EECS 442 – Computer vision

Optical flow and tracking

• Intro
• Lucas-Kanade algorithm
• Motion segmentation
• Kalman filters

Segments of this lectures are courtesy of Profs S. Lazebnik
S. Seitz, R. Szeliski, M. Pollefeys, K. Hassan-Shafique. S. Thrun
From images to videos

- A video is a sequence of frames captured over time
- Now our image data is a function of space \((x, y)\) and time \((t)\)
Uses of motion

- Estimating 3D structure
- Tracking objects
- Segmenting objects based on motion cues
- Learning dynamical models
- Recognizing events and activities
- Improving video quality (motion stabilization)
Estimating 3D structure
Tracking objects

Segmenting objects based on motion cues

- Background subtraction
 - A static camera is observing a scene
 - Goal: separate the static *background* from the moving *foreground*
Segmenting objects based on motion cues

- **Motion segmentation**
 - Segment the video into multiple *coherently* moving objects

Motion and perceptual organization

- Not grouped
- Proximity
- Similarity
- Similarity
- Common Fate

- Parallelism
- Symmetry
- Continuity
- Closure

Common Region
Learning dynamical models

Original Synthesized

Copyright (c) UCLA, G. Doretto and S. Soatto, 2002
Recognizing events and activities

Recognizing events and activities

Motion estimation techniques

- **Optical flow**
 - Recover image motion at each pixel from spatio-temporal image brightness variations (optical flow)

- **Feature-tracking**
 - Extract visual features (corners, textured areas) and “track” them over multiple frames
Optical flow

Vector field function of the spatio-temporal image brightness variations

Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT
Feature-tracking

Courtesy of Jean-Yves Bouguet – Vision Lab, California Institute of Technology
Feature-tracking

Courtesy of Jean-Yves Bouguet – Vision Lab, California Institute of Technology
Optical flow

Definition: optical flow is the \textit{apparent} motion of brightness patterns in the image.

Note: apparent motion can be caused by lighting changes without any actual motion.

- Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination.
Estimating optical flow

Given two subsequent frames, estimate the apparent motion field \(u(x,y),\ v(x,y) \) between them

- **Key assumptions**
 - Brightness constancy: projection of the same point looks the same in every frame
 - Small motion: points do not move very far
 - Spatial coherence: points move like their neighbors
The brightness constancy constraint

\[(x, y)\) displacement = (u, v)

\[I(x, y, t-1)\]

\[(x + u, y + v)\]

\[I(x, y, t)\]

Brightness Constancy Equation:

\[I(x, y, t - 1) = I(x + u(x, y), y + v(x, y), t)\]

Linearizing the right side using Taylor expansion:

\[I(x, y, t - 1) \approx I(x, y, t) + I_x \cdot u(x, y) + I_y \cdot v(x, y)\]

\[I(x, y, t - 1) - I(x, y, t) \approx I_x \cdot u(x, y) + I_y \cdot v(x, y)\]

Hence,

\[I_x \cdot u + I_y \cdot v + I_t \approx 0 \quad \rightarrow \nabla I \cdot [u \ v]^T + I_t = 0\]
The brightness constancy constraint

$$\nabla I \cdot [u \ v]^T + I_t = 0$$

How many equations and unknowns per pixel?

• One equation (this is a scalar equation!), two unknowns \((u, v)\)

The component of the flow perpendicular to the gradient (i.e., parallel to the edge) is unknown

If \((u, v)\) satisfies the equation, so does \((u+u', v+v')\) if

$$\nabla I \cdot [u' \ v']^T = 0$$
The aperture problem
The aperture problem

Actual motion
The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
Solving the ambiguity...

How to get more equations for a pixel?

Spatial coherence constraint:
Assume the pixel’s neighbors have the same \((u, v)\)

- If we use a 5x5 window, that gives us 25 equations per pixel

\[
0 = I_t(p_i) + \nabla I(p_i) \cdot [u \ v]
\]

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
I_t(p_1) \\
I_t(p_2) \\
\vdots \\
I_t(p_{25})
\end{bmatrix}
\]
Solving the ambiguity...

Least squares problem:

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
I_t(p_1) \\
I_t(p_2) \\
\vdots \\
I_t(p_{25})
\end{bmatrix}
\begin{bmatrix}
A & d = b \\
25x2 & 2x1 & 25x1
\end{bmatrix}
\]

- When is this system solvable?
 - What if the window contains just a single straight edge?
Conditions for solvability

“Bad” case: single straight edge
Conditions for solvability

“Good” case
Lucas-Kanade flow

Overconstrained linear system

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
I_t(p_1) \\
I_t(p_2) \\
\vdots \\
I_t(p_{25})
\end{bmatrix}
\]

Least squares solution for d given by

\[
(A^TA) d = A^Tb
\]

\[
\begin{bmatrix}
\sum I_xI_x & \sum I_xI_y \\
\sum I_xI_y & \sum I_yI_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
\sum I_xI_t \\
\sum I_yI_t
\end{bmatrix}
\]

A^TA \quad A^Tb

The summations are over all pixels in the K x K window.
Conditions for solvability

- Optimal \((u, v)\) satisfies Lucas-Kanade equation

\[
\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
\sum I_x I_t \\
\sum I_y I_t
\end{bmatrix}
\]

\(A^T A\)
\(A^T b\)

When is This Solvable?

- \(A^T A\) should be invertible
- \(A^T A\) should not be too small due to noise
 - eigenvalues \(\lambda_1\) and \(\lambda_2\) of \(A^T A\) should not be too small
- \(A^T A\) should be well-conditioned
 - \(\lambda_1/\lambda_2\) should not be too large (\(\lambda_1 =\) larger eigenvalue)

Does this remind anything to you?
$M = A^T A$ is the *second moment matrix*!
(Harris corner detector…)

$$A^T A = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x \ I_y] = \sum \nabla I (\nabla I)^T$$

• Eigenvectors and eigenvalues of $A^T A$ relate to edge direction and magnitude
 • The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change
 • The other eigenvector is orthogonal to it
Interpreting the eigenvalues

Classification of image points using eigenvalues of the second moment matrix:

- \(\lambda_1 \) and \(\lambda_2 \) are large, \(\lambda_1 \sim \lambda_2 \) (Corner)
- \(\lambda_2 \gg \lambda_1 \) (Edge)
- \(\lambda_1 \gg \lambda_2 \) (Edge)
- \(\lambda_1 \) and \(\lambda_2 \) are small (Flat region)
Edge

\[\sum \nabla I (\nabla I)^T \]

- gradients very large or very small
- large λ_1, small λ_2
Low-texture region

\[\sum \nabla I (\nabla I)^T \]
- gradients have small magnitude
- small λ_1, small λ_2
High-texture region

\[\sum \nabla I (\nabla I)^T \]

- gradients are different, large magnitudes
- large λ_1, large λ_2
What are good features to track?

Can measure “quality” of features from just a single image

Hence: tracking Harris corners (or equivalent) guarantees small error sensitivity!

→ Implemented in Open CV
Recap

• Key assumptions (Errors in Lucas-Kanade)

 • Small motion: points do not move very far
 • Brightness constancy: projection of the same point looks the same in every frame
 • Spatial coherence: points move like their neighbors
Revisiting the small motion assumption

Is this motion small enough?
 • Probably not—it’s much larger than one pixel (2nd order terms dominate)
 • How might we solve this problem?

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Reduce the resolution!

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Multi-resolution Lucas Kanade Algorithm

- Compute ‘simple’ LK at highest level
- At level \(i \)
 - Take flow \(u_{i-1}, v_{i-1} \) from level \(i-1 \)
 - bilinear interpolate it to create \(u_i^*, v_i^* \)
 matrices of twice resolution for level \(i \)
 - multiply \(u_i^*, v_i^* \) by 2
 - compute \(f_t \) from a block displaced by
 \(u_i^*(x,y), v_i^*(x,y) \)
 - Apply LK to get \(u'_i(x, y), v'_i(x, y) \) (the correction in flow)
 - Add corrections \(u'_i, v'_i \), i.e. \(u_i = u_i^* + u'_i \),
 \(v_i = v_i^* + v'_i \).
Coarse-to-fine optical flow estimation

Gaussian pyramid of image 1

Gaussian pyramid of image 2

$u=1.25$ pixels
$u=2.5$ pixels
$u=5$ pixels
$u=10$ pixels
Coarse-to-fine optical flow estimation

Gaussian pyramid of image 1

run iterative L-K

warp & upsample

run iterative L-K

Gaussian pyramid of image 2

image 1

image 2
Optical Flow Results

Lucas-Kanade without pyramids

Fails in areas of large motion

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Optical Flow Results

Lucas-Kanade with Pyramids

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Recap

• **Key assumptions (Errors in Lucas-Kanade)**

 • Small motion: points do not move very far
 • Brightness constancy: projection of the same point looks the same in every frame
 • Spatial coherence: points move like their neighbors
Motion segmentation

How do we represent the motion in this scene?
Motion segmentation

Break image sequence into “layers” each of which has a coherent motion
What are layers?

Each layer is defined by an alpha mask and an affine motion model
Affine motion

\[u(x, y) = a_1 + a_2 x + a_3 y \]
\[v(x, y) = a_4 + a_5 x + a_6 y \]

Substituting into the brightness constancy equation:

\[I_x \cdot u + I_y \cdot v + I_t \approx 0 \]
Affine motion

\[
u(x, y) = a_1 + a_2 x + a_3 y
\]

\[
v(x, y) = a_4 + a_5 x + a_6 y
\]

Substituting into the brightness constancy equation:

\[
I_x (a_1 + a_2 x + a_3 y) + I_y (a_4 + a_5 x + a_6 y) + I_t \approx 0
\]

• Each pixel provides 1 linear constraint in 6 unknowns

• Least squares minimization:

\[
Err(\bar{a}) = \sum \left[I_x (a_1 + a_2 x + a_3 y) + I_y (a_4 + a_5 x + a_6 y) + I_t \right]^2
\]
How do we estimate the layers?

1. Obtain a set of initial affine motion hypotheses
 • Divide the image into blocks and estimate affine motion parameters in each block by least squares
 – Eliminate hypotheses with high residual error
 • Map into motion parameter space
 • Perform k-means clustering on affine motion parameters
 – Merge clusters that are close and retain the largest clusters to obtain a smaller set of hypotheses to describe all the motions in the scene
How do we estimate the layers?

1. Obtain a set of initial affine motion hypotheses
 - Divide the image into blocks and estimate affine motion parameters in each block by least squares
 - Eliminate hypotheses with high residual error
 - Map into motion parameter space
 - Perform k-means clustering on affine motion parameters
 - Merge clusters that are close and retain the largest clusters to obtain a smaller set of hypotheses to describe all the motions in the scene

2. Iterate until convergence:
 - Assign each pixel to best hypothesis
 - Pixels with high residual error remain unassigned
 - Perform region filtering to enforce spatial constraints
 - Re-estimate affine motions in each region
Example result

Tracking

Many slides adapted from Kristen Grauman, Deva Ramanan
Motion estimation techniques

Optical flow
• Recover image motion at each pixel from spatio-temporal image brightness variations (optical flow)

Feature-tracking
• Extract visual features (corners, textured areas) and “track” them over multiple frames
Feature tracking

So far, we have only considered optical flow estimation in a pair of images.

If we have more than two images, we can compute the optical flow from each frame to the next.

Given a point in the first image, we can in principle reconstruct its path by simply “following the arrows”
Tracking challenges

Ambiguity of optical flow
 • Find good features to track

Large motions
 • Discrete search instead of Lucas-Kanade

Changes in shape, orientation, color
 • Allow some matching flexibility

Occlusions, disocclusions
 • Need mechanism for deleting, adding new features

Drift – errors may accumulate over time
 • Need to know when to terminate a track
Shi-Tomasi feature tracker

Find good features using eigenvalues of second-moment matrix

• Key idea: “good” features to track are the ones that can be tracked reliably

From frame to frame, track with Lucas-Kanade and a pure translation model

• More robust for small displacements, can be estimated from smaller neighborhoods

Check consistency of tracks by affine registration to the first observed instance of the feature

• Affine model is more accurate for larger displacements
• Comparing to the first frame helps to minimize drift
Tracking example

Figure 1: Three frame details from Woody Allen’s *Manhattan*. The details are from the 1st, 11th, and 21st frames of a subsequence from the movie.

Figure 2: The traffic sign windows from frames 1, 6, 11, 16, 21 as tracked (top), and warped by the computed deformation matrices (bottom).
Tracking with dynamics

Key idea: Given a model of expected motion, predict where objects will occur in next frame, even before seeing the image

- Restrict search for the object
- Improved estimates since measurement noise is reduced by trajectory smoothness
Tracking with dynamics

The Kalman filter:

• Method for tracking linear dynamical models in Gaussian noise
• The predicted/corrected state distributions are Gaussian
 • Need to maintain the mean and covariance
 • Calculations are easy (all the integrals can be done in closed form)
2D Target tracking using Kalman filter in MATLAB
by AliReza KashaniPour

http://www.mathworks.com/matlabcentral/fileexchange/14243
Optical flow without motion!