 <

∣∣∣∣ 1

KC0
+ P0

∣∣∣∣β}.
In the subsequent discussion, we assume, for simplicity, that
C0 > 0, P0 > 0, and µr ∈ TD for all K > 0. We
now introduce the proper extension of the so-called quality
indicator I0 introduced in [1]. This indicator quantifies the
degree of amplitude truncation. Based on TD, we define I0
as:

I0 = max{ σr

( 1
KC0

+ P0)β − µr
,− σr

( 1
KC0

+ P0)α− µr
}.

Clearly, I0 depends on K. Therefore, we denote it by I0(K).
As a rule of thumb, amplitude truncation is typically small
when I0(K) < 0.4 (see [1]). Based on this idea, the
following definition for the S-truncation points is introduced.

Definition 6. The AS-truncation points are the poles of

Ttr =
Ke(KI0)C(s)P (s)

1 +Ke(KI0)P (s)C(s)
,

where
KI0 = min

K>0
{K : I0(K) = 0.4}.

Since the termination points occur when K tends to
infinity, the AS-truncation points, when they exist, must
occur prior to the AS-termination points. We use black
squares to denote the AS-truncation points on the AS-root
locus.

Example 1. Consider the system of Fig. 3(a) with

C(s) = 1, P (s) =
s+ 20

(s+ 15)(s+ 0.5)
, σr = 1,

and FΩr (s) as the third order butterworth filter (2) with
bandwidth Ωr = 1. Initially, assume that α = −0.92,
β = 0.92, and µr = 0. This system, which, according to
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Fig. 4. AS-root locus.

Definition 1, is symmetric for all K, has been studied in
Example 5.3 of [1]. Specifically, it has been shown that
K∗e = ∞ (i.e., the termination points are at the open
loop zeros). Now, assume that µr = 1, i.e., the system is
asymmetric. The limiting effective gain K∗e , calculated using
Theorem 1, becomes K∗e = 21.4. The AS-termination points,
therefore, are at −18.5±9.8j instead of the open loop zeros.
Furthermore, the gain KI0 calculated using Definition 6 is
0.88, and the AS-truncation points are at −14.7 and −1.5.
The complete AS-root locus is shown in Fig. 4, where, as
before, the white squares denote AS-termination points, the
black squares denote the AS-truncation points, the x’s denote
open loop poles and the circle denotes the open loop zero.
The shaded area is referred to as the “admissible domain”,
which is discussed in Section V. Note that, in this example,
the truncation points are close to the open loop poles, which,
as we show in Section V, implies that amplitude truncation
takes place even for small values of controller gain.

C. TE locus

The TE locus may be plotted for each K using equations
(8)-(10). As it turns out, it can be either increasing, or
decreasing, or even non-monotonic function of K. As an
example, consider the A-LPNI system of Fig. 3(a), with

C(s) =
s+ 0.1

s+ 1
, P (s) =

1

s+ 1
, α = −0.5, β = 1.5, (16)

σr = 1, and FΩr given by (2) with Ωr = 1. Fig. 5 shows the
TE locus for three different µr’s. Clearly, for µr = 0, TE
locus is increasing for all K, for µr = 0.5 it is decreasing for
all K, and for µr = −0.5 it is non-monotonic. Furthermore,
for µr = 0 and µr = −0.5, this locus does not tend to zero
and as K tends to infinity. This is in contrast with linear
systems, in which large K implies arbitrarily small steady
state tracking error. Note that graph for µr = −0.5 implies
that the steady state tracking error may be as large as 70%.

The TE loci of Fig. 5 have been constructed by solving
equations (8)-(10) for various K’s. The following theorem
provides a way for sketching TE locus without solving
these equations, but using the properties of TE at K = 0
(origination), K =∞ (termination), and an intermediate K
for which the system is symmetric.
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Theorem 2. Assume that α ≤ 0 ≤ β and that (8), (9) admit
unique solutions for all K. Then, |µê(K)| has the following
properties:

a. limK→0+ |µê(K)|= |µr|;
b. limK→0+

d|µê(K)|
dK < 0;

c. limK→∞|µê(K)|= |φ∗η∗C0
|, where φ∗ and η∗ are the

solution of (12) and (13);
d. If µr

P0
> α+β

2 , then |µê(K)|= | µr
1+KP0C0

|, where K =
1

C0( µr
α+β

2

−P0)

Proof. See Appendix. �

For instance, applying this theorem to the above example
(system (16)) with µr = 1 we obtain:

|µê(0)|= 1, |µê(∞)|= 0.35, |µê(10)|= 0.5. (17)

Therefore, the TE locus can be sketched as shown in Fig. 6.
Returning to Example 1, the TE locus of the system is

plotted in Fig. 7. This locus originates at |µê(0)|= 1 and
terminates at |µê(∞)|= 0.016.
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Fig. 7. The TE locus for Example 1.
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Fig. 9. AS-root locus with β = 1.3.

V. DESIGN OF RANDOM REFERENCE TRACKING
CONTROLLERS FOR A-LPNI SYSTEMS

A. Design for required dynamic performance

We first review the notion of admissible domain introduced
in [1]. The admissible domain is the shaded area shown in
Fig. 8 and is dependent on the bandwidth Ωr of the coloring
filter (see the axes in Fig. 8). If the AS-poles are within this
domain, the dynamic quality of tracking is good.

The design goal is to choose gain K so that all AS-poles
are within the admissible domain and positioned prior to the
AS-truncation points. Note that there exists a fundamental
trade-off in the size of K: it must be large enough to achieve
static responsiveness, but small enough to avoid amplitude
truncation.

Returning to the AS-root locus of the system in Example
1 (see Fig. 4), the AS-truncation points are outside the
admissible domain; therefore, quality of tracking is bad
due to amplitude truncation. To alleviate this problem, the
authority of the actuator must be increased. With β = 1.3,
the termination gain is K∗e = 104 and the truncation gain
KI0 is 39. The AS-root locus for this case is shown in
Fig. 9. Selecting 4 < K < 39, the AS-poles are within
the admissible domain and prior to the AS-truncation points.
As far as static responsiveness is concerned, assume that the
specifications call for 1

1+KC0P0
< 0.05. This implies that

K > 7.2. Therefore, to achieve both good dynamic tracking
and static responsiveness, K must satisfy

7.2 < K < 39. (18)
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Fig. 11. Responses of the system of Example 1.

B. Design for required steady state performance

Assume that the steady state specifications call for
|µê(K)|< µe. Based on this specification, an admissible
domain for TE can be introduced (see the shaded area in
Fig. 10). For design, gain K must be selected such that the
TE locus is in the admissible domain.

Returning to Example 1, assume that the specifications call
for |µê(K)|< 0.05. The TE locus of the system, along with
the admissible domain, is plotted in Fig. 10. As it follows
from Fig. 10, the TE loci for β = 0.92 and β = 1.3 are in the
admissible domain for K > 17 and K > 7.6, respectively.

Combining the above results, we conclude that, for the
case of β = 1.3, for good static and dynamic tracking, K
must satisfy

7.6 < K < 39.

Selecting K = 35, we illustrate the quality of tracking for
both β = 0.92 and β = 1.3 in Fig. 11. Clearly, the quality of
tracking is good for β = 1.3, but poor for β = 0.92 because
of amplitude truncation.

There may be cases where the AS-poles and TE cannot be
placed in their respective admissible domains simultaneously.
An example of this situation is as follows.
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Fig. 12. AS-root locus and TE locus of Example 2.

Example 2. Consider the system of Fig. 3(a) with

C(s) = 1, P (s) =
3

0.5s+ 1
, σr = 1, µr = 5, α = 0, β = 2,

and FΩr (s) as the third order butterworth filter (2) with band-
width Ωr = 2. Assume that the steady state specifications
call for TE < 0.1. The AS-root locus and TE locus of
this system are plotted in Fig. 12. As it follows from the
AS-root locus, to place the AS-poles within the admissible
domain and prior to the truncation points, K must satisfy
1.24 < K < 1.33. However, to place the TE within the
admissible domain, K must satisfy K > 21.5. Clearly, no K
satisfies both requirements. Fig. 13 shows the response of the
system with K = 1.3 and K = 22. Clearly, with K = 1.3,
dynamic tracking is good but there exist significant error in
tracking of average values. With K = 22, the steady state
tracking is good but significant output truncation occurs.

VI. DESIGN OF STEP TRACKING CONTROLLERS FOR
SYSTEMS WITH SATURATING ACTUATORS

This section presents a method for designing controllers
to track step reference signals in systems with saturating
actuators. This method is based on the technique developed
in Section V, and involves “converting” the dynamic part
of the step tracking specifications to random signal tracking
specifications. For the case of symmetric saturation, this
method has been developed in [24]; here, we consider the
general case.

Consider the system of Fig. 14, where all blocks are as
before and 1(t) denotes the unit step signal. Assume that the
dynamic part of step tracking specifications are given by

Overshoot ≤ OS∗%;

Settling time ≤ t∗s sec;

Rise time ≤ t∗r sec.

(19)



0 5 10 15 20

3

4

5

6

7

 

 

r(t)

y(t)

(a) K = 1.3.

0 5 10 15 20

3

4

5

6

7

 

 

r(t)

y(t)

(b) K = 22.

Fig. 13. Response of the system of Example 2.
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Fig. 14. LPNI system for tracking step signals.

To design step tracking controllers, we modify the block
diagram of Fig. 14 to the one shown in Fig. 15. Here, the
reference signal r(t) is generated by filtering the step signal
by a nominal second order system,

Fd(s) =
ω2
n

s2 + 2ζωns+ ω2
n

, (20)

where ζ and ωn are selected so that the output of Fd(s)
(i.e., r(t)) satisfies the dynamic specifications (19). If the
specifications call for zero overshoot, ζ is selected to be one;
otherwise, 0 < ζ < 1. The goal is to design a controller
C(s), if possible, such that the output y(t) tracks well r(t)
and, therefore, satisfies the specs. To this end, we propose a
method that consists of the following steps:

1) Convert the dynamic part of the step tracking specifi-
cations to random-signal tracking specifications. This is
carried out by determining Ωr from the specs (19) such
that if a controller for the system of Fig. 3(a) tracks
well the random reference r(t) with this bandwidth,
standard deviation σr = r0, and mean µr = 0, the
same controller tracks well r(t) in Fig. 15; we refer to
this Ωr as the adjoint bandwidth and denote it by Ωa.
An expression for calculating Ωa is provided below.

2) Design such a controller for the system of Fig. 3(a) with
Ωr = Ωa, using the method developed in Section V.

3) Finally, use the same controller in the system of Fig.
15. By doing so, we view the output of Fd(s), i.e.,
r(t), as the function to be tracked, rather than the step

P (s)C (s)
_

yvur(t)
satβ

α(u)Fd(s)r01(t)
e

Fig. 15. The modified system for tracking steps.

signal itself. In other words, Fd(s) can be viewed as a
pre-compensator in a 2 degree-of-freedom architecture
[25].

The following proposition presents a formula for calculat-
ing the adjoint bandwidth.

Proposition 1. Let Fd(s) be the nominal second order
transfer function (20), whose step response satisfies specs
(19). If the specifications call for non-zero overshoot, then
0 < ζ < 1 and the adjoint bandwidth is given by

Ωa =
√

2ωn exp

(
− σ

ωd
tan−1(

ωd
σ

)

)
, (21)

where σ = ζωn and ωd = ωn
√

1− ζ2. If the specifications
call for zero overshoot, a filter with ζ = 1 is chosen, and
the adjoint bandwidth is given by

Ωa =
√

2ωne
−1. (22)

The justification for the above proposition is given in [24],
where it is shown that the adjoint bandwidth is defined by
equating the maximum rate of change of r(t) in Fig. 15 with
the standard deviation of the rate of change of r(t) in Fig.
3(a).

Example 3. Consider the system of Fig. 15 with

P (s) =
150

s2 + 28s+ 232
, α = −3.5, β = 4.5.

The goal is to design a pre-compensator and controller
such that the system tracks the unit step with the following
specifications:

Steady state error = 0;

Overshoot ≤ 5%;

Settling time ≤ 1 sec.

(23)

Note that to meet the steady state specs, the controller must
have a pole at the origin. As far as dynamic tracking is
concerned, the pre-compensator is chosen as

Fd(s) =
34

s2 + 8s+ 34
, (24)

from which the adjoint bandwidth is calculated to be Ωa =
3.8. Select a PI controller as follows:

C(s) = K

(
3 +

75

s

)
.

The AS-root locus is shown in Fig. 16, which enters the
admissible domain. With K = 1, the AS-poles are within
the admissible domain. The TE locus for this example is
identically zero, so the steady state spec is met. For K = 1,
the quality of tracking for the system of Figs. 3(a) and 15
are shown in Figs. 17(a) and 17(b), respectively. As can be
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Fig. 17. Trajectories of the system in Example 2.

seen, the quality of tracking is good in both cases, and the
step tracking specs are satisfied.

VII. CONCLUSIONS AND FUTURE WORK

This paper shows that, unlike the S-LPNI case, A-LPNI
systems are characterized by two performance loci: the usual
– root locus (modified accordingly to account for saturation),
and an additional one – tracking error locus (to account for
non-classical behavior of steady state errors). In the design
of reference tracking controllers, both must be taken into
account, i.e., the gain of the controller should be selected so
that both loci are in their respective admissible domains.

A number of topics related to this problem remain open.
These include:
• Development of the performance loci approach to A-

LPNI systems with saturation in both actuators and
sensors.

• Development of the performance loci approach to A-
LPNI systems with nonlinearities other than saturation.

• Design of disturbance rejection controllers for A-LPNI
systems.

• Extension of LQR/LQG methods to A-LPNI systems.
• Extension of performance recovery techniques to A-

LPNI systems.
Solution of these problems will result in a relatively

complete QLC theory for A-LPNI systems.

APPENDIX

Proof of Theorem 1. Denote by K∗e and µ∗û the limiting Ke

and µû, i.e., K∗e = limK→∞Ke(K), µ∗û = limK→∞ µû(K).
Define

φ(K) =
∥∥∥ FΩ(s)C(s)

1 +Ke(K)P (s)C(s)

∥∥∥
2
σr,

and let φ∗ = limK→∞ φ(K).
Then, applying Taylor series expansions to (8), we obtain

Ke(K) =
K

2

[
erf
(
β − µû(K)
√
2Kφ(K)

)
− erf

(
α− µû(K)
√
2Kφ(K)

)]
=

1
√
π

[(
β − µû(K)
√
2φ(K)

)
−
K

3

(
β − µû(K)
√
2Kφ(K)

)3

+ · · ·

−
((

α− µû(K)
√
2φ(K)

)
−
K

3

(
α− µû(K)
√
2Kφ(K)

)3

+ · · ·
)]

.

(25)

We now consider four cases: (i) K∗e < ∞, µ∗û = ∞, (ii)
K∗e =∞, µ∗û =∞, (iii) K∗e <∞, µ∗û <∞, (iv) K∗e =∞,
µ∗û <∞.

Case (i) K∗e < ∞, µû = ∞: Taking the limit of (25) as
K tends to infinity, we obtain:

K∗e = lim
K→∞

1
√
π

β − α
√
2φ∗

(1−
1

3

3µ2
û

(
√
2Kφ∗)2

+
1

10

5µ4
û

(
√
2Kφ∗)4

− · · ·).

Define η∗ = limK→∞
µû(K)
Kφ(K) . Then,

K∗e =
1√
π

β − α√
2φ∗

∞∑
n=0

1

n!
(−(

η∗√
2

)2)n =
β − α√

2πφ∗
e−η

∗2/2.

(26)
Using a similar approach, we expand the quasilinear bias
equation (9) in Taylor series term by term:
• µû(K)Na(K)→ β−α√

2π
η∗e−η

∗2/2.

• −β2 erf( β−µû√
2Kφ

) + α
2 erf( α−µû√

2Kφ
)→ β−α

2 erf(η∗/
√

2).

• Kφ√
2π

[e
−(

β−µû√
2Kφ

)2

− e−(
α−µû√

2Kφ
)2

]→ β−α√
2π
η∗e−η

∗2/2.
Therefore, by noting that

lim
K→∞

µû(K)/K = η∗φ∗, (27)

the bias equation becomes

µr
P0
− φ∗η∗

C0P0
=
α+ β

2
+
β − α

2
erf(η∗/2).

This shows equations (12) and (13). Moreover, K∗e is as in
(26).

Case (ii) K∗e =∞, µû =∞: Since K∗e =∞, (26) implies
that φ∗ = 0 and the quasilinear bias equation implies that

η∗ is a finite number: η∗ =
√

2erf−1(
µr
P0
−α+β

2
β−α

2

). Therefore,
equations (12), (13) cover this case also. The proof of cases
(iii) and (iv) is similar. �

Proof of Theorem 2:



(Part a:) As K → 0, û → 0 and ŷ → 0. Therefore,
µê → µr.

(Part b:) Rewrite equations (8) and (9) in the form of
F1(K) = 0 and F2(K) = 0. Moreover, let Ke(K) and
µû(K) be solutions to (8) and (9) for a given K. Using the
implicit function theorem, it can be shown that

∂µû(K)

∂K
= −

∣∣∣∣∣
∂F1

∂K
∂F1

∂µû
∂F2

∂K
∂F2

∂µû

∣∣∣∣∣/
∣∣∣∣∣
∂F1

∂Ke
∂F1

∂µû
∂F2

∂Ke
∂F2

∂µû

∣∣∣∣∣ .
Then, computing each partial derivative and using Taylor
series expansions to simplify them, it can be shown that as
K → 0, ∂µû(K)

∂K → −KC0µr. Therefore, using part (a), the
result follows.

(Part c:) This part follows from (27).
(Part d:) This part follows from Definition 1. �
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