EECS 556 – Image Processing– W 09

Interpolation

- Interpolation techniques
- B-splines
What is image processing?

Image processing is the application of 2D signal processing methods to images.
Image enhancement

• Accentuate certain desired features for subsequent analysis or display.
 – Contrast stretching / dynamic range adjustment
 – Color histogram normalization
 – Noise reduction
 – Sharpening
 – Edge detection
 – Corner detection
 – Image interpolation
What is interpolation?

- given a discrete-space image $g_d[n,m]$
- This corresponds to samples of some continuous space image $g_a(x, y)$
- Compute values of the CS image $g_a(x, y)$ at (x,y) locations other than the sample locations.

$g_a(x, y)$ $g_d[n,m]$ $g'_d[n,m]$
What is interpolation?

• Interpolation is critical for:
 – Displaying
 – Image zooming
 – Warping
 – Coding
 – Motion estimation
Is perfect recovery always possible?

No, (never actually), unless some assumptions on $g_a(x,y)$ are made.

There are uncountable infinite collection of functions $g_a(x,y)$ that agree with $g_d[n,m]$ at the sample points.

What are these assumptions?

- g_a must be band-limited
- Sampling rate must satisfy Nyquist theorem
g_a must be band-limited

There exists $(\nu_X^{\text{max}}, \nu_Y^{\text{max}})$ such that

$$G_a(\nu_X, \nu_Y) = 0 \text{ for } |\nu_X| \geq \nu_X^{\text{max}} \text{ or } |\nu_Y| \geq \nu_Y^{\text{max}}$$
Sampling rate must satisfy Nyquist theorem
Ideal Uniform Rectilinear Sampling

• 2D uniformly sampled grid

\[
g_d[n, m] = g_a(n\Delta_x, m\Delta_y).\]

\(\Delta_x\) and \(\Delta_y\) be the sampling intervals

1/\(\Delta_x\) and 1/\(\Delta_y\) are called the sampling rates
Ideal Uniform Rectilinear Sampling

\[g_a(x, y) \]

\[g_s(x, y) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} g_d[n, m] \Delta_x \Delta_y \delta_2(x - n\Delta_x, y - m\Delta_y) \]
How to recover g_a?

$g_s(x, y) \overset{\mathcal{F}_2}{\longleftrightarrow} G_s(\nu_x, \nu_y)$

$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} G_a(\nu_x - k/\Delta_x, \nu_y - l/\Delta_y),$
How to recover g_a?

\[G_a(\nu_X, \nu_Y) = G_s(\nu_X, \nu_Y) \left[\text{rect}_2(\nu_X \Delta_X, \nu_Y \Delta_Y) \right]. \]

\[g_a(x, y) = g_s(x, y) \star \star \underbrace{\frac{1}{\Delta_X \Delta_Y} \text{sinc}_2 \left(\frac{x}{\Delta_X}, \frac{y}{\Delta_Y} \right)}_{\text{limited by \Delta_X, \Delta_Y}} \]

\[
= \left[\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} g_d[n, m] \Delta_X \Delta_Y \delta_2(x - n\Delta_X, y - m\Delta_Y) \right] \star \star \underbrace{\frac{1}{\Delta_X \Delta_Y} \text{sinc}_2 \left(\frac{x}{\Delta_X}, \frac{y}{\Delta_Y} \right)}_{\text{limited by \Delta_X, \Delta_Y}}
\]
Sinc interpolation

We can recover \(g_a(x, y) \) by interpolating the samples \(g_d[n, m] \) using sinc functions

\[
g_a(x, y) = \left[\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} g_d[n, m] \Delta_x \Delta_y \delta_2(x - n\Delta_x, y - m\Delta_y) \right] \ast \ast \left[\frac{1}{\Delta_x \Delta_y} \operatorname{sinc}_2 \left(\frac{x}{\Delta_x}, \frac{y}{\Delta_y} \right) \right]
\]

\[
= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} g_d[n, m] \operatorname{sinc}_2 \left(\frac{x - n\Delta_x}{\Delta_x}, \frac{y - m\Delta_y}{\Delta_y} \right).
\]

\[
\operatorname{sinc}_2 \left(\frac{x}{\Delta_x}, \frac{y}{\Delta_y} \right) = \operatorname{sinc} \left(\frac{x}{\Delta_x} \right) \operatorname{sinc} \left(\frac{y}{\Delta_y} \right)
\]
Interpolation

True $g_a(x,y)$

Sampled g_s

Sinc$_2$

MATLAB’s interp2
What’s the problem with sinc interpolation?

- Real world images need not be exactly band-limited.
- Unbounded support
- Summations require infinitely many samples
- Computationally very expensive
Linear interpolation

• sinc interpolation formula

\[g_a(x, y) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} g_d[n, m] \text{sinc}_2 \left(\frac{x - n\Delta_x}{\Delta_x}, \frac{y - m\Delta_y}{\Delta_y} \right). \]

• Linear interpolation:

\[g_a(x, y) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} g_d[n, m] h(x - n\Delta_x, y - m\Delta_y) \]

\(h(x, y) = \) interpolation kernel

Why this is a linear interpolation? Linear function of the samples \(g_d[n,m] \)
Linear interpolation

• Consider alternative linear interpolation schemes that address issues with:
 – Unbounded support
 – Summations require infinitely many samples
 – Computationally very expensive
Basic polynomial interpolation

Here kernels that are piecewise polynomials

- **Zero-order or nearest neighbor interpolation**
 - Use the value at the nearest sample location
 - Kernels are zero order polynomials

\[
h(x) = \text{rect}(x)
\]

\[
h(x, y) = \text{rect}_2\left(\frac{x}{\Delta_x}, \frac{y}{\Delta_y} \right) = \text{rect}\left(\frac{x}{\Delta_x} \right) \text{rect}\left(\frac{y}{\Delta_y} \right)
\]
Nearest neighbor interpolation

True \(g_a(x,y) \)

Nearest
Linear or bilinear interpolation

– tri function is a piecewise linear function of its (spatial) arguments

\[
h(x, y) = \text{tri}\left(\frac{x}{\Delta_x}\right) \cdot \text{tri}\left(\frac{y}{\Delta_y}\right)
\]
Linear or bilinear interpolation

- For any point \((x, y)\), we find the four nearest sample points:
 \[g_d[0, 0], g_d[1, 0], g_d[0, 1], g_d[1, 1] \]
- Fit a polynomial of the form
 \[\alpha_0 + \alpha_1 x + \alpha_2 y + \alpha_3 x y \]
- Estimate alphas from system of 4 equations in 4 unknowns:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
\alpha_0 \\
\alpha_1 \\
\alpha_2 \\
\alpha_3
\end{bmatrix}
=
\begin{bmatrix}
g_d[0, 0] \\
g_d[1, 0] \\
g_d[0, 1] \\
g_d[1, 1]
\end{bmatrix}
\]

Interpolating formula \((x \in [0, 1] \times [0, 1])\):
\[
g_d[0, 0](1 - x)(1 - y) + g_d[1, 0] x(1 - y) + g_d[0, 1](1 - x)y + g_d[1, 1] xy
\]
Linear or bilinear interpolation

\[g_d[0, 0](1 - x)(1 - y) + g_d[1, 0] \, x(1 - y) + g_d[0, 1](1 - x)y + g_d[1, 1] \, xy \]

If \(x \in [-1, 1] \times [-1, 1] \):

\[(1 - |x|)(1 - |y|) \, \text{rect}(x/2) \, \text{rect}(y/2) = \text{tri}(x) \, \text{tri}(y) \]
Linear or bilinear interpolation

![True $g(x,y)$](image1)

![Nearest](image2)

![Linear](image3)
Linear interpolation by Delaunay triangulation

Use a linear function within each triangle (three points determine a plane).

MATLAB’s `griddata` with the ’linear’ opt
interp2 'linear'
What’s the problem zero-order or bilinear interpolation?

• neither the zero-order or bilinear interpolator are differentiable.
• They are not continuous and smooth
Desirable properties of interpolators

• “self consistency”: \[g_a(x) \bigg|_{x=n\Delta} = g_a(n\Delta) = g_d[n] \]

• Continuous and smooth (differentiable):
\[
\frac{d}{dx} g_a(x) = \sum_{n=-\infty}^{\infty} g_d[n] \frac{d}{dx} h(x - n\Delta)
\]

• Short spatial extent to minimize computation
\[
g_a(x) = \sum_{n=-\infty}^{\infty} g_d[n] h(x - n\Delta) = \sum_{\{n \in \mathbb{Z} : x - n\Delta \in S\}} g_d[n] h(x - n\Delta)
\]
Desirable properties of interpolators

• Frequency response approximately rect().
• symmetric
• Shift invariant
• Minimum sidelobes to avoid ringing “artifacts”
Continuous and smooth
Large sidelobes

Non smooth
Small sidelobes
Non smooth; non shift invariant
Polynomial interpolation

- Cubic

interpolation kernel:

\[h(x) = \begin{cases}
1 - \frac{5}{2} |x|^2 + \frac{3}{2} |x|^3, & |x| \leq 1 \\
2 - 4 |x| + \frac{5}{2} |x|^2 - \frac{1}{2} |x|^3, & 1 < |x| < 2 \\
0, & \text{otherwise.}
\end{cases} \]

- Quadratic
- B-splines
B-spline interpolation

• Motivation:
 – n-order differentiable
 – Short spatial extent to minimize computation
Background

• Splines are piecewise polynomials with pieces that are smoothly connected together
• The joining points of the polynomials are called *knots*
Background

• For a spline of degree n, each segment is a polynomial of degree n
 – Do I need $n+1$ coefficient to describe each piece?

• Additional smoothness constraint imposes the continuity of the spline and its derivatives up to order $(n-1)$ at the knots
 • only one degree of freedom per segment!
B-spline expansion

• Splines are uniquely characterized in terms of a B-spline expansion

\[s(x) = \sum_{k \in \mathbb{Z}} c(k) \beta^n(x - k) \]

integer shifts of the central B-spline of degree \(n \)

\[\beta^n(x) = \text{central B-spline} = \text{basis (B) spline} \]
B-splines

• Symmetrical
• bell-shaped functions
• constructed from the \((n+1)\)-fold convolution

\[\beta^0(x) = \begin{cases}
1, & -\frac{1}{2} < x < \frac{1}{2} \\
\frac{1}{2}, & |x| = \frac{1}{2} \\
0, & \text{otherwise}
\end{cases} \]

\[\beta^n(x) = \underbrace{\beta^0 * \beta^0 * \ldots * \beta^0}_\text{(n+1) times}(x). \]
B-splines

\[\beta^n(x) = \beta^0 \ast \beta^0 \ast \ldots \ast \beta^0(x). \]

\((n+1)\) times
B-splines

• n-order B-spline:

\[
\beta^n(x) = \frac{1}{n!} \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^k \left(x - k + \frac{n+1}{2} \right)_+
\]

\[
(x)^n_+ = \begin{cases}
 x^n, & x \geq 0 \\
 0, & x < 0
\end{cases}
\]

• Derived using:

\[
B^n(\omega) = \left(\frac{\sin(\omega/2)}{\omega/2} \right)^{n+1} = \frac{\left(e^{j\omega/2} - e^{-j\omega/2} \right)^{n+1}}{(j\omega)^{n+1}}
\]
B-spline

• Using cubic B-splines is a popular choice:

\[
\beta^{(3)}(x) = \frac{1}{6} \left[(x + 2)^3_+ - 4(x + 1)^3_+ + 6(x)^3_+ - 4(x - 1)^3_+ + (x - 2)^3_+ \right]
\]

\[
\beta^3(x) = \begin{cases}
2/3 - |x|^2 + |x|^3 / 2, & 0 \leq |x| < 1 \\
(2 - |x|)^3 / 6, & 1 \leq |x| < 2 \\
0, & 2 \leq |x|.
\end{cases}
\]

• Important: compactly supported!
Cubic B-spline and its underlying components
B-spline expansion

\[s(x) = \sum_{k \in \mathbb{Z}} c(k) \beta^n(x - k) \]

Each spline is unambiguously characterized by its sequence of B-spline coefficients \(c(k) \)
Properties of B-spline expansion

• Discrete signal representation! (even though the underlying model is a continuous representation).

• Easy to manipulate;

• E.g., derivatives:

\[
\frac{d\beta^n(x)}{dx} = \beta^{n-1}(x + \frac{1}{2}) - \beta^{n-1}(x - \frac{1}{2}).
\]
B-spline interpolation

• So far: B-spline model of a given input signal $s(x)$

$$s(x) = \sum_{k \in \mathbb{Z}} c(k) \beta^n(x - k)$$

Interpolation problem: find coefficients $c(k)$ such that spline function goes through the data points exactly

That is, reconstruct signal using a spline representation!
Reconstruct signal using a spline representation

\[s(x) = \sum_{k \in \mathbb{Z}} s_d[n] \beta^n (x - k) \]
B-spline interpolation

\[s(x) = \sum_{k \in \mathbb{Z}} c(k) \beta^n (x - k) \]

- Relationship between coefficients and samples

\[c(k) = (b_1^n)^{-1} \ast s_d[n] \]

\[b_m^n (k) = \beta^n (x / m) \bigg|_{x=k} = \text{discrete B-spline kernel} \]

Obtained by sampling the B-spline of degree \(n \) \textit{expanded by a factor of} \(m \) (\(m=1 \))
Cardinal B-spline interpolation

\[s(x) = \sum_{k \in \mathbb{Z}} c(k) \beta^n (x - k) \]

\[s(x) = \sum_{k \in \mathbb{Z}} \left((b_1^n)^{-1} * s \right)(k) \beta^n (x - k) \]

\[= \sum_{k \in \mathbb{Z}} s(k) \sum_{l \in \mathbb{Z}} (b_1^n)^{-1} (l) \beta^n (x - l - k) \]

\[= \sum_{k \in \mathbb{Z}} s(k) \eta^n (x - k) \]

Cardinal splines
2D splines in images

- tensor-product basis functions

\[
f(x, y) = \sum_{k=k_1}^{(k_1+K-1)} \sum_{l=l_1}^{(l_1+K-1)} c(k, l) \beta^n (x - k) \beta^n (y - l)
\]
B-spline interpolation

• **Conclusion:**
 – n-order differentiable
 – Short spatial extent to minimize computation
General image spatial transformations

- transform the spatial coordinates of an image $f(x, y)$ so that (after being transformed), it better “matches” another image
 - Ex: warping brain images into a standard coordinate system to facilitate automatic image analysis
image spatial transformations
General image spatial transformations

Form of transformations:

• Shift only $g(x, y) = f(x - x_0, y - y_0)$
• Affine $g(x, y) = f(ax + by, cx + dy)$
• **Thin-plate splines** (describes smooth warpings using control points)
• General **spatial transformation** (*e.g.*, **morphing** or **warping an image**)

$$g(x, y) = f(T_X(x, y), T_Y(x, y))$$

MATLAB's `interp2` or `griddata` functions
Interpolation is critical!

Grid pattern

Warped pattern