Shouchang Guo, Douglas C. Noll and Jeffrey A. Fessler

May 16, 2019

ISMRM 27TH ANNUAL MEETING & EXHIBITION

Palais des congrès de Montréal 🦊 Montréal, QC, Canada 💥 11–16 May 2019

Declaration of Financial Interests or Relationships

Speaker Name: Shouchang Guo

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Oscillating Steady-State Imaging (OSSI)¹

A new fMRI acquisition method exploits a large, oscillating signal

compared to GRE

- 2 times higher SNR
- high-resolution fMRI

¹Guo and Noll, ISMRM, 2018 #5441, 2019 #1170

Need for k-Space Undersampling

RF phase cycling with cycle length n_c , OSSI signal oscillates with period n_c TR

- ▶ $n_c = 10$ times more images would compromise temporal resolution
- short TR = 15 ms limits single-shot spatial resolution

Need for Nonlinear Dimension Reduction

Not very low-rank along fast time², linear subspace model may not help much

600

- nonlinearity of the OSSI signal
- dimension reduction for undersampling

 $^{^{2}}$ Guo and Noll, ISMRM, 2018 #3531

OSSI Manifold Model

OSSI Manifold Model

OSSI Manifold Model

OSSI Manifold Model

OSSI Manifold Model

OSSI Manifold Model

OSSI Manifold Model

Parameterization of OSSI Signal

Parameterization of OSSI Signal

Parameterization of OSSI Signal

- effectively 3 physical parameters \Rightarrow 10 time points
- nonlinear dimension reduction

Voxel-Wise Near Manifold Regularizer

• One slow-time image set $\mathbf{X} \in \mathbb{C}^{N_x \times N_y \times n_c}$, $n_c = 10$

Voxel-wise

 $\mathbf{v} = \mathbf{X}[i, j, :] \in \mathbb{C}^{n_c}$ is a vector of 10 fast-time image values

Voxel-Wise Near Manifold Regularizer

▶ Problem formulation for one slow-time image set $\mathbf{X} \in \mathbb{C}^{N_x imes N_y imes n_c}$,

$$\hat{\mathbf{X}} = \arg\min_{\mathbf{X}} \frac{1}{2} \|\mathcal{A}(\mathbf{X}) - \mathbf{y}\|_{2}^{2} + \beta \sum_{i,j} R\left(\mathbf{X}[i,j,:]\right),$$
$$R(\mathbf{v}) = \min_{m_{0},T_{2},\Delta f} \|\mathbf{v} - m_{0}\mathbf{\Phi}(T_{2},\Delta f)\|_{2}^{2},$$

- $\mathcal{A}(\cdot)$ is the encoding operator,
- y denotes undersampled k-space measurements,
- β is the regularization parameter.

M

$$R(\mathbf{v}) = \min_{m_0, T_2, \Delta f} \|\mathbf{v} - m_0 \mathbf{\Phi}(T_2, \Delta f)\|_2^2$$

• nonlinear least square \implies dictionary fitting via VARPRO³

³Golub and Pereyra, Inverse problems, 2003

MR Physics Based Reconstruction

$$\hat{\mathbf{X}} = \arg\min_{\mathbf{X}} \frac{1}{2} \|\mathcal{A}(\mathbf{X}) - \mathbf{y}\|_{2}^{2} + \beta \sum_{i,j} R\left(\mathbf{X}[i,j,:]\right),$$
$$R(\mathbf{v}) = \min_{m_{0},T_{2},\Delta f} \|\mathbf{v} - m_{0}\mathbf{\Phi}(T_{2},\Delta f)\|_{2}^{2},$$

- alternating minimization
- $\blacktriangleright~{\bf X}$ update \rightarrow the conjugate gradient method
- \blacktriangleright regularizer update \rightarrow dictionary fitting
- easily parallelized for all slow-time points

2D Human Retrospective Undersampling

• acceleration factor 12, NRMSD 5.6%, spatial resolution = 1.3 mm

2D Human Prospective Undersampling

• acceleration factor 12, spatial resolution = 1.3 mm, temporal resolution = 150 ms

- MR physics based signal model for reconstruction as a voxel-wise parametric regularizer
- Nonlinear dimension reduction for OSSI
- Acceleration factor of 12 with NRMSD 5.6%
- No spatial or temporal smoothing
- Joint undersampled reconstruction and parameter estimation

Future Work

- More accurate parameterization, T_2 or T_2^*
- More exploration of the manifold
- Combine with other regularizers (for both undersampled reconstruction and parameter estimation)

Acknowledgement

We thank NIH Grants R01EB023618 and U01EB026977 for supporting our work.

Dictionary-Based Oscillating Steady State fMRI Reconstruction