QUASILINEAR CONTROL THEORY

Performance Analysis and Design in Feedback Systems with Nonlinear Actuators and Sensors

ShiNung Ching Massachusetts Institute of Technology

Yongsoon Eun Xerox Center for Research and Technology

Cevat Gokcek Michigan State University

Pierre T. Kabamba University of Michigan

Semyon M. Meerkov University of Michigan

September 9, 2009

Contents

Fo	orewo	ord	vi
1	Intr	roduction	3
2	Stoc	chastic Linearization of LPNI Systems	5
	2.1	Stochastic Linearization of Open Loop Systems	5
		2.1.1 Stochastic linearization of isolated nonlinearities	5
		2.1.2 Stochastic linearization of direct paths of LPNI systems .	13
	2.2	Stochastic Linearization of Closed Loop LPNI Systems	15
		2.2.1 Notations and assumptions	15
		2.2.2 Reference tracking with nonlinear actuator	16
		2.2.3 Disturbance rejection with nonlinear actuator	21
		2.2.4 Reference tracking and disturbance rejection with nonlin-	
		ear sensor	24
		2.2.5 Closed loop LPNI systems with nonlinear actuator and	
		sensor	25
		2.2.6 Multiple Solutions of the Quasilinear Gain Equations	34
		2.2.7 Stochastic linearization of state space equations	37
	2.3	Accuracy of Stochastic Linearization in Closed Loop LPNI Systems	39
		2.3.1 Fokker-Planck equation approach	39
		2.3.2 Filter hypothesis approach	41
	2.4	Summary	42
	2.5	Problems	43
	2.6	Annotated Bibliography	43
3	Ana	lysis of Reference Tracking in LPNI Systems	45
	3.1	Trackable Domains and System Type for	
		LPNI Systems	46
		3.1.1 Trackable domains and steady state errors	46
		3.1.2 System types	53
		3.1.3 Application: Servomechanism design	54
	3.2	Quality Indicators for Random Reference	
		Tracking in Linear Systems	57
		3.2.1 Random reference model	58

		3.2.2	Random sensitivity function	59
		3.2.3	Tracking quality indicators	64
		3.2.4	Application: Linear hard disk servo Design	65
	3.3	Qualit	y Indicators for Random Reference	
		Tracki	ng in LPNI Systems	68
		3.3.1	Saturating random sensitivity function	70
		3.3.2	Tracking quality indicators	75
		3.3.3	Application: LPNI hard disk servo design	79
	3.4	Slante	d-step Reference Tracking	84
	3.5	Summ	arv	84
	3.6	Proble	ems	84
	3.7	Annot	ated Bibliography	84
1	And	lucia o	of Disturbance Poiection in LPNI Systems	85
4		Bosic	Polotionshing	86
	4.1	1 1 1	SISO gratoma	86
		4.1.1	MIMO gystems	00
	4.9	4.1.2 Eurodo	minio systems	00
	4.2	runua I DNI	Sustana mith Data Saturated Astustana	90
	4.5	LPNI 491	Modeling note seturated actuators	90
		4.5.1	Modeling rate-saturated actuators	100
		4.5.2	Disturbance rejection of LDNL systems with rate saturated	100
		4.0.0	Distuibance rejection of Li Wi systems with rate-saturated	101
	4.4	I DNI	Systems with Hystorogia	101
	4.4	Summ		105
	4.0	Droble	.aty	107
	4.0	Annot	eted Bibliography	107
	1.1	1111100		101
5	Des	ign of	Reference Tracking Controllers for LPNI Systems	109
	5.1	Admis	ssible Pole Locations for Random Reference Tracking	110
		5.1.1	Scenario	110
		5.1.2	Admissible domains for random reference tracking by pro-	
			totype second order system	112
		5.1.3	Higher order systems	115
		5.1.4	Example: Hard disk drive	115
	5.2	S-Roo	t Locus	117
		5.2.1	Scenario	117
		5.2.2	Definitions and cases considered	118
		5.2.3	S-root locus when $K_e(K)$ is unique	119
			QLC Toolbox:	123
		5.2.4	S-root locus when $K_e(K)$ is non-unique: Motivating ex-	
			ample	123
		5.2.5	S-root locus when $K_e(K)$ is non-unique: General analysis	126
			QLC Toolbox:	129
		5.2.6	Approach to controller design for non-unique $K_e(K)$	129
			QLC Toolbox:	130

ii

		5.2.7 S-root locus and amplitude truncation	$130 \\ 132$
		QLC Toolbox:	134
		5.2.9 Application: Hard disk drive	134
	5.3	$S\mathcal{H}_{\infty}$ Approach to Designing Tracking Controllers for LPNI Systems	136
	5.4	SLMI Approach to Designing Tracking Controllers for LPNI Sys- tems	136
	5.5	Summarv	136
	5.6	Problems	136
	5.7	Annotated bibliography	136
6	\mathbf{Des}	ign of Disturbance Rejection Controllers for LPNI Systems	139
	6.1	Saturated LQR/LQG	139
		6.1.1 Scenario	139
		6.1.2 Problem formulation	140
		6.1.3 SLQR theory	141
		6.1.4 SLQG theory	146
		6.1.5 Application to ship roll damping problem	151
	6.9	0.1.0 Extensions	154
	0.2	Instrumented LQR/LQG	155
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150
		6.2.2 ILQR theory $6.2.3$ ILQC theory	161
		6.2.4 Conceptions	166
		6.2.5 Application to ship roll damping problem	168
	63	SLMI Approach	170
	6.0	Summary	170
	6.5	Problems	170
	6.6	Annotated Bibliography	170
7	Per	formance Recovery in LPNI Systems	173
	7.1	Partial Performance Recovery by Instrumentation Selection	173
		7.1.1 Scenario	173
		7.1.2 Problem formulation	174
		7.1.3 Main result \ldots	176
		7.1.4 Examples	177
	7.2	Complete Performance Recovery by Controller Boosting	179
		7.2.1 Scenario	179
		7.2.2 Problem formulation	181
		7.2.3 a -Boosting	182
		$7.2.4 s\text{-Boosting} \dots \dots$	184
		7.2.5 Simultaneous <i>a</i> - and <i>s</i> -boosting	185
		7.2.6 Stability verification in the problem of boosting	186
		7.2.7 Accuracy of stochastic linearization in the problem of boost- ing	186
			100

CONTENTS

		7.2.8 Experimental validation of boosting: MagLev 188	3
	7.3	Boosting using LMIs)
	7.4	Performance Recovery using Anti-windup)
	7.5	Summary)
	7.6	Problems)
	7.7	Annotated Biblioraphy)
8	Plac	eholder QLC Toolbox 191	L
0	Dlac	aboldor Summary 103	2
9	Plac	eholder Summary 193	3
9 10	Plac Proc	eholder Summary 193 fs 195	3
9 10	Plac Proc 10.1	eholder Summary193ofs195Proofs for Chapter 2195195	5
9 10	Plac Proc 10.1 10.2	eholder Summary193fs195Proofs for Chapter 2195Proofs for Chapter 3195195	5
9 10	Plac Proc 10.1 10.2 10.3	eholder Summary193ofs195Proofs for Chapter 2195Proofs for Chapter 3195Proofs for Chapter 4195	S S S S S S
9 10	Plac Proc 10.1 10.2 10.3 10.4	eholder Summary 193 ofs 195 Proofs for Chapter 2 195 Proofs for Chapter 3 195 Proofs for Chapter 4 195 Proofs for Chapter 5 195	8 6 5 5 5 5
9 10	Proc 10.1 10.2 10.3 10.4 10.5	eholder Summary 193 fs 195 Proofs for Chapter 2 195 Proofs for Chapter 3 195 Proofs for Chapter 4 195 Proofs for Chapter 5 195 Proofs for Chapter 6 195	3 5 5 5 5 5 5 5

iv

Foreword

Purpose: This volume is devoted to the study of feedback control of the socalled *linear plant/nonlinear instrumentation* (LPNI) systems. Such systems appear naturally in situations where the plant can be viewed as linear but the instrumentation, i.e., actuators and sensors, can not. For instance, when a feedback system operates efficiently and maintains the plant close to a desired operating point, the plant may be linearized, but the instrumentation may not, because to counteract large perturbations or to track large reference signals, the actuator may saturate and the nonlinearities in sensors, e.g., quantization and dead zones, may be activated.

The problems of stability and oscillations in LPNI systems have been studied for a long time. Indeed, the theory of absolute stability [.-.] and harmonic balance method [.-.] are among the best known topics of control theory. More recent literature also addressed LPNI scenarios, largely from the point of view of stability [.,.] and anti-windup [.,.]. However, the problems of performance analysis and design, e.g., reference tracking and disturbance rejection, have not been investigated in sufficient details. This volume is intended to contribute to this end by providing methods for designing *linear controllers* that ensure the desired *performance* of closed loop LPNI systems.

The methods developed in this work are similar to the usual linear system techniques, e.g., root locus, LQR, LQG, etc., modified appropriately and coupled with additional equations that account for the instrumentation nonlinearities. Therefore, we refer to these methods as quasilinear and to the resulting area of control as *quasilinear control systems*.

This volume is intended as a supplementary textbook for the standard courses on Linear or Nonlinear Systems and Control and for self-study by practicing engineers involved in the analysis and design of control systems with nonlinear instrumentation.

Problems addressed: Consider the SISO system shown in Figure 0.1, where P(s) and C(s) are the transfer functions of the plant and the controller, and $f(\cdot)$, $g(\cdot)$ are static nonlinearities characterizing the actuator and the sensor, while r, d, u, y and y_m are the reference, disturbance, control, plant output, and sensor output, respectively. In the framework of this system and its MIMO generalizations, this volume considers the following problems:

Figure 0.1: Linear plant/nonlinear instrumentation control system

- P1. Performance analysis: Given P(s), C(s), $f(\cdot)$ and $g(\cdot)$ quantify the quality of reference tracking and disturbance rejection.
- P2. Narrow-sense design: Given P(s), $f(\cdot)$ and $g(\cdot)$, design a controller C(s) so that the quality of reference tracking and disturbance rejection meets specifications.
- P3. Wide-sense design: Given P(s), design a controller C(s) and select instrumentation $f(\cdot)$ and $g(\cdot)$ so that reference tracking and disturbance rejection meet specifications.
- P4. Partial performance recovery: Let $C_{\ell}(s)$ be a controller, which is designed under the assumption that the actuator and the sensor are linear and which meets reference tracking and disturbance rejection specifications. Given $C_{\ell}(s)$, select $f(\cdot)$ and $g(\cdot)$ so that the performance degradation is guaranteed to be less than a given bound.
- P5. Complete performance recovery: Given $f(\cdot)$ and $g(\cdot)$, modify $C_{\ell}(s)$ so that performance degradation does not take place.

This volume provides conditions under which solutions of these problems exist and equations and algorithms that can be used to calculate these solutions.

Nonlinearities considered: We consider actuators and sensors characterized by arbitrary piece-wise continuous single-valued scalar functions. For example, we address saturating actuators,

$$f(u) = \operatorname{sat}_{\alpha}(u) = \begin{cases} \alpha, & u > +\alpha \\ u, & -\alpha \le u \le \alpha \\ -\alpha, & u < -\alpha, \end{cases}$$
(0.1)

quantized sensors,

$$g(y) = \frac{\Delta}{2} \sum_{k=1}^{m} \left[\operatorname{sgn} \left(2y + \Delta \left(2k - 1 \right) \right) \times \operatorname{sgn} \left(2y - \Delta \left(2k - 1 \right) \right) \right], \qquad (0.2)$$

Foreword

where Δ is the quantization interval, and sensors with a deadzone of width Δ ,

$$g(y) = \begin{cases} y - \frac{\Delta}{2}, & y > +\frac{\Delta}{2} \\ 0, & -\frac{\Delta}{2} \le y \le \frac{\Delta}{2} \\ y + \frac{\Delta}{2}, & u < -\frac{\Delta}{2}. \end{cases}$$
(0.3)

The methods developed here are *modular* in the sense that they can be modified to account for any instrumentation nonlinearity just by replacing the general function representing the nonlinearity by a specific one corresponding to the actuator or sensor in question.

Main difficulty: LPNI systems are described by relatively complex nonlinear differential equations. Unfortunately, these equations cannot be treated by the methods of modern nonlinear control theory [.-.] since they assume that the control signal enters the state space equations in an affine manner and, thus, saturation and other nonlinearities in actuators are excluded. Therefore, a different approach to treat LPNI control systems is necessary.

Approach: The approach of this volume is based on the method of *stochastic linearization*. This method was introduced in [.] and [.] and applied widely in various areas of engineering. A modern account of this method and its applications can be found in [.-.].

Stochastic linearization is applicable to dynamical systems with random parametric or exogenous excitations. In the scenario of LPNI control systems, it assumes that the references and the disturbances are random. While this assumption is typical for the case of disturbances, reference signals are often modeled as deterministic, e.g., step, ramp, etc. In some applications, however, references can more readily be viewed as random than as deterministic. Indeed, in the problem of hard disk drive the reference signal (i.e., read/write positions) is often modeled as a Gaussian random process [.]. Similarly, in the aircraft homing problem, target maneuvers, which play a role of a reference, are typically viewed as random [.]. Thus, to apply stochastic linearization, we assume throughout this volume that both references and disturbances are random. However, several results on tracking step references and the so-called slanted-step references are also obtained.

According to stochastic linearization, the static nonlinearities in the feedback loop are replaced by equivalent or quasilinear gains N_a and N_s (see Figure 2, where \hat{u}, \hat{y} and \hat{y}_m replace u, y and y_m). Unlike the usual Jacobian linearization, the resulting approximation is global, i.e., it approximates the original system not only for small but for large signals as well. The price to pay is that the gains, N_a and N_s depend not only on the nonlinearities $f(\cdot)$ and $g(\cdot)$, but also on all other elements of Figure 1, including the transfer functions and the exogenous signals, since, as it turns out, N_a and N_s are functions of the standard deviations, σ_u and σ_y , of u and y, respectively, i.e., $N_a = N_a(\sigma_u)$ and $N_s = N_s(\sigma_y)$. Therefore, we refer to the system of Figure 2 as quasilinear control system. Systems of this type are the main topic of study in this volume. Thus, instead of assuming that a linear system represents the reality, as it is in linear control, we assume that a quasilinear system represents the reality and carry out control-theoretic developments, which parallel those of linear control theory, leading to what we call *quasilinear control* (QLC) *theory*.

Figure 0.2: Quasilinear control system

The question of accuracy of stochastic linearization, i.e., the precision with which the system of Figure 0.2 approximates that of Figure 0.1, is clearly of importance. Unfortunately, no general results in this area are available. However, various numerical and analytical studies indicate that if the plant, P(s), is lowpass filtering, the approximation is well within 10% in terms of the variances of y and \hat{y} and u and \hat{u} [.,.]. More details on stochastic linearization and its accuracy are included in Chapter 2 below. It should be noted that stochastic linearization is somewhat similar to the method of harmonic balance [.,.] with $N_a(\sigma_{\hat{u}})$ and $N_s(\sigma_{\hat{v}})$ playing the roles of describing functions.

Book organization: The book consists of ten chapters. Chapter 1 places LPNI systems and quasilinear control in the general field of control theory. Chapter 2 describes the method of stochastic linearization. Chapters 3 and 4 are devoted to analysis of quasilinear control systems from the point of view of reference tracking and disturbance rejection, respectively. Chapters 5 and 6 also address tracking and disturbance rejection problems, but from the point of view of view of design; both wide- and narrow-sense design problems are considered. Chapter 7 addresses the issues of performance recovery. Chapter 8 describes the QLC Toolbox, which is a set of user-friendly Matlab programs that implement the methods and algorithms developed in this book. Chapter 9 provides a summary fundamental facts of quasilinear control theory. Finally, Chapter 10 includes the proofs of all formal statements included in the book. Chapters 2-7 conclude with problems for homework assignments and annotated bibliography.

Intended audience, outcomes, and prerequisites: This volume is intended as a supplementary textbook for graduate and advanced undergraduate students, interested in linear and nonlinear control. It shows the students how the techniques, included in the standard control textbooks, (e.g., root locus, LQR/LQG, \mathcal{H}_{∞} , etc.) can be extended to constructively analyze and design closed loop LPNI systems. In addition, practicing engineers might find it useful

Foreword

to learn the quasilinear methods, since, on one hand, they are not too different from those used in practice (i.e., PID controller design) and, on the other hand, allow for taking into account instrumentation nonlinearities at the initial stage of design, thus avoiding or reducing the need for re-design and simulations.

As an outcome, the readers will acquire rigorous and practical knowledge for designing control systems with ubiquitous nonlinearities in the feedback loop.

The only prerequisite for the material included in this supplementary textbook is a course on Linear Systems and Control. The material from Nonlinear Systems and Control may be desirable but by no means necessary.

Advice to instructors:

Acknowledgements: