HOW DO WE TAILOR AND CONTROL ELECTRONIC PROPERTIES?
How can we modify bandstructure?

Energy needs: new bandgaps;
Optical device needs: tailorable bandgaps
High speed devices: lower masses
High power, high temperature devices: Large bandgaps
Novel devices: Low dimensional systems, heterostructures, junctions, …
Approaches to Bandstructure Modification

Alloys
- By combining two or more materials, a new lattice constant and bandgap can be produced.

Quantum Wells, Wires & Dots
- 2-dimensional or even lower dimensional electronic systems can be produced.
- Effective bandgap and density of states can be altered.

Strain Field
- Degeneracies can be removed.
- Character of bandedge wavefunctions can be altered.
- Bandedge density of states can be altered.
Alloys: Mixing of two or more materials

![Graph showing lattice constant vs mole fraction for various alloys like InSb, Ga\(_x\)In\(_{1-x}\)Sb, InAs\(_x\)Sb\(_{1-x}\), GaAs\(_x\)Sb\(_{1-x}\), Ga\(_x\)In\(_{1-x}\)As, Al\(_x\)In\(_{1-x}\)P, Al\(_x\)In\(_{1-x}\)As, Al\(_x\)Ga\(_{1-x}\)As, and Al\(_x\)Ga\(_{1-x}\)P.

Latent constant, \(a\) (nm)

- InSb
- Ga\(_x\)In\(_{1-x}\)Sb
- InAs\(_x\)Sb\(_{1-x}\)
- GaAs\(_x\)Sb\(_{1-x}\)
- Ga\(_x\)In\(_{1-x}\)As
- Al\(_x\)In\(_{1-x}\)P
- Al\(_x\)Ga\(_{1-x}\)As
- Al\(_x\)Ga\(_{1-x}\)P

Mole fraction, \(x\)
Alloys: Types of Alloys

Clustered

Random

Ordered
Alloys: Models for Alloy Bandstructure

Alloys are not periodic structures so Bloch theorem is not applicable. An average potential model is used to understand alloy electronic states.
When an alloy A_xB_{1-x} is produced the lattice constant of the alloy is given by Vegard’s law:

$$a_{\text{alloy}} = xa_A + (1 - x)a_B$$

Bandgap of alloys is reasonably well described by:

$$E_g^{\text{alloy}} = a + bx + cx^2$$

where c is the bowing parameter.

Since

$$E_{\text{alloy}}(k) = \frac{\hbar^2 k^2}{2m_{\text{alloy}}^*}$$

$$= x\frac{\hbar^2 k^2}{2m_A^*} + (1 - x)\frac{\hbar^2 k^2}{2m_B^*}$$

Effective Mass:

$$\frac{1}{m_{\text{alloy}}^*} = \frac{x}{m_A^*} + \frac{1 - x}{m_B^*}$$
Bandgaps of Some Alloys

<table>
<thead>
<tr>
<th>Compound</th>
<th>Direct Energy Gap E_g (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Al}x\text{In}{1-x}\text{ P}$</td>
<td>$1.351 + 2.23x$</td>
</tr>
<tr>
<td>$\text{Al}x\text{Ga}{1-x}\text{ As}$</td>
<td>$1.424 + 1.247x$</td>
</tr>
<tr>
<td>$\text{Al}x\text{In}{1-x}\text{ As}$</td>
<td>$0.360 + 2.012x + 0.698x^2$</td>
</tr>
<tr>
<td>$\text{Al}x\text{Ga}{1-x}\text{ Sb}$</td>
<td>$0.726 + 1.129x + 0.368x^2$</td>
</tr>
<tr>
<td>$\text{Al}x\text{In}{1-x}\text{ Sb}$</td>
<td>$0.172 + 1.621x + 0.43x^2$</td>
</tr>
<tr>
<td>$\text{Ga}x\text{In}{1-x}\text{ P}$</td>
<td>$1.351 + 0.643x + 0.786x^2$</td>
</tr>
<tr>
<td>$\text{Ga}x\text{In}{1-x}\text{ As}$</td>
<td>$0.36 + 1.064x$</td>
</tr>
<tr>
<td>$\text{Ga}x\text{In}{1-x}\text{ Sb}$</td>
<td>$0.172 + 0.139x + 0.415x^2$</td>
</tr>
<tr>
<td>$\text{GaP}x\text{As}{1-x}$</td>
<td>$1.424 + 1.150x + 0.176x^2$</td>
</tr>
<tr>
<td>$\text{GaAs}x\text{Sb}{1-x}$</td>
<td>$0.726 + 0.502x + 1.2x^2$</td>
</tr>
<tr>
<td>$\text{InP}x\text{As}{1-x}$</td>
<td>$0.360 + 0.891x + 0.101x^2$</td>
</tr>
<tr>
<td>$\text{InAs}x\text{Sb}{1-x}$</td>
<td>$0.18 + 0.41x + 0.58x^2$</td>
</tr>
</tbody>
</table>
Alloys: Models for Alloy Bandstructure

Alloy $\text{Ga}_x\text{Al}_{1-x}$

Direct to indirect transition can occur with alloy composition change.
Mercury-Cadmium-Telluride

Alloy: $\text{Cd}_x\text{Hg}_{1-x}$

Very important alloy for night vision, thermal imaging
Experiments needed for band alignment information
Heterostructures: Formation of subbands

Electrons are confined in the growth direction and levels are quantized.
Electrons are confined in the growth direction and levels are quantized.

Schrödinger equation for the electron states in the quantum well:

\[
-\frac{\hbar^2}{2m^*} \nabla^2 + V(z) \Psi = E \Psi
\]

where \(m^* \) is the effective mass of the electron.

Wavefunction:

\[
\Psi(x, y, z) = e^{ik_rx} \cdot e^{ikrzy} f(z)
\]

where \(f(z) \) satisfies

\[
-\frac{\hbar^2}{2m^*} \frac{\partial^2}{\partial z^2} + V(z) f(z) = E_n f(z)
\]

For Infinite Barrier Model:

\[
f(z) = \cos \left(\frac{\pi n z}{W} \right), \text{ if } n \text{ is even}
\]

= \sin \left(\frac{\pi n z}{W} \right), \text{ if } n \text{ is odd}

with energies

\[
E_n = \frac{\pi^2 \hbar^2 n^2}{2m^* W^2}
\]

The energy of the electron bands are then

\[
E = E_n + \frac{\hbar^2 k^2}{2m^*}
\]

leading to subbands.
For realistic wells the problem can be solved numerically.

For finite barrier case:

$$\alpha \tan \frac{\alpha W}{2} = \beta$$
$$\alpha \cot \frac{\alpha W}{2} = -\beta$$

where

$$\alpha = \sqrt{\frac{2m^*E}{\hbar^2}}$$
$$\beta = \sqrt{\frac{2m^*(V_c - E)}{\hbar^2}}$$

These equations can be solved numerically. The solutions give the energy levels E_1, E_2, E_3
... and the wavefunctions.
Bandstructure of Quantum Wells

E-k is altered

Density of states is modified
Low-dimensions structures: Density of states

Density of states control scattering response and optical response.
Valence bands are non-parabolic because of degenerate hole states near the valence bandedge.
Low-dimensions structures

Low dimensional structures have become integral to device technologies.

De Broglie wavelength of electrons in most semiconductors is about 10 nm, a dimension that is easily reached in essentially all next generation technologies.