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Support Vector Machines
for 3D Object Recognition

Massimiliano Pontil and Alessandro Verri

Abstract�Support Vector Machines (SVMs) have been recently proposed as a new technique for pattern recognition. Intuitively,
given a set of points which belong to either of two classes, a linear SVM finds the hyperplane leaving the largest possible fraction of
points of the same class on the same side, while maximizing the distance of either class from the hyperplane. The hyperplane is
determined by a subset of the points of the two classes, named support vectors, and has a number of interesting theoretical
properties. In this paper, we use linear SVMs for 3D object recognition. We illustrate the potential of SVMs on a database of 7,200
images of 100 different objects. The proposed system does not require feature extraction and performs recognition on images
regarded as points of a space of high dimension without estimating pose. The excellent recognition rates achieved in all the
performed experiments indicate that SVMs are well-suited for aspect-based recognition.

Index Terms�Support vector machines, optimal separating hyperplane, appearance-based object recognition, pattern recognition.
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1 INTRODUCTION

UPPORT Vector Machines (SVM) have been recently pro-
posed as a very effective method for general purpose

pattern recognition [16], [5]. Intuitively, given a set of
points which belong to either of two classes, a SVM finds
the hyperplane leaving the largest possible fraction of
points of the same class on the same side, while maximiz-
ing the distance of either class from the hyperplane. Ac-
cording to [16], given fixed but unknown probability distri-
butions, this hyperplane�called Optimal Separating Hy-
perplane (OSH)�minimizes the risk of misclassifying not
only the examples in the training set but also the yet-to-be-
seen examples of the test set.

The aim of this paper is to illustrate the potential of
SVMs on a computer vision problem, the recognition of 3D
objects from single images. To this purpose, an aspect-based
method for the recognition of 3D objects which makes use
of SVMs is described. In the last few years, aspect-based
recognition strategies have received increasing attention
from both the psychophysical [12], [6] and computer vision
[11], [1], [13], [4], [10], [8], [17] communities. Although not
naturally tolerant to occlusions, aspect-based recognition
strategies appear to be well-suited for the solution of recog-
nition problems in which geometric models of the viewed
objects can be difficult, if not impossible, to obtain. To em-
phasize the generality of SVMs for classification tasks, the
method (a) does not require feature extraction or data re-
duction, and (b) can be applied directly to images regarded
as points of an N-dimensional object space, without esti-

mating pose. The high dimensionality of the object space
makes OSHs very effective decision surfaces, while the rec-
ognition stage is reduced to deciding on which side of an
OSH lies a given point in object space.

The proposed method has been tested on the COIL data-
base consisting of 7,200 images of 100 objects. Half of the
images were used as training examples, the remaining half
as test images. We discarded color information and tested
the method on the remaining images corrupted by syntheti-
cally generated noise, bias, and occlusions. The remarkable
recognition rates achieved in all the performed experiments
indicate that SVMs are well-suited for aspect-based recog-
nition. Comparisons with other pattern recognition meth-
ods, like perceptrons, show that the proposed method is far
more robust in the presence of noise.

The paper is organized as follows. In Section 2, we re-
view the basic facts of the theory of SVM. Section 3 dis-
cusses the implementation of SVMs adopted throughout
this paper and describes the main features of the proposed
recognition system. The obtained experimental results are
illustrated in Section 4. Finally, Section 5 summarizes the
conclusions that can be drawn from the presented research.

2 THEORETICAL OVERVIEW

In this section, we recall the basic notions of the theory of
SVMs [16], [5]. We start with the simple case of linearly
separable sets. Then we define the concept of support vec-
tors and deal with the more general nonseparable case. Fi-
nally, we list the main properties of SVMs. Since we have
only used linear SVMs we do not cover the generalization
of the theory to the case of nonlinear separating surfaces.

2.1 Optimal Separating Hyperplane
In what follows, we assume we are given a set S of points xi
˛ Rn with i = 1, 2, …, N. Each point xi belongs to either of
two classes and thus is given a label yi ˛ {-1, 1}. The goal is
to establish the equation of a hyperplane that divides S
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leaving all the points of the same class on the same side
while maximizing the distance between the two classes and
the hyperplane. To this purpose we need some preliminary
definitions.

DEFINITION 1. The set S is linearly separable if there exist w ˛
Rn and b ˛ R such that

yi (w × xi + b) ‡ 1,                                  (1)

for i = 1, 2, …, N.

The pair (w, b) defines a hyperplane of equation

w × x + b = 0

named separating hyperplane (see Fig. 1a). If we denote
with w the norm of w, the signed distance di of a point xi
from the separating hyperplane (w, b) is given by

d
b

wi
i=

⋅ +w x
                                    (2)

with w norm of w. Combining inequality (1) and (2), for all
xi ˛ S we have

y d wi i ≥
1

.                                      (3)

Therefore, 1/w is the lower bound on the distance be-
tween the points xi and the separating hyperplane (w, b).

We now need to establish a one-to-one correspondence
between separating hyperplanes and their parametric rep-
resentation.

DEFINITION 2. Given a separating hyperplane (w, b) for the line-
arly separable set S, the canonical representation of the
separating hyperplane is obtained by rescaling the pair
(w, b) into the pair (w¢, b¢) in such a way that the distance
of the closest point, say xj, equals 1/w¢.

Through this definition we have that

minx w x
i S i iy b∈ ′ ⋅ + ′ =c hn s 1.

Consequently, for a separating hyperplane in the canonical
representation, the bound in inequality (3) is tight. In what
follows we will assume that a separating hyperplane is al-
ways given a canonical representation and thus write (w, b)
instead of (w¢, b¢). We are now in a position to define the
notion of OSH.

DEFINITION 3. Given a linearly separable set S, the optimal
separating hyperplane is the separating hyperplane for
which the distance of the closest point of S is maximum.

Since the distance of the closest point equals 1/w, the
OSH can be regarded as the solution of the problem of
maximizing 1/w subject to the constraint (1), or

Problem P1
Minimize 1

2 w w⋅
subject to yi (w × xi + b) ‡ 1, i = 1, 2, …, N

Note that the parameter b enters in the constraints but
not in the function to be minimized. The quantity 2/w, the
lower bound of the minimum distance between points of
different classes, is named margin. Hence, the OSH can also
be seen as the separating hyperplane which maximizes the
margin (see Fig. 1b). From the quantitative viewpoint, the
margin can be thought of as a measure of the difficulty of
the problem (the smaller the margin the more difficult the
problem). We now study the properties of the solution of
the Problem P1.

2.2 Support Vectors
Problem P1 is usually solved by means of the classical
method of Lagrange multipliers. In order to understand the
concept of support vectors it is necessary to go briefly
through this method. For more details and a thorough re-
view of the method see [2].

If we denote with α α α α= 1 2, , ,K Nc h  the N nonnegative
Lagrange multipliers associated with the constraints (1), the
solution to Problem P1 is equivalent to determining the
saddle point of the function

L y bi i i
i

N

= ⋅ − ⋅ + −
=
∑1

2 1
1

w w w xα c hn s               (4)

with L = L(w, b, a). At the saddle point, L has a minimum
for w w=  and b b=  and a maximum for a a= , and thus
we can write

∂
∂ = =

=
∑L

b yi i
i

N

α 0
1

                                   (5)

               
                                                                (a)                                                                                               (b)

Fig. 1. Separating hyperplane (a) and OSH (b). The dashed lines in (b) identify the margin.
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∂
∂ = − =

=
∑L

yi i i
i

N

w w xα 0
1

                        (6)

with

∂
∂ =

∂
∂

∂
∂

∂
∂

F
HG

I
KJ

L L
w

L
w

L
wnw 1 2

, , ,K .

Substituting (5) and (6) into the right-hand side of (4), we
see that Problem P1 reduces to the maximization of the
function

/ α α α αa f = − ⋅
==

∑∑ i i j i j i j
i j

N

i

N

y y
1
2

11

x x
,

                 (7)

subject to the constraint (5) with a ‡ 0 (in what follows a ‡
0 means ai ‡ 0 for every component ai of any vector a). This
new problem is called dual problem and can be formulated
as

Problem P2
Minimize − + ∑1

2 α α αTD i

subject to åyi ai = 0
a ‡ 0,

where both sums are for i = 1, 2, …, N, and D is an N · N
matrix such that

Dij = yiyjxi × xj.                                   (8)

As for the pair w, bd i , from (6) it follows that

w xi=
=
∑α yi i
i

N

1

,

while b  can be determined from a , solution of the dual
problem, and from the Kühn-Tucker conditions

α i i iy b i Nw x⋅ + − = =d ie j1 0 1 2, , , ,K .        (9)

Note that the only α i  that can be nonzero in (6) are those
for which the constraints (1) are satisfied with the equality
sign. This has an important consequence. Since most of the
α i  are usually null, the vector w  is a linear combination of

a relatively small percentage of the points xi. These points
are termed support vectors because they are the closest
points from the OSH and the only points of S needed to
determine the OSH (see Fig. 1b).

Given a support vector xj, the parameter b  can be ob-
tained from the corresponding Kühn-Tucker condition as

b yj j− − ⋅w x .                                (10)

The problem of classifying a new data point x is now
simply solved by looking at the sign of

w x⋅ + b .

Therefore, the support vectors condense all the information
contained in the training set S which is needed to classify
new data points.

2.3 Linearly Nonseparable Case
If the set S is not linearly separable or one simply ignores
whether or not the set S is linearly separable, the problem
of searching for an OSH is meaningless (there may be no

separating hyperplane to start with). Fortunately, the previ-
ous analysis can be generalized by introducing N
nonnegative variables x = (x 1, x2, …,xN) such that

yi(w × xi + b) ‡ 1 - xi,     i = 1, 2, …, N.                (11)

The purpose of the variables xi is to allow for a small
number of misclassified points. If the point xi satisfies ine-
quality (1), then xi is null and (11) reduces to (1). Instead, if
the point xi does not satisfy inequality (1), the extraterm
-xi is added to the right hand side of (1) to obtain ine-
quality (11). The generalized OSH is then regarded as the
solution to

Problem P3
Minimize − ⋅ + ∑1

2 w w C iξ
subject to yi (w × xi + b) ‡ 1 - xi   i = 1, 2, …, N

x  ‡ 0.

The purpose of the extraterm Cåxi, where the sum is for i =
1, 2, …, N, is to keep under control the number of misclassi-
fied points. Note that this term leads to a more robust solu-
tion, in the statistical sense, than the intuitively more ap-
pealing term C i∑ ξ2 . In other words, the term Cåxi makes
the OSH less sensitive to the presence of outliers in the
training set. The parameter C can be regarded as a regulari-
zation parameter. The OSH tends to maximize the mini-
mum distance 1/w for small C, and minimize the number
of misclassified points for large C. For intermediate values
of C the solution of problem P3 trades errors for a larger
margin.

In analogy with what was done for the separable case,
Problem P3 can be transformed into the dual

Problem P4
Maximize − + ∑1

2 a a
TD iα

subject to åyiai = 0
0 £ ai £ C, i = 1, 2, …, N

with D the same N · N matrix of the separable case. Note
that the dimension of P4 is given by the size of the training
set, while the dimension of the input space gives the rank of
D. From the constraints of Problem P4 it follows that if C is
sufficiently large and the set S linearly separable, Problem
P4 reduces to P2.

As for the pair w, bd i , it is easy to find

w x=
=
∑α i i i
i

N

y
1

,

while b  can again be determined from a , solution of the
dual problem P4, and from the new Kuhn-Tucker conditions

α ξi i i iy bw x⋅ + − + =d ie j1 0                     (12)

C i i− =α ξc h 0                      (13)

where the ξi  are the values of the xi at the saddle point.

Similarly to the separable case, the points xi for which
α i > 0  are termed support vectors. The main difference is
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that here we have to distinguish between the support vec-
tors for which α i C<  and those for which α i C= . In the
first case, from condition (13) it follows that ξi = 0, and
hence, from condition (12), that the support vectors lie at a
distance 1 w  from the OSH. These support vectors are
termed margin vectors. The support vectors for which
α i C= , instead, are misclassified points (if xi > 1), points
correctly classified but closer than 1 w  from the OSH (if 0 <

x £ 1), or margin vectors (if xi = 0). Neglecting this last rare
(and degenerate) occurrence, we refer to all the support
vectors for which ai = C as errors. All the points that are not
support vectors are correctly classified and lie outside the
margin strip.

Finally, we point out that the entire construction can also
be extended rather naturally to include nonlinear decision
surfaces [16]. However, since for the research described in
this paper this extension was not needed, we do not further
discuss this issue here.

2.4 Mathematical Properties
We conclude this section listing the three main mathemati-
cal properties of SVMs.

The first property distinguishes SVMs from previous
nonparametric techniques, like nearest-neighbors or neural
networks. Typical pattern recognition methods are based on
the minimization of the empirical risk, that is on the attempt
to minimize the misclassification errors on the training set.
Instead, SVMs minimize the structural risk, that is the prob-
ability of misclassifying a previously unseen data point
drawn randomly from a fixed but unknown probability
distribution. If the VC-dimension [15] of the family of deci-
sion surfaces is known, the theory of SVMs provides an
upper bound for the probability of misclassification of the
test set for any possible probability distributions of the data
points [16].

Second, SVMs condense all the information contained in
the training set relevant to classification in the support
vectors. This (a) reduces the size of the training set identi-
fying the most important points, and (b) makes it possible
to efficiently perform classification.

Third, SVMs are quite naturally designed to perform
classification in high dimensional spaces, even in the pres-
ence of a relatively small number of data points. The real
limitation to the employment of SVMs in high dimensional
spaces is computational efficiency. In practice, for each par-
ticular problem a trade-off between computational effi-
ciency and success rate must be established.

3 THE RECOGNITION SYSTEM

We now describe the recognition system we devised to as-
sess the potential of the theory. We first review the imple-
mentation developed for determining the support vectors
and the associated OSH given a training set of points be-
longing to either of two classes.

3.1 Implementation
In Section 2, we have seen that the problem of determining
the OSH reduces to Problem P4, a typical problem of quad-

ratic programming. The vast literature of nonlinear pro-
gramming covers a multitude of problems of quadratic
programming and provides a plethora of methods for their
solution. Our implementation makes use of the equivalence
between quadratic programming problems and Linear Com-
plementary Problems (LCPs) and is based on the Complemen-
tary Pivoting Algorithm (CPA), a classical algorithm able to
solve LCPs [2].

Since the spatial complexity of CPA goes with the
square of the number of examples, the algorithm cannot
deal efficiently with much more than a few hundreds of
examples. This has not been a fundamental issue for the
research described in this paper, but for problems of larger
size one has definitely to resort to more sophisticated
techniques [9].

3.2 Recognition Stages
We have developed a recognition system based on three
stages:

1)�Preprocessing
2)�Training set formation
3)� System testing

Before describing these three stages in detail, we first il-
lustrate the main features of the COIL database.

3.2.1 The COIL Images
The COIL (Columbia Object Image Library) database we
used consists of 7,200 images of 100 objects (72 views for
each of the 100 objects). The COIL images are color images
(24 bits for each of the RGB channels) of 128 · 128 pixels.
The 7,200 images were downloaded via anonymous ftp
from the site ZZZ�FV�FROXPELD�HGX. As explained in
detail in [8], the objects are positioned in the center of a
turntable and observed from a fixed viewpoint. For each
object, the turntable is rotated of 5o per image. Fig. 2 and
Fig. 3 show a selection of the objects in the database and
one every three views (or images) of a specific object, re-
spectively. In all COIL images we inspected, the object re-
gion appears to be re-sampled so that the larger of the two
object dimensions fits the image size. Consequently, the
apparent size of an object may change considerably from
image to image (see Fig. 3, for example), especially for the
objects which are not symmetric with respect to the turnta-
ble axis.

3.2.2 Preprocessing
In the preprocessing stage each COIL image I = (R, G, B)
was first transformed into a gray-level image E through the
conversion formula

E = .31R + .59G + .10B,

rescaling the obtained gray-level in the range between
zero and 255. Then, the image spatial resolution was re-
duced to 32 · 32 by averaging the gray levels over 4 · 4
pixel patches. The aim and relevance of this last transfor-
mation will be discussed in the experimental section. Un-
less stated otherwise, it can thus be assumed that each
COIL image is transformed into an eight-bit vector of 32 ·
32 = 1,024 components.
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3.2.3 Forming the Training Set
Since the final goal is to build an aspect-based recognition
system, the training sets used in each experiment consist of
36 images (one every 10o) for each object.

For each experiment, a subset s of the 100 objects (typi-
cally chosen randomly) has been considered. Then, the
OSHs associated to each pair of objects i and j in s were
computed, the support vectors identified, and the obtained
parameters, w(i, j) and b(i, j), stored in a file. In all cases,
because of the high dimensionality of object space com-
pared to the small number of examples, we have never
come across errors in the classification of the training sets.

The images corresponding to some of the support vec-
tors for a specific pair of objects are shown in Fig. 4. These
images can be thought of as representative views (or as-
pects) of the objects to be recognized. Notice that unlike
the case of aspect graph approaches, these views do not

characterize an object per se, but one object relatively to
another.

As a final remark, we observe that for each object pair
we have typically found a number of support vectors
ranging from 1/3 to 2/3 of the 72 training images. This
relatively large fraction of support vectors can again be ex-
plained by the high dimensionality of the object space com-
bined with the small number of examples.

3.2.4 System Testing
Given a subset s of the 100 objects and the associated
training set of 36 images for each object in s, the test set
consists of the remaining 36 images for each object in s.
Recognition was performed following the rules of a tennis
tournament. Each object in s is regarded as a player, and in
each match the system temporarily classifies an image of the
test set according to the OSH relative to the pair of players
involved in the match. If in a certain match the players are

Fig. 2. Images of 32 objects of the COIL database.

Fig. 3. Twenty-four of the 72 images of a COIL object.
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