Searching the World’s Herbaria: A System for Visual Identification of Plant Species

Chunxia Li
PhD Pre-Candidate
Construction Engineering & Management
Dept. of Civil & Environmental Engineering
University of Michigan

Silvio Savarese, PhD
Assistant Professor
Computer Vision Group
Dept. of Electrical and Computer Engineering
University of Michigan
Outline

- Introduction
- Dataset
- Segmentation & Shape Matching
- UI & Hardware
- Conclusion
Means to Access Data

- Digital on-line information:
 - Specimens in the US National Herbarium at the Smithsonian (9,000)
 - New York Botanical Garden (12,000)
 - Royal Botanical Gardens, Kew (50,000)
 - Missouri Botanical Garden (35,000)
 - The Encyclopedia of Life

- Visual Search
 - Neural network, centroid-contour distance
 - Hierarchical shape matching
 - IDSC

- Flow diagram of plant identification system
 - Photograph Leaf
 - Segment
 - Compute IDSC
 - Show Top Matches
Outline

- Introduction
- **Dataset**
- Segmentation & Shape Matching
- UI & Hardware
- Conclusion
Dataset

- **Current available dataset**
 - 15 species
 - 75 leaf images/species

- **Leaves processing:**
 - Collection
 - Flattened by pressing
 - Photographed with ruler and a color chart for calibration
 - Photographed with top/bottom lighting
 - Resize to a maximum dimension of 512 pixels
 - Automatic remove ruler, color chart and empty space
 - segmentation

- **Three datasets created:**
 - Flora of Plummers Island
 - Woody Plants of Baltimore-Washington, DC
 - Trees of Central Park
Outline

- Introduction
- Dataset
- Segmentation & Shape Matching
- UI & Hardware
- Conclusion
Segmentation

- Photograph on a plain white background
- Color-based EM algorithm
 - Map each pixel to SV
 - Separate pixels:
 - Discard pixels near boundary
 - Setting the background cluster to the mean of pixels near the boundary
 - Setting the foreground cluster to the mean of the central pixels

- SUM
 - Feature selection
 - Initialization
 - Sampling
 - Segment classification
Shape Matching

- IDSC (Inner Distance Shape Context) for matching
 - Sample points around along the boundary
 - 2D histogram descriptor at each point
 - Angle & distance from each pt to other pts

- To compare two leaves
 - Sample points
 - m different uniformly space locations

- Nearest neighbor classifier

Experimental results for two datasets
Outline

- Introduction
- Dataset
- Segmentation & Shape Matching
 - **UI & Hardware**
- Conclusion
User Interface & Hardware

- Mobile Computing Platform
 - Browse
 - Sample
 - Search results
 - History

- Augmented Reality
 - UMPC
 - ARToolkit
 - ARTag
 - Notebook USB2.0 camera
 - Head work display

- System evaluation (Rock Creek Park, Washington DC)
 - User studies
 - Field tests
Outline

- Introduction
- Dataset
- Segmentation & Shape Matching
- UI & Hardware
- Conclusion
Conclusion

- Complete Description of CV system & UI
- 3 datasets

Future plans:
- Expand the coverage of the system
- Develop a touch based version on an iPhone or Android-based device