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Synopsis
Oscillating Steady-State Imaging (OSSI) is a new fMRI acquisition method that can provide high SNR signals, but does so at the expense of imaging
time. We previously used a physics-based regularizer for high-quality, undersampled reconstruction by modeling the oscillating signal with physics
parameters. However, the reconstructions were not quantitative, as the key parameter  for BOLD effects was not studied. In this work, to quantify
MRI parameters of physiological importance, we jointly reconstruct the images and the parameters. The proposed manifold model reconstructs high-
resolution images from 12-fold undersampled data, while also providing quantitative  estimates for fMRI.

Introduction
Oscillating Steady-State Imaging (OSSI) is a new fMRI acquisition method that has the potential to provide higher SNR than GRE imaging . However, due to the
oscillatory nature of the signal, multiple images with short TRs must be acquired and combined for fMRI analysis, potentially compromising the temporal
resolution. Instead of imposing low-rankness or sparsity priors that may not suit fMRI data, we introduced a physics-based regularizer that models the
generation of OSSI signals for reconstruction from undersampled data. However, the reconstructed images were unitless and were not quantitative in terms of
important physiological related parameters , especially for  that represents intravoxel dephasing due to BOLD effects. In this work, we construct a -
weighted signal manifold and apply a near-manifold regularizer to jointly optimize OSSI images and quantitative maps. The manifold model enables a 12-fold
acquisition acceleration and also provides accurate quantitative estimates for fMRI.

Methods
In OSSI, the transverse magnetization of one isochromat lies on a physics-based manifold that is parameterized as

where  is the signal magnitude,  and  are the tissue parameters,  represents BOLD effects,  is the off-resonance frequency, and  is the number
of TRs in an oscillation of OSSI.

We simplify the manifold further because  has primarily a scaling effect that we absorb into ,  TE for the short TR of OSSI, and we set  to a textbook
value. Therefore, our proposed approach for joint reconstruction and quantification using a manifold model regularizer becomes

where  denotes  OSSI images to be reconstructed,  represents sparsely sampled k-space data, and  is a linear operator consisting of
coil sensitivities, NUFFT, and an undersampling function. For each voxel  is a vector of fast-time signal values, and  is the
simplified manifold model.  is the regularization parameter.

We solve the parameter estimation problem with VARPRO  and a discrete realization of the manifold, which is a  signal dictionary formed with varying
physics parameters. Specifically, we simulate the  signal for each central frequency  by averaging complex signals from a set of isochromats with different
off-resonance frequencies that are Cauchy distributed.

All the data were acquired on a 3T GE MR750 scanner with a 32-channel Nova Medical head coil. OSSI TR = 15 ms,  = 10 TRs per signal oscillation, spiral-
out TE = 2.7 ms, and flip angle = 10 . The spatial resolution = 1.3 1.3 2.5 mm  for a 220 mm FOV, and the temporal resolution = 150 ms (after 2-norm
combination of every  OSSI images). We collected resolution phantom data with GRE imaging at varying TEs and estimated corresponding MRI parameters
to validate the potential of using OSSI sequence and the proposed  manifold for quantification. For human data, the acceleration factor = 12 for both
retrospective and prospective undersampling, and the sampling trajectory was a single-shot variable-density spiral with randomized rotations between frames.
The functional task was a left/right reversing-checkerboard visual stimulus for 200 s (20 s L/20 s R  5 cycles).

Results
For one simulated voxel with functionals changes,  manifold results in more accurate parameter estimations compared to  manifold (Figure 1). The
resolution phantom qualifications demonstrate that OSSI manifold can be used for quantifying parameters and provides estimations comparable to multi-echo
GRE imaging (Figure 2). The comparison of quantitative results from mostly sampled data and retrospectively undersampled data show that the proposed
model almost fully recovers high-resolution structures and quantitative properties of the images from 8% of fully sampled k-space (Figure 3). The proposed
manifold model jointly reconstructs high-resolution fMRI images and parameter maps with prospectively undersampled data (R = 12). The functional signals
and the high SNR advantage of OSSI are well preserved (Figure 4).

Conclusion
We present a  manifold to accurately model OSSI fMRI signals. Together with a near-manifold regularization for undersampled reconstruction, we are able to
jointly optimize the high-resolution images and important fMRI parameters such as  with a factor of 12 acquisition acceleration.
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Figures

Figure 1. Estimated signal and parameters (blue curves) in comparison to ground-truth signal and physics parameters (overlaid red curves) demonstrating the
importance of the proposed  manifold over a  manifold for quantifying fMRI parameters. The functional signal of one voxel is simulated with  induced
signal changes, respiration, field drifts, and Gaussian random noise.

Figure 2. Parameter maps reconstructed using OSSI sequence and the proposed  manifold in comparison to estimations from gradient-echo imaging with

multiple TEs. The  estimates are on arbitrary scales. The resolution phantom has a uniform  10 Hz, and OSSI  and GRE  demonstrates similar
contrasts with an offset. We map the field map estimates to [-33.3, 33.3] Hz range as OSSI frequency responses are periodic with 1/TR = 66.7 Hz. Parameter
estimations at regions with little or no signal are masked out.
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Figure 3. OSSI images and parameter maps reconstructed from a factor of 12 retrospectively undersampled data (Proposed) are comparable to estimations
from data that are nearly fully sampled (Mostly Sampled). The near-manifold regularization effectively recovers the high-resolution structures and quantitative
properties of the data.

Figure 4. Functional activations and quantitative estimations from prospectively undersampled data using the  manifold. The activation threshold = 0.4.
Compared to conjugate-gradient SENSE with an edge-preserving regularizer, the proposed reconstruction provides high SNR time courses and enables
quantification of physiological parameters for every fMRI time point.

T ′

2

Proc. Intl. Soc. Mag. Reson. Med. 28 (2020)
1018

https://index.mirasmart.com/ISMRM2020/PDFfiles/images/635/ISMRM2020-000635_Fig3.png
https://index.mirasmart.com/ISMRM2020/PDFfiles/images/635/ISMRM2020-000635_Fig4.png

