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Abstract— With growing semiconductor integration, the reli-
ability of individual transistors is expected to rapidly decline in
future technology generations. In such a scenario, processors
would need to be equipped with fault tolerance mechanisms
to tolerate in-field silicon defects. Periodic online testing is a
popular technique to detect such failures; however, it tends
to impose a heavy testing penalty. In this paper, we propose
an adaptive online testing framework to significantly reduce
the testing overhead. The proposed approach is unique in its
ability to assess the hardware health and apply suitably detailed
tests. Thus, a significant chunk of the testing time can be saved
for the healthy components. We further extend the framework
to work with the StageNet CMP fabric, which provides the
flexibility to group together pipeline stages with similar health
conditions, thereby reducing the overall testing burden. For a
modest 2.6% sensor area overhead, the proposed scheme was
able to achieve an 80% reduction in software test instructions
over the lifetime of a 16-core CMP.

I. INTRODUCTION

The rapid growth of the silicon process over the last
few decades has significantly improved semiconductor in-
tegration levels. The transistors today are smaller, faster and
cheaper than ever before. However, this aggressive downscal-
ing of dimensions in the forthcoming CMOS technology gen-
erations poses critical reliability issues. Leading technology
experts have begun to warn designers that future generations
of silicon technology will be much less reliable than present
ones [7]. In addition to extreme process variations, future
processors will likely experience failures in the field due to
the device wearout over time. To combat such a scenario,
future semiconductor products need to be equipped with cost-
effective mechanisms to tolerate in-field (i.e., during usage)
silicon defects.

There are a host of mechanisms that lead to silicon defects,
the popular ones being negative bias temperature instability
(NBTI), oxide breakdown (OBD) and hot carrier injection
(HCI) [3]. The challenge of tolerating such permanent hard-
ware faults (i.e., silicon defects) encountered in-field can
be divided into three requisite tasks 1) defect detection
and diagnosis, 2) recovery to a correct system state after
a failure and 3) reconfiguration/repair mechanism to prepare
the system for future computation. The focus of this work is
on improving the efficiency of the first task: defect detection
and diagnosis. Recovery techniques (second task) typically
employ a checkpointing mechanism to rollback the system
after a failure. These checkpoints are created periodically so
that in the event of a failure, not much useful work is lost.
SafetyNet [23] and ReVive [20] are two good examples of
CMP checkpointing solutions. Finally, the solutions for the
repair (third task) typically leverage hardware redundancy
to replace broken component(s) or in some cases, merely
isolate them. Replacement/isolation techniques exist for a
range of granularities: cores [2], pipeline stages [12] and
modules within a processor [22].

Defect detection and diagnosis mechanisms can be broadly
divided into two broad categories: 1) continuous: those that
constantly monitor the logic blocks for errors and 2) periodic:
those that periodically check the processor’s logic. A few
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Fig. 1: Periodic testing for fault detection. The vertical stripes
represent the checkpoint start/release and the horizontal lines show
the progression of threads. At the end of every checkpoint interval,
testing is conducted for all processing cores, this is shown as solid
horizontal bars.

examples of the continuous detection mechanisms are dual
modular redundancy (DMR) and DIVA [4]. The common
idea between all these solutions is to have some sort of
redundant computation (in time or in space) to validate the
execution. However, all of them impose significant overheads
for area, latency, power and energy. Another means for
continuous detection is through sensors that can estimate
the amount of device level wearout. Although a variety of
low level sensors have been proposed [1], [15], [6], they
are limited in their capability to accurately predict/detect a
failure.

In contrast, periodic detection does not require redun-
dant execution and can give sound guarantees on the fault
coverage. These techniques periodically test the system for
defects and in case of a failure, they rely on checkpointing
and recovery mechanisms. Figure 1 shows snapshot of a
system where the tests are conducted at the end of every
checkpoint interval. Some of the recent proposals of periodic
detection mechanisms are ACE analysis [9] and VAST [13].
Unfortunately, in these proposals, the periodic testing time
constitutes as much as 5%-30% of the total system time [9].
This sort of overhead is unacceptable for a high end server
that typically apply (virtual machine) consolidation to main-
tain 100% utilization levels. Even in the case of embedded
systems, a great deal of time and energy can be saved by
reducing the overhead of periodic testing.

In this work, we propose an adaptive testing framework
(ATF) that significantly reduces the overhead of periodic
testing in a CMP system. The key insight in ATF is to adapt
the testing process to the state of the underlying hardware.
For instance, a healthy processor within a CMP can be lightly
tested, whereas a weaker counterpart needs thorough testing.
In specific, this adaptivity is applicable in three different
scenarios:

1) The health of a system varies over its lifetime due
to device wearout. Thus, all processors are relatively
healthy in the beginning and then deteriorate over time.

2) Manufacture time process variation can form compo-
nents with differing health levels.

3) Different amounts of stress are experienced by the
processors depending up on the workloads assigned.



In all the aforementioned cases, the proposed ATF can
deliver significant savings on the periodic testing effort while
providing the same level of fault coverage. Essentially, our
system assesses the health of different processors in a CMP,
and appropriately conducts tests. To enable the assessment
of processor health, we employ a population of low level
sensors [15], [16]. These sensors can predict the mean time to
failure (MTTF) with about 25% error for less than a 3% area
overhead. We further extend the ATF for application to the
StageNet (SN) CMP fabric [12], a highly flexible computing
substrate. SN allows arbitrary grouping of stage-level re-
sources from different pipelines to form logical pipelines. We
exploit this feature of SN to group together weaker resources
from different pipelines and conduct concurrent testing.

The main contributions of this work can be summarized
as follows:

1) The proposed ATF introduces the use of low level
sensors to guide the online testing process.

2) The ATF achieves a significant reduction in the over-
head of periodic testing by adaptively matching the
testing process to the underlying hardware’s health.

3) An extension of the ATF to StageNet, a flexible CMP
fabric, for achieving larger benefits.

4) Lifetime reliability experiments to measure the fraction
of time devoted to periodic testing. This setup models
process variation, sensor error, device wearout, and
testing overhead.

II. BACKGROUND

Here we provide a brief overview of the latest techniques
for assessing system health and conducting online tests. Both
of these form integral part of the adaptive testing framework
proposed later in Section III. Due to the space limitations,
we do not provide a background on conventional periodic
testing based fault detection [13], [9].

A. Wearout Sensors

Wearout monitoring for on-chip devices is a challenging
problem and has been an active area of research. Circuit-level
designs have been proposed for in-situ sensors that detect the
progress of various wearout mechanisms with a reasonable
accuracy [15], [18]. A trade-off exists between their accuracy
and the area overhead from using them. These sensors are
usually designed with area efficiency as a primary design
criteria, allowing a large number of them to be deployed
throughout the chip for monitoring overall system health. A
different approach to sensor design has been to examine the
health of on-chip resources at a coarser granularity. Research
has involved simple temperature sensors, two dozen on the
POWER6 [11], to more complex designs such as the wearout
detection unit [6]. These sensors can effectively approximate
the useful life remaining in a microarchitectural module.

B. Online Testing

The goal of online testing is to detect fault effects, or
errors, while the system is in-field. A number of test method-
ologies exist for online testing, the three important categories
being: 1) built-in self test (BIST) based, 2) functional test,
and 3) software based self-test (SBST). While BIST ad-
dresses the testing problem comprehensively by providing
a high fault coverage, it introduces significant hardware
overheads [10]. For low-cost embedded systems, such an
overhead can not be justified. On the other hand, functional
tests use a software program to conduct the testing. The
challenge there is the generation of high fault coverage
program instructions and automating the process for the
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Fig. 2: Fault coverage achieved (in percentage) for varying number
of software based self test instructions.

same. Most functional testing solutions achieve low fault
coverage because they do not consider the RTL structure and
are not based on a gate-level fault model (like s-a-fault) [5].

SBST links the instruction-level tests with low-level fault
models to achieve good fault coverage while introducing no
hardware overhead. SBST starts off by generating module
specific deterministic tests patterns and then uses processor
instructions as a vehicle for delivering the patterns to module
inputs and collecting their responses. The processor simply
executes the test program at-speed from the on-chip memory.
The test program length is chiefly determined by the mod-
ule/structure that needs the maximum number of tests. The
advantages of SBST are its low cost, ease of application
and extensibility. A variety of proposals have been made
for SBST [8], [19], [17] with a considerable success. The
latest being [17] that reports up to 97.3% fault coverage. The
test generation algorithms (for SBST and functional testing)
can comfortably trade-off the test size with the amount of
fault coverage. Figure 2 illustrates this trade-off between
the amount of fault coverage and the number of software
test instructions executed for a ARM9-v4 compatible RISC
processor using data from [17]. As seen in the figure, the
last few percentages of the coverage require the maximum
testing effort (number of test instructions).

III. ADAPTIVE ONLINE TESTING

Periodic test based fault detection approaches suffer from
the constant overhead of the full test application for all
available processing components. In view of the increasing
process variation, and the differing amounts of component
wearout over the lifetime, an effective optimization is to
match the testing thoroughness with the health of a com-
ponent. We propose an adaptive online testing methodology
that builds upon this key insight. Our technique leverages low
level sensors to assess the probability of failure in various
system components, and appropriately decides the quality
of tests applied. The primary benefits from this strategy are
the savings in the test time and energy. In addition to the
traditional CMP, we extend this adaptive testing philosophy
to StageNet(SN) [12], a highly flexible CMP fabric. The
advantages of the proposed technique are further magnified
while using the SN architecture. The rest of this section
provides the details of the adaptive testing framework and
discusses its application to a traditional CMP and the SN
architecture.

A. Adaptive Test Framework

A conceptual illustration of the adaptive test framework
(ATF) is shown in the Figure 3. The baseline CMP system
is enhanced with the capabilities to assess component health,



Fig. 3: Adaptive testing framework. A generic CMP system is
shown along with the enhancements needed to enable adaptive test-
ing. Health assessment is responsible for gathering sensor readings
and producing a fault probability array (P). This array is taken up
by the test allocator, along with the target coverage, to generate
appropriate tests (T) for different processing cores.

apply suitable tests, recover from faults (if any) using a
checkpointing mechanism [20], and, finally, isolate the faulty
core (if and when found). At the end of every periodic
checkpoint interval, a health assessment is conducted for
all the components in the system, and the corresponding
probabilities of failure (P) are determined. This array is in
turn used by the test allocator to generate suitable tests (T)
for all components. In the early lifetime, when most of the
components are healthy (have low probability of failure),
a fewer number of tests are required to make sure the
system operates correctly. As the components grow older,
their failure probabilities are expected to rise, resulting in
a need for more thorough tests. Later in this section, we
use this intuitive argument to derive a fault coverage metric
(C), that measures the probability of the system to be in
a safe state. Given a system-wide fault coverage target C,
the ATF decides the optimal number of tests required at a
per component level (core in this case). This way, testing
effort is reduced for the healthy components in the system.
The functioning of the important blocks in the Figure 3 is
detailed below:

Health Assessment: The lack of knowledge of the under-
lying component health is the primary reason for applying
full tests throughout the component’s lifetime. We alleviate
this problem by deploying low level sensors that can measure
degradation at the transistor level. The primary requirement
for such a sensor is to accurately measure the device level
characteristics taking into account the process variation and
the wearout accumulated over its lifetime. Furthermore,
a single sensor won’t be enough to provide statistically
significant results for an entire core health, and therefore
10-100s would need to be deployed. In such a scenario,
low area overhead becomes a favorable feature for such
sensors. In this work, for the purpose of illustration, we
use the oxide breakdown sensors proposed by E. Karl et
al. [15], [16]. These are close to ideal sensors in behavior and
have an extremely small area footprint. The results in [16]
demonstrate that 500 such sensors are enough to estimate
the MTTF (mean time to failure) for an entire chip with less
than 10% error. Note that the proposed methodology is not
tied to any one sensor type, and a variety of other sensor

designs [1], [6] are equally applicable to the methodology
proposed here. The ongoing research on NBTI sensors and
IDDQ based wearout sensors can also be easily integrated
within the ATF. Nevertheless, our choice here was directed
by the available data on the accuracy of the oxide breakdown
sensor [16].

All cores in our system are enhanced with these sensors.
The data from these sensors is gathered and processed in
software to generate the MTTF [16], [14] with an error
based on the number of sensors. Using the current mean
sensor reading, the projected MTTF, and the error in MTTF,
we calculate the probability of failure for a core. Note that
a higher error in the MTTF estimation translates into a
more conservative value of the probability of failure. The
discussion of this derivation has been left out in the interest
of space. This process is repeated for all the cores in the
system to generate the probability of failure array (P).

Test Allocator: The task of the test allocator is to prepare
suitable test programs for all the cores in the system. At
every checkpoint interval, the test allocator is provided with
two inputs: 1) a coverage target C (ranges from 0 to 1), and
2) a probability of failure array P. Using these two values,
it determines the test fault coverage (FC) needed by each
individual core, such that the coverage target C is always
met for that core. Here, the term fault coverage implies the
fraction of hardware faults covered by test patterns.

For a given core i, and a checkpoint interval t, if the:

probability of failure = Pi(t), and

fault coverage = FCi(t), then

1 − C = Pi(t)[1 − FCi(t)]

In other words, the probability of the periodic test not
catching a fault 1 − C in core i is the product of fault
occurring Pi(t) and not getting covered 1 − FCi(t). From
this, we can solve for the required test fault coverage:

FCi(t) = 1 −
1 − C

Pi(t)
, placing bounds on coverage :

FCi(t) = Min

{

best coverage, Max

{

0, 1 −
1 − C

Pi(t)

}}

Thus, given a coverage target C, a higher probability of
failure Pi(t) necessitates an increase in the fault coverage and
vice versa. The final equation above also adds bounds to the
possible values of the fault coverage, 0 being the minimum
and best coverage being the best possible coverage using
the test generation technique employed. In this work, we
propose the use of software based self test (SBST) to conduct
the online testing [17]. The advantage of the software based
testing is two fold: 1) no hardware overhead, and 2) the fault
coverage level is flexible. The proposed methodology in [17]
allows generation of test programs to meet different levels of
fault coverage. The number of software test instructions are
thus tuned on a per core basis to match the fault coverage
desired for the same. Figure 2 shows the (single stuck at)
fault coverage achievable for an ARM9-v4 compatible RISC
core for a range of number of software test instructions. A
full set of test instructions is stored in the main memory.
The test allocator uses this set of instructions to prepare an
array of test programs (T) for all the cores. As in the case of
sensors, our proposed methodology is not tied to any specific
online testing technique.

Checkpoint and Recovery: In the event of a failure, a
recovery system is needed to get the system back into an
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(b) Fault occurrence, test failure and rollback
scenario

Fig. 4: Checkpointing and adaptive testing for efficient fault detection. Notice that 1) the tests are applied after a new checkpoint is
started, and 2) old checkpoint is released once the tests finish successfully.

operational state and isolate the broken component(s). This
can be achieved by deploying a CMP checkpoint solution.
In this work, we use the ReVive checkpoint system [20].
Revive has a very minimal hardware overhead and maintains
the checkpoint in the main memory. The checkpoint interval
length can be tuned based on the availability of storage in
the targeted system.

Figure 4 shows two scenarios of the ATF in action. The
first scenario, illustrated in the Figure 4(a), is for a case
with no failures. The horizontal lines show the progression
of thread execution, interspersed by the regular checkpoint
creations (shaded vertical stripes). The testing phases are
shown by solid horizontal bars following each checkpoint
creation. The test times vary from core to core, depicting
the adaptive nature of the online tests. In this example core
1 runs the longest test (worst health), and core 3 the shortest
(best health). The previous checkpoint is released once the
tests for all the cores complete successfully. Notice that
unlike the traditional practice of testing and then forming
a checkpoint (Figure 1), we do the reverse. This design
choice is a result of variable test times of the cores in our
system. In order to run variable lengths tests on all the cores
before a checkpoint, they have to be started at different
times. This adds to the complexity of health assessment,
test allocation and test scheduling. Thus, in ATF, all tests
start concurrently after a new checkpoint is created. Over
time, as the cores finish their tests, they are released by the
ATF and are made available for job scheduling. However,
by creating an additional checkpoint just before running the
tests, ATF necessitates two outstanding checkpoints to co-
exist while the tests run on the cores. Fortunately, most
checkpoint systems, including ReVive, maintain checkpoints
as a log of system-wide updates. As the testing phase is
very short in length, the additional updates saved in the log
due to the second checkpoint are very few, leading to a
negligible memory burden. The second scenario, illustrated
in the Figure 4(b), shows a case with a failure in core
1 while running a job. The failure is detected during the
tests following the creation of the third checkpoint, and
system is rolled back to an operational state using the second
checkpoint.

System Coverage (SC) Metric: For a system that is pe-
riodically tested for faults, there are three distinct categories
of events:

1) No failure occurs in the last completed interval
2) Failure occurs and is detected by the test program
3) Failure occurs and is not covered by the test program

The first two events maintain the system in the safe state,
and represent the scenarios where no fault escapes the test.
However, the third event is an unwelcome scenario where

a fault occurs without being caught. Let us say we have a
multi-core chip with n cores. As discussed above, probability
of a core i missing a fault in a checkpoint interval t is
Pi(t)[1 − FCi(t)]. In other words, the fault occurs and the
test is not able to expose it. Continuing along the same lines,
the average probability of missing a fault in the entire n core
system, within a given checkpoint interval t:

Probability of missing fault =
1

n

n
∑

i=1

Pi(t)[1 − FCi(t)]

If we sum this over the entire system lifetime, the average
probability for the system to miss a fault can be written as:

1

nT

T
∑

t=1

n
∑

i=1

Pi(t)[1 − FCi(t)]

Therefore, the average probability (over the lifetime) of the
system not missing any faults, i.e. the probability of system
being in a safe state is:

SC = 1 −
1

nT

T
∑

t=1

n
∑

i=1

Pi(t)[1 − FCi(t)]

We refer to SC as the probability of the system being
in a safe state. This can also be understood as the effective
fault coverage of the system, since it represents the average
probability of not missing a fault. We use SC as the metric
to specify the target fault coverage in our evaluations.

ATF Summary: The ATF primarily benefits in terms of
the test application efficiency. In the early lifetime, when
the processing cores are healthy, a lot fewer tests suffice for
achieving a given fault coverage target SC. With time, and
device wearout, this testing overhead gradually rises. Overall,
the application of fewer tests has multiple advantages: 1)
more time available for actual job execution, 2) power/energy
saving, and 3) low fault detection cost visible to the end user.
The intended application of the ATF is to detect permanent
faults. Another possible application is its use in systems that
have variable reliability modes. For instance, a server can
tune the coverage target SC of the system based on the job
it is running (higher SC for a financial transaction, and lower
SC for a regular web page request).

The discussion of the ATF so far has been in the context
of a traditional CMP. The key observation that helps the
adaptive online testing is the variation in the health of CMP
cores (spatially and temporally). The following subsection
applies an extension of this to the StageNet CMP fabric, a
highly flexible computing substrate.
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Fig. 5: StageNet fabric with four in-order pipelines woven together
using 64-bit full crossbar interconnects. The interconnection config-
uration is managed by the configuration manager. Within StageNet,
logical pipelines, can be constructed by joining any set of unique
pipeline stages.

B. Adaptive Testing for StageNet

This section introduces the StageNet (SN) fabric [12], an
architectural concept that decouples stages of a pipeline for
the purpose of fault tolerance. The real strength of SN fabric
is in its ability to isolate broken stages within pipelines. Nev-
ertheless, its flexibility can also assist in forming cores with
an even greater variation in their health, thereby magnifying
the benefits of the adaptive online testing. The rest of this
subsection is broken into two parts, 1) introduction to the
SN fabric and 2) application of adaptive testing to the SN.
1) StageNet CMP Fabric: The SN design is a highly

reconfigurable and adaptable multi-core computing substrate.
It is designed as a network of pipeline stages, rather than
isolated cores (Figure 5). A logical core in the SN architec-
ture is referred to as a StageNetSlice (SNS). It is formed
by grouping together at lease one pipeline stage of each
type. A SNS can easily isolate failures by adaptively routing
around faulty stages. In the event of any stage failure, the SN
architecture can initiate recovery by combining live stages
from different slices, i.e. salvaging healthy modules to form
logical SNSs. We refer to this as stage borrowing. In addition
to this, if the underlying stage design permits, stages can
be time-multiplexed by two distinct SNSs. For instance, a
pair of SNSs, even if one of them loses its issue stage,
can still run separate threads while sharing the remaining
issue stage. We refer to this as stage sharing. Thus, a SN
system possesses natural redundancy (through borrowing and
sharing pipeline stages) and is, all else being equal, capable
of maintaining higher throughput over the duration of a
system’s life compared to a conventional multi-core design.

The SN architecture consists of three prominent compo-
nents:

a) StageNetSlice (SNS): The SNS is a basic building block
for the SN architecture. It consists of a decoupled pipeline
microarchitecture that allows convenient reconfiguration at
the granularity of stages. The decoupling of stages makes
the data forwarding and control handling infeasible. Fur-
thermore, the introduction of switches into the heart of a
processor pipeline leads to significantly worse performance
(4X slowdown over the baseline) due to high communication
latencies between the stages. Fortunately, each of these prob-
lems can be solved with a few well placed microarchitectural
additions (see [12]). With the application of the following
optimizations, the performance of the SNS is within 11% of
the baseline in-order pipeline.

- Stream Identification: Eliminates control hazard.

Health Spectrum

Probability

P4

P3

P2

P1

Failure P4<P3<P2<P1

Fetch

Fetch

Fetch

Fetch

Decode

Decode

Decode

Decode

Issue

Issue

Issue

Issue

Execute

Execute

Execute

Execute

Fig. 6: The shading intensity of stages represents their deterioration.
Thus, a darker stage has a higher failure probability and vice-versa.
SN flexibility allows connecting stages with similar health, forming
logical pipelines.

- Scoreboard: Tracks data hazards.
- Bypass Cache: Emulates data forwarding.
- Macro Operations: Amortizes transfer time of the in-

terconnection network.
b) Interconnection Switch: The role of the switch is to

direct the incoming instruction bundle to the correct des-
tination stage using a routing table. The crossbar switches
allows complete flexibility for a pipeline stage at depth N to
communicate with any stage at depth N+1.

c) Configuration Manager: Given a pool of stage re-
sources, the configuration manager divides them into a
globally optimal set of logical SNSs.

The lifetime reliability results for SN demonstrated nearly
50% improvement in the cumulative work compared to a
traditional CMP [12]. Furthermore, the high resiliency of the
SN fabric can be leveraged to combat process variation and
manufacture time defects, in addition to the wearout failures.
2) Adaptive Testing: At any point in the lifetime, because

of the manufacture time process variation and the device
wearout, different pipeline stages within the SN fabric would
exhibit different amounts of degradation. A snapshot of
the SN fabric in Figure 6 shows the varying degrees of
degradation between pipeline stages of the system. For the
sake of illustration, four health levels are shown from lightest
shade (best health) to the darkest shade (worst health). Let
us say that the health assessments (that provide probability
of failure) map to levels 1-4 of test thoroughness (test fault
coverage). In the case of a traditional CMP, the ATF decides
the test thoroughness on the basis of weakest component in
a core/pipeline. For instance, even if only one stage within
a pipeline is badly worn out, ATF for a traditional CMP
assigns a thorough test program to that pipeline. Going by
this principle, pipeline 1 would apply level 2 test, pipeline 2
- level 3 test, and pipelines 3,4 - level 4 tests. In contrast, the
SN can make the testing more efficient by grouping together
stronger components separately from weaker components.
The bold lines in the figure show the pipeline stages that are
combined to formed logical SNSs. First logical SNS (P1)
would need to apply level 1 test, P2 - level 2, P3 - level 3
and P4 - level 4. Thus, SN achieves a reasonable amount of
test reduction over a traditional CMP.

In order to separate out the stronger pipeline resources
from the weaker ones, we sort stages of each type on the
basis of their health. For instance, in Figure 6, fetch stages
are already sorted based on their health (from the top to
the bottom pipeline). The stages with equal health ranks are
connected to form logical pipelines. These health rankings



of the stages can vary over the lifetime depending up on
the stress experienced by different stages in the system.
Fortunately, the flexibility in the SN system allows it to
dynamically segregate stronger and weaker components at
will (after every checkpoint interval).

IV. EVALUATION

A. Methodology

For evaluating the potential of the proposed approach
in reducing the testing overhead, we conduct lifetime re-
liability experiments. This is required in order to measure
the cumulative reduction in the amount of test instructions
over the system’s lifetime. A CMP is modeled consisting
of 16 ARM9-v4 compatible RISC processors. The SN CMP
is configured as four group of 4-pipeline wide SN blocks.
The operating frequency was set to 1GHz at 130nm IBM
process. The systematic and random process variations were
modeled using VARIUS [21]. Oxide breakdown (OBD) was
used as the representative wearout mechanism with degra-
dation equations from [24], [14]. This choice was motivated
by the presence of accuracy data for the low level OBD
sensors [15]. A variable number of these OBD sensors were
deployed within the cores for the health assessment.

The lifetime experiments are conducted as a series of
interval simulations. Each interval simulation updates the
sensor readings, and allocates the appropriate size of tests
to the cores based on their probabilities of failure (Pi).
For a given fault coverage (FCi) (as determined by the
test allocator), the number of test instructions executed is
extracted from the data plotted in Figure 2. The maximum
achievable fault coverage for testing is 97.3% and is bounded
by the SBST scheme that we employ [17]. The presented
results use the system fault coverage metric SC as derived
in the Section III wherever we refer to coverage target.

B. Results

Figure 7 shows the number of instructions used (over the
CMP’s lifetime) by the ATF, normalized to a baseline CMP
system which applies a constant amount of test (given a
coverage target). The target system coverage is set to 97.3%
(best achievable by the chosen SBST scheme [17]), and the
test instructions reported are accumulated over the lifetime.
For a 5% sensor error in the health assessment, about 96%
of the test instructions are saved while using the proposed
ATF. As the number of sensors is reduced (thereby making
the reading less accurate), only a more conservative estimate
of failure probability is possible, forcing the adaptive system
into assigning bigger tests to all system processors. However,
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Fig. 7: Number of test instructions for the adaptive online testing in
CMP and SN with varying amount of sensor error. The number of
test instructions are normalized to a regular CMP with fixed periodic
testing. The plot also shows the sensor area overhead used by the
proposed approach for health assessment. The coverage target (SC)
is fixed at 97.3%.
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Fig. 8: Number of test instructions for the adaptive online testing
in CMP and SN with varying system coverage target (SC). The
number of test instructions are normalized to that needed by a CMP
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even with the higher levels of sensor error, the benefits erode
gradually, and the proposed scheme can deliver up to 82%
test time saving with 25% sensor error. We believe this point
offers a good trade-off between the sensor area overhead
(2.6%) and the saving in the test instruction count (82%).
Thus, our scheme does not depend on high sensor accuracy
levels to achieve test reduction.

Figure 8 uses the similar terms as the one before, and
presents the test instruction saving for a range of system
coverage targets. The sensor error is fixed at 25% for these
results. Depending upon the reliability requirements of a
system, the coverage target can be dynamically tuned. For
instance, a move lower to 88% coverage target can result
in an over 90% test instructions saving. The increasing di-
vergence (when going towards higher coverage) between the
saving obtained using adaptive CMP and adaptive SN is also
noteworthy. We expect the adaptive SN to well surpass the
benefits of adaptive CMP in high coverage target scenarios.
For future technology nodes, with higher levels of process
variation, a SN based system would be capable of extracting
even bigger gains by segregating stronger resources from the
weaker ones. That way, much fewer pipelines would need a
thorough testing.

The result plots so far have presented a cumulative value
for the number of test instructions over the entire lifetime, in
this next result, we present the data of test thoroughness over
time. Figure 9 plots a three dimensional plot with average
number of test instruction executed in consecutive simulation
intervals for a range of coverage target values. This plot is for
the SN system with 25% sensor error. Here, the trend of the
number of test instructions over time reveals an interesting
behavior of the proposed scheme. For extremely low cover-
age targets, say 0.5 (or 50%), hardly any test instructions are
applied. However, for higher values of coverage target, there
is a rhythmic pattern of the test instruction count over the
lifetime. The number of test instructions rise to a peak, and
then fall-off. This peak formation is representative of a core
nearing its time to failure, and then failing subsequently. As
a core reaches close to its failure time, the adaptive system
ramps up the number of test instructions to guarantee the
coverage target. Once the core fails, the system returns to a
nominal state since most of the other cores are healthy. There
are 16 such peaks in this plot, each representing dying time
of a core. Overall average for the number of test instructions
is higher later in the lifetime due to the poorer health of
many cores in the system. This plot is a clear demonstration
of the proposed adaptive testing framework in tuning the
testing time with the probability of failure. In contrast, a
traditional periodic testing approach will exhibit a flat surface
with constant testing intensity.



All the savings that we have reported for the test instruc-
tions, can translate into a range of benefits in a target system:
1) performance gain from spending less time for test; and
2) power and energy saving from running fewer instructions.
For the system that we simulate (16 core CMP) with a check-
point interval of 10ms, the performance overheads are 7%,
1.85% and 1.6% for CMP testing, CMP adaptive testing and
SN adaptive testing, respectively. According to Revive [20],
a 10ms checkpoint interval would require 20MB storage on
an average and up to 100MB peak storage requirement. A
smaller allocation of storage to the checkpoint mechanism
can force the checkpoint intervals to be even shorter, making
the testing time even more significant.
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Fig. 9: This plot shows the variation in the average number of
test instructions executed in the CMP system over its lifetime for
a range of system coverage targets.

V. CONCLUSIONS

With the looming reliability challenges in future technol-
ogy generations, in-field tolerance to silicon defects will be
a necessity in future computing systems. Periodic online
testing, although a good fit to this problem, imposes heavy
test time overheads. The proposed adaptive test framework
significantly reduces this testing overhead. The key insight
is to leverage low level sensors to assess failure probability
of various system resources, and suitably apply the tests.
This way, a healthy system uses a fraction of resources
for testing compared to another one nearing its time to
failure. Over the lifetime, testing detail is adaptively managed
by the proposed solution. The lifetime simulation for a
system with 2.6% area devoted to health assessment sensors,
resulted in an 80% reduction in the software test instructions
while delivering the same fault coverage. We further extend
this reduction by 12% when applying the adaptive testing
to the StageNet architecture. This test time reduction can
translate to varying levels of benefits in power, performance
and energy depending up on the attributes of the targeted
system. Overall, we believe, that the adaptive online testing
offers an economical solution to the challenge of online fault
detection.
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