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ABSTRACT

Aggressive technology scaling into the nanometer regime has led to
a host of reliability challenges in the last several years. Unlike on-
chip caches, which can be efficiently protected using conventional
schemes, the general core area is less homogeneous and structured,
making tolerating defects a much more challenging problem. Due
to the lack of effective solutions, disabling non-functional cores
is a common practice in industry to enhance manufacturing yield,
which results in a significant reduction in system throughput. Al-
though a faulty core cannot be trusted to correctly execute pro-
grams, we observe in this work that for most defects, when starting
from a valid architectural state, execution traces on a defective core
actually coarsely resemble those of fault-free executions. In light
of this insight, we propose a robust and heterogeneous core cou-
pling execution scheme, Necromancer, that exploits a functionally
dead core to improve system throughput by supplying hints regard-
ing high-level program behavior. We partition the cores in a con-
ventional CMP system into multiple groups in which each group
shares a lightweight core that can be substantially accelerated us-
ing these execution hints from a potentially dead core. To prevent
this undead core from wandering too far from the correct path of
execution, we dynamically resynchronize architectural state with
the lightweight core. For a 4-core CMP system, on average, our
approach enables the coupled core to achieve 87.6% of the per-
formance of a fully functioning core. This defect tolerance and
throughput enhancement comes at modest area and power over-
heads of 5.3% and 8.5%, respectively.
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1. INTRODUCTION
The rapid growth of the silicon process over the last decade has

substantially improved semiconductor integration levels. However,
this aggressive technology scaling has lead to a host of reliability
challenges such as manufacturing defects, wear-out, and parametric
variations [10, 9]. These threats can affect correct program execu-
tion, one of the most significant aspects of any computer system [4].
Traditionally, hardware reliability was only a concern for high-end
systems (e.g., HP Tandem Nonstop and IBM eServer zSeries) for
which applying high-cost redundancy solutions such as triple mod-
ular redundancy (TMR) was acceptable. Nevertheless, hardware
reliability has already become a major issue for mainstream com-
puting, where the usage of high-cost reliability solutions is not ac-
ceptable [24].
One of the main challenges for the semiconductor industry is

manufacturing defects, which have a direct impact on yield. From
each process generation to the next, microprocessors become more
susceptible to manufacturing defects due to higher sensitivity of
materials, random particles attaching to the wafer surface, and sub-
wavelength lithography issues such as exposure tool optimization,
cleaning technology, and resist process optimization [18]. Thus,
in order to maintain an acceptable level of manufacturing yield, a
substantial investment is required [32]. Traditionally, modern high-
performance processors are declared as functional if all parts of the
design are fault-free, or if they can operate correctly by tolerating
failures. However, since manufacturing defects can cause a signif-
icant yield loss, semiconductor companies have recently started to
manufacture parts that have been over-designed to hedge against
defects. For instance, to improve yield, IBM did this with the Cell
Broadband Engine that sometimes only had 7 out of the 8 process-
ing elements activated [34].
Based on the latest ITRS report [19], for current and near future

CMOS technology, one manufacturing defect per five 100mm2

dies can be expected. Fortunately, a large fraction of die area is de-
voted to memory structures, in particular caches, which can be pro-
tected using existing techniques such as row/column redundancy,
2D-ECC [21], ZerehCache [3], Bit-Fix [38], and sub-block dis-
abling [1]. With appropriate protection mechanisms in place for
caches, the processing cores become the major source of defect
vulnerability on the die. Consequently, we try to tackle hard-faults
in the non-cache parts of the processing core. Due to the inher-
ent irregularity of the general core area, it is well-known that han-
dling defects in the non-cache parts is challenging [27]. A common
solution is core disabling [2]. However, the industry is currently
dominated by Chip Multi-Processor (CMP) systems with only a
modest number of high-performance cores (e.g., Intel Core 2), sys-
tems which cannot afford to lose a core due to manufacturing de-
fects. The other extreme of the solution spectrum lies fine-grained



micro-architectural redundancy [32, 12, 35]. Here, broken micro-
architectural structures, such as ALUs, are isolated or replaced to
maintain core functionality. Unfortunately, since the majority of
the core logic is non-redundant, the fault coverage from these ap-
proaches is very limited – less than 10% for an Intel processor [27].
In this work, we propose Necromancer (NM) to tackle manufac-

turing defects in current and near future technology nodes. NM
enhances overall system throughput and mitigates the performance
loss caused by defects in the non-cache parts of the core. To accom-
plish this, we first relax the correct execution constraint on a faulty
core – the undead core – since it cannot be trusted to faithfully
execute programs. Next, we leverage high level execution infor-
mation (hints) from the undead core to accelerate the execution of
an animator core. The animator core is an additional core, intro-
duced by NM, that is an older generation of the baseline cores in
the CMP with less resources and the same instruction set architec-
ture (ISA). The main rationale behind our approach is the fact that,
for most defect instances, the execution flow of the program on the
undead core coarsely resembles the fault-free program execution
on the animator core – when starting from the same architectural
state (i.e., program counter (PC), architectural registers, and mem-
ory). Moreover, in the animator core, these hints are only treated
as performance enhancers and do not influence execution correct-
ness. In NM, we rely on intrinsically robust hints and effective hint
disabling to ensure the animator core is not mislead by unprofitable
hints. Dynamic inter-core state resynchronization is also employed
to update the undead core with valid architectural state whenever it
strays too far from the correct execution path. To increase our de-
sign efficiency, we share each small animator core among multiple
cores. Our scheme is unique in the sense that it keeps the undead
core on a semi-correct execution path, ultimately enabling the an-
imator core to achieve a performance close to the performance of
a live (fully-functional) core. In addition, NM does not noticeably
increase the design complexity of the baseline cores and can be
easily applied to current and near future CMP systems to enhance
overall system throughput.

2. UTILITY OF AN UNDEAD CORE
We motivate the NM design by demonstrating the high-level ra-

tionale behind it. To this end, we provide evidence that supports
the following two statements: (1) Although an aggressive out-of-
order (OoO) core with a hard-fault in the non-cache area cannot be
trusted to perform its normal operation, it can still provide useful
execution hints in most cases. (2) By exploiting hints from the un-
dead core, the animator core can typically achieve a significantly
higher performance.

2.1 Effect of Hard-Faults on Program Execu-
tion

Prior work has studied the effect of a single-event upset, or a
transient fault, on program execution for high-performance micro-
processors. Using fault-injection, it has been shown that transient
faults are often masked, easier to categorize, and have a tempo-
ral effect on program behavior [37]. On the other hand, the effect
of hard-faults on program execution is hard to study since each
hard-fault can result in a complicated intertwined behavior. For
example, a hard-fault can cause multiple data corruptions that fi-
nally mask each others effect. Moreover, hard-faults are persis-
tent and their effect does not go away. As a result, hard-faults can
dramatically corrupt program execution. In order to illustrate the
negative impact of hard-faults on program execution, we study the
average number of instructions that can be committed before ob-

0 %2 0 %4 0 %6 0 %8 0 %1 0 0 %
P ercent ageof I nj ect ed H ard �F aul t s < 1 0 0 ( C I ) < 1 K ( C I ) < 1 0 K ( C I ) < 1 0 0 K ( C I ) > 1 0 0 K ( C I ) o r M a s k e dS P E C 1 I N T 1 2 KS P E C 1 F P 1 2 K
Figure 1: Distribution of injected hard-faults that manifest as

architectural state mismatches across different latencies – in

terms of the number of committed instructions (CI).

serving an architectural state mismatch. This result, for 5000 area-
weighted hard-fault injection experiments across SPEC-CPU-2K
benchmarks, is depicted in Figure 1. Details of the Monte Carlo
engine, statistical area-weighted fault injection infrastructure, tar-
get system, and benchmark suite can be found in Section 5.1. For
these experiments, we have a golden execution which compares its
architectural state with the faulty execution every cycle and as soon
as a mismatch is detected, it stops the simulation and reports the
number of committed instructions up to that point. For instance,
looking at 188.amp, 26% of the injected hard-faults cause an ar-
chitectural state mismatch to happen in less than 100 committed
instructions. Since 176.gcc more uniformly stresses different core
resources, it shows a higher vulnerability to hard-faults. As this
figure shows, more than 40% of the injected hard-faults can cause
an immediate – < 10K – architectural state mismatch. Thus, a
faulty core cannot be trusted to provide correct functionality even
for short periods of program execution.

2.2 Relaxing Correctness Constraints
As just discussed, program execution on a dead core cannot be

trusted. Here, we try to determine the quality of program execu-
tion on a dead core when relaxing the absolute correctness con-
straints. In other words, we are interested in knowing for what
expected level of correctness, a dead core can practically execute
large chunks of a program. Based on 5K injected hard-faults, Fig-
ure 2 depicts how many instructions can be committed in a dead
core before it gets considerably off the correct execution path. In
order to have a practical system, the dead core should be able to ex-
ecute the program over reasonable time periods before its execution
becomes ineffectual. Here, we define a similarity index (SI) that
measures the similarity between the PC of committed instructions
in the dead core and a golden execution of the same program. This
SI is calculated every 1K instructions and whenever it becomes less
than a pre-specified threshold, we stop the simulation and record
the number of committed instructions. For instance, a similarity
index of 30% for PC values means, that during each 1K instruction
window, 30% of PCs hit exactly the same instruction cache line in
both the golden execution and program execution on the dead core.
Figure 2 shows the number of committed instructions for three dif-
ferent SI thresholds. For instance, considering SI threshold of 90%,
on average only 12% of the hard-faults renders the program execu-
tion on a dead core ineffectual before at least 10K instructions get
committed. Hence, even for an SI threshold of 90%, in more than
85% of cases, the dead core can successfully commit at least 100K
instructions before its execution differs by more than 10%.
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Figure 2: Number of instructions that are committed (CI) before an injected hard-fault results in a violation of a pre-specified sim-

ilarity index threshold. For this purpose, 5K hard-faults were injected while considering three different similarity index thresholds

(90%, 60%, and 30%).

2.3 Opportunities for Acceleration
Since the execution behavior of a dead core coarsely matches

the intact program execution for long time periods, we can take
advantage of the program execution on the dead core to acceler-
ate the execution of the same program on another core. This can
be done by extracting useful information from the execution of the
program on the dead core and sending this information (hints) to
the other core (the animator core), running the same program. We
allow the undead core to run without requiring absolutely correct
functionality. The undead core is only responsible to provide help-
ful hints for the animator core. This symbiotic relation between
the two cores enables the animator core to achieve a significantly
higher performance. When the hints lose their effectiveness, we
resynchronize the architectural state of the two cores. Since an ar-
chitectural state resynchronization, between two cores in a CMP
system, takes about 100 cycles [27] and resynchronization in more
than 85% of cases happens after at least 100K committed instruc-
tions, the overhead associated with resynchronization is small.
For the purpose of evaluation and since we want to have a single

ISA system, based on the availability of the data on the power, area,
and other characteristics of microprocessors, we use an EV6 (DEC
Alpha 21264 [20]) for the baseline cores. On the other hand, for
the animator core, we select a simpler core like the EV4 (DEC Al-
pha 21064) or EV5 (DEC Alpha 21164) to save on the overheads
of adding this extra core to the CMP system. In order to evalu-
ate the efficacy of the hints, in Figure 3, we show the performance
boost for the aforementioned DEC Alpha cores using perfect hints
(PHs) – perfect branch prediction and no L1 cache miss. Here,
we have also considered the EV4 (OoO), an OoO version of the
2-issue EV4, as a potential option for our animator core. As can be
seen, by employing perfect hints, the EV4 (OoO) can outperform
the 6-issue OoO EV6 in most cases; thus, demonstrating the possi-
bility of achieving a performance close to the performance of a live
core through the NM system. Nevertheless, achieving this goal is
quite challenging due to the presence of defects, different sources
of imperfection in hints, and inter-core communication issues.

3. FROM TRADITIONAL COUPLING TO

ANIMATION
In a CMP system, prior work has shown two cores can be cou-

pled together to achieve higher single-thread performance. Since
the overall performance of a coupled core system is bounded by
the slower core, these two cores were traditionally identical to sus-

tain an acceptable level of single-thread performance. However, in
order to accelerate program execution, one of these coupled cores
must progress through the program stream faster than the other. In
order to do so, three methods have been proposed:

• In Paceline [16], the core that runs ahead (leader) and the
core that receives execution hints (checker) from the leader
core operate at different frequencies. Paceline cuts the fre-
quency safety margin of the leader core and continuously
compares the architectural state (excluding memories) of the
two cores. When a mismatch happens, the frequency of the
leader is adjusted, L1 state match is enforced, and finally the
checkpoint interval is rolled back for re-execution.

• Slipstream processors [28] and Master/Slave speculative par-
allelization [41] need two different versions of the same pro-
gram. In these schemes, the leader core runs a shorter version
of the program based on the removal of ineffectual instruc-
tions while the checker core runs the unmodified program.

• Finally, Flea-Flicker two pass pipelining [6] and Dual-Core
Execution [40] allow the leader core to return an invalid value
on long-latency operations and proceed.

Although these schemes have widely varying implementation
details, they share some common traits. In these schemes, the
leader core tries to get ahead and sends hints that can accelerate
checker core execution. These two cores are connected through
one/several first-in first-out (FIFO) hardware queues to transfer
hints and retired instructions along with their PCs. The checker
core takes advantage of program execution on the leader core in
3 ways. First, the checker core receives pre-processed instruc-
tion and data streams. Second, during the program execution in
the leader core, most branch mispredictions get resolved. Third,
the program execution in the leader core automatically initiates L2
cache prefetches for the checker core.
A straight-forward extension of these ideas to animate a dead

core seems plausible. However, NM encounters major difficulties
when trying to fit the dead core into this execution model. Here,
we briefly describe the two main challenges, leaving discussions of
the proposed microarchitectural solutions for subsequent sections.
Fine-Grained Variations: One of the main sources of problems

is the presence of defects in the dead core. Due to the presence of
defects, the undead core might execute/commit more or less num-
ber of instructions, causing variations in the similarity of program
executions between the two cores. For instance, in many cases, the
undead core can take the wrong direction on an IF statement and
get back to the right execution path afterwards, thereby preventing
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Figure 3: IPC of different DEC Alpha microprocessors, normalized to EV4’s IPC. In most cases, by providing perfect hints for the

simpler cores (EV4, EV5, and EV4 (OoO)), these cores can achieve a performance comparable to that achieved by a 6-issue OoO

EV6.

a perfect data or instruction stream for the animator core. This ne-
cessitates employing generic hints that are more resilient to these
local abnormalities. Moreover, the number of times that each PC
is visited cannot be used to synchronize the two cores. A mecha-
nism is required to help the animator core identify the proper time
for pulling the hints off the communication queue. Given the varia-
tion in the usefulness of the hints, in order to enhance the efficiency
of the animator core, fine-grained hint disabling can be leveraged.
For instance, if the last K branch prediction hints for a particular
PC were not useful, branch prediction for this particular PC can be
handled by the animator core’s branch predictor.
Global Divergences: When the undead core gets completely off

the correct execution path, hints become useless, and it needs to
be brought back to a valid execution point. For this purpose, the
architectural state of the animator core can be copied over to the
undead core. Although exact state matching, by checkpointing the
register file, has been used in prior work [16], it is not applicable
for animating a dead core since architectural state mismatches oc-
cur so frequently. Therefore, we need coarse-grained online mon-
itoring of the effectiveness of the hints over a large time period
to decide whether the undead core should be resynchronized with
the animator core. Moreover, resynchronizations should be cheap
and relatively infrequent to avoid a noticeable impact on the overall
performance of the animator core. One possible approach for main-
taining correct memory state, suggested by Paceline, is to re-fetch
the cache-lines that are accessed during the last checkpointed inter-
val into the L1 cache of the leader core [16]. However, since this
might happen often for a dead core, we need a low-cost resynchro-
nization approach that does not require substantial book keeping.

4. NM ARCHITECTURE
The main objective of NM is to mitigate system throughput loss

due to manufacturing defects. For this purpose, it leverages a ro-
bust and flexible heterogeneous core coupling execution technique
which will be discussed in the rest of this section. Given a group
of cores, we introduce an animator core, an older generation with
the same ISA, that is shared among these cores for defect tolerance
purposes. In this section, we describe the architectural details for a
coupled pair of dead and animator cores. The high-level NM design
for a CMP system with more cores will be discussed in the next sec-
tion. In Section 2, we showed that the faulty core – the undead core
– cannot be trusted to run even a short part of the program. How-
ever, as we relaxed the exact architectural state match and looked

at the global execution pattern, the undead core can execute a mod-
erate portion of the program before a resynchronization is required.
By executing the program on the undead core, NM provides hints
to accelerate the animator core without requiring multiple versions
of the same program. In other words, the undead core is used as
an external run-ahead engine for the animator core that has been
added to the CMP system. We believe NM is a valuable solution
for improving the system throughput of the current and near fu-
ture mainstream CMP systems without notably influencing design
complexity.

4.1 High-Level NM System Description
Figure 4 illustrates the high-level NM heterogeneous coupled

core design. As discussed in Section 2, for the purpose of evalua-
tion, we use 6-issue OoO EV6 for the baseline cores and a 2-issue
OoO EV4 as our animator core. In our design, most communica-
tions are unidirectional from the undead core to the animator core
with the exception of the resynchronization and hint disabling sig-
nals. Thus, a single queue is used for sending the hints and cache
fingerprints to the animator core. The hint gathering unit attaches a
3-bit tag to each queue entry to indicate its type. When this queue
gets full and the undead core wants to insert a new entry, it stalls.
To preserve correct memory state, we do not allow the dirty lines
of the undead core’s data cache to be written back to the shared
L2 cache. As a result, a dirty data cache-line of the undead core is
simply dropped whenever it requires replacement. Exception han-
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Figure 4: The high-level architecture of NM is shown in this fig-

ure and modules that are modified or added to the underlying

cores are highlighted (not drawn to scale).
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(b) Port activity for the animator core’s L1-instruction cache

Figure 5: Port activity breakdown for local caches of the animator core. Here, we show the percentage of cycles that each cache port

is either busy or free. For our animator core, the data cache has 2 ports while the instruction cache has a single port.

dling is also disabled at the undead core since the animator core
maintains the precise state.
As discussed in Section 2, the animator core with perfect hints

has the potential of surpassing the average performance of a live
core. Nonetheless, the performance of the undead core can be a
bottleneck for the NM system since: a. In many cases (Figure 3),
performance of a baseline core is worse than the performance of
the animator core with perfect hints. b. After each resynchroniza-
tion, the undead core needs to warm-up the branch predictor and
local caches. Therefore, we allow the undead core to proceed on
the data cache L2 misses, without waiting for the several hundred
cycles needed to receive data back from main memory. We simply
return zero since L2 misses are not common and also value predic-
tion would not be beneficial. This has a large impact on the per-
formance of the undead core, potentially shortening the resynchro-
nization period. Given the ability to eliminate stalls on L2 misses
and also semi-perfect hints from the undead core, NM can poten-
tially achieve even a higher performance than that of a live core.
Nevertheless, providing even semi-perfect hints is challenging due
to defects in the undead core, queue size, limited performance of
the undead core, queue delay, and natural fluctuations in program
behavior.
NM uses a heterogeneous core coupling program execution with

a pruned core that has a significantly smaller area compared to a
baseline core. In NM, we do not rely on overclocking the undead
core or having multiple versions of the same program. Further-
more, it is a hardware-based approach that is transparent to the
workload and operating system (OS). It also does not require regis-
ter file checkpointing for performing exact state matching between
two cores. Instead, we employ a fuzzy hint disabling approach
based on the continuous monitoring of the hints effectiveness, and
initiating resynchronizations when appropriate. Hint disabling also
helps to enhance performance and save on communication power
for program phases in which the undead core cannot get ahead of
the animator core. Apart from that, the undead core might occa-
sionally get off the correct execution path (e.g., taking the wrong
direction on an IF statement) and return to the correct path after-
wards – Y-branches [36]. In order to make the hints more robust
against microarchitectural differences between two cores and also
variations in the number/order of executed instructions, we lever-
age the number of committed instructions for hint synchronization
and attach this number to every queue entry as an age tag. More-
over, we introduce the release window concept to make the hints
more robust in the presence of aforementioned variations. For a
particular hint type, the release window helps the animator core to
determine the right time to utilize a hint. For instance, assuming the
data cache (D-cache) release window is 100, and 1000 instructions

have already been committed in the animator core, D-cache hints
with age tags ≤ 1100 can be pulled off the queue and applied.

4.2 Hint Gathering and Distribution
Program execution on the undead core automatically warms-up

the shared L2 cache without requiring communication between two
cores. However, other hints – i.e., L1 data cache, L1 instruction
cache, and branch prediction hints – need to be sent through the
queue to the animator core. The hint gathering unit in the undead
core is responsible for gathering hints and cache fingerprints, at-
taching the age and 3-bit type tags, and finally inserting them into
the queue. On the other side, the hint distribution unit receives these
packets and compares their age tag with the local number of com-
mitted instructions plus the corresponding release window sizes.
Every cycle, the hint gathering unit looks over the committed in-

structions for data and instruction cache (I-cache) hints. In fact, the
PC of committed instructions and addresses of committed loads and
stores are considered as I-cache and D-cache hints, respectively. On
the animator core side, the hint distribution unit treats the incoming
I-cache and D-cache hints as prefetching information to warm-up
its local caches. For the animator core, Figure 5 depicts the uti-
lization of two D-cache ports and a single I-cache port. Given the
pipelined cache access for all high-performance processors, as can
be seen for D-cache, both ports are busy for less than 5% of cycles.
Therefore, we leverage the original cache ports for applying our
D-cache hints. However, since hints can only potentially help the
program execution, priority of the access should always be given to
the normal operation of the animator core. On the other hand, the
I-cache port is busy for more than 50% of cycles for 3 benchmarks
and is free only if the instruction fetch queue (IFQ) is full. More-
over, since the I-cache operation is critical for having a sustainable
performance, we add an extra port to this cache in the animator
core.
In order to provide branch prediction hints, the hint gathering

unit looks at the branch predictor (BP) updates and every time the
BP of the undead core gets updated, a hint will be sent through the
queue. In the animator core side, the default BP – for EV4 – is
a simple bimodal predictor. We firstly add an extra bimodal pre-
dictor (NM BP) to keep track of incoming branch prediction hints.
Furthermore, we employ a hierarchical tournament predictor to de-
cide for a given PC, whether the original or NM BP should take
over. During our design space exploration, the size of these struc-
tures will be determined – Section 5.2. As mentioned earlier, we
introduced release window size to get the hints just before they are
needed. However, due to the variations in the number of executed
instructions on the undead core, even the release window cannot
guarantee the perfect timing of the hints. In such a scenario, for
a subset of instructions, the tournament predictor can give an ad-
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Figure 6: A code example in which the NM BP performs poorly and switching to the original BP of the animator core is required.

The code simply calculates the summation of a 2D-array elements which are stored in a row-based format. It should be noted that the

branch prediction release window size is normally set so that the branch prediction accuracy for the entire execution gets maximized.

As can be seen, hints are received by the animator core at improper times, resulting in low branch prediction accuracy.

vantage to the original BP of the animator core to avoid any per-
formance penalty. Having this in mind, Figure 6 shows a simple
example in which the NM BP can only achieve 33% branch predic-
tion accuracy. This is mainly due to the existence of a tight inner
loop – number of instructions in the loop body is less than BP re-
lease window size – with a low trip count. Switching to the original
BP can enhance the overall branch prediction accuracy for this code
region.
Another aspect of the NM dual core execution is the potential of

hints on the speculative execution paths. If a speculative path turns
to be a correct path, instructions on this path will eventually be
committed and the corresponding hints will be sent to the animator
core. On the other hand, for a wrong path, although sending hints
can potentially accelerate the execution of speculative paths on the
animator core, this acceleration can only decrease the efficiency of
our hints for the correct paths. For instance, if the animator core ex-
ecutes a wrong path faster, it will bring more useless data to its local
D-cache which causes prefetched data for non-speculative paths to
be dropped out of D-cache. Therefore, it is clear that sending hints
for speculative paths can merely hurt the performance of the NM
system.

4.3 Reducing Communication Overheads
In order to reduce the queue size, communication traffic needs

to be limited to more beneficial hints. Consequently, in the hint
gathering unit, we use two content addressable memories (CAMs)
with several entries to discard I-cache and D-cache hints that were
recently sent. Eliminating redundant hints also minimizes the re-
source contention on the animator core side. For this purpose, these
two CAMs keep track of the last N – number of CAM entries –
committed load/store addresses in the undead core. In addition to
sending less number of hints, queue size can be reduced by send-
ing less bits per hint. Saving on the number of bits can be done
in several ways: sending only the block related bits of address for
I-cache and D-cache hints, ignoring hints on the speculative paths,
and for branch prediction hints, only sending lower bits of the PC
that are used for updating branch history table of the NM BP.
Given a design with multiple communication queues, the undead

core stalls when at least one queue is full and it wants to insert a new
entry to that queue. The other queues that are not full during these
stalls remain underutilized; thus, using a single aggregated queue
guarantees a higher utilization, which reduces the area overhead,
number of stalls, and overheads of interconnection wires. On the

other hand, since a single queue is used, multiple entries might need
to be sent to or received from the queue at the same cycle. This can
be solved by grouping together several hints with the same age tag
and sending them as a single packet over the queue. This requires
a small buffer in the hint distribution unit to handle the case that
hints have non-identical release windows sizes.

4.4 Hint Disabling Mechanisms
Hints can be disabled when they are no longer beneficial for the

animator core. This might happen because of several reasons. First,
the program execution on the undead core gets off the correct exe-
cution path due to the destructive impact of defects. Second, in cer-
tain phases of the program, performance of the animator core might
be close to its ideal case, attenuating the value of hints. Lastly, at
certain parts of the program, due to the intertwined behavior of the
NM system, the animator core might not be able to get ahead of
the undead core. In all these scenarios, hint disabling helps in four
ways:

• It avoids occupying resources of the animator core with inef-
fective hints that does not buy any performance benefit.

• The queue fills up less often which means less number of
stalls for the undead core.

• Disabling hint gathering and distribution saves power and en-
ergy in both sides.

• It serves as an indicator of when the undead core has strayed
far from the correct path of execution (i.e., when hints are
frequently disabled) and resynchronization is required.

The hint disabling unit is responsible for realizing when each
type of hint should get disabled. In order to disable cache hints, the
cache fingerprint unit generates high-level cache access informa-
tion based on the committed instructions in the last disabling time
interval – e.g., last 1K committed instructions. These fingerprints
are sent through the queue and compared with the animator core’s
cache access pattern. Based on a pre-specified threshold value for
the similarity between access patterns, the animator core decides
whether the cache hint disabling should happen. In addition, when
a hint gets disabled, that hint remains disabled during a time period
called the back-off period. More precisely, the cache fingerprint
unit retains two tables for keeping track of non-speculative I-cache
and D-cache accesses in the last disabling time interval. Figure 7(a)
illustrates an example of cache disabling. Considering D-cache
hints, the corresponding table has only several entries – 8 entries
in our example – and each entry will be incremented for a commit-
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Figure 7: Two high-level examples of cache and branch prediction hint disabling mechanisms. Here, values on the X-axes of the plots

correspond to eight entries of the cache disabling table.

ted load/store, whenever the LSBs of the address match the rank
order of that entry. Therefore, the cache disabling table maintains a
high-level distribution of addresses that are accessed during the last
interval. At the end of each interval, the table contents will be sent
over the queue to the animator core and entries will be cleared for
the next interval. Given a similar cache access distribution at the
animator core’s side, for evaluating similarity between two distri-
butions, (V1, V2, ..., V16) for the undead core and (S1, S2, ..., S16)
for the animator core, we calculateK =

P

16

i=1
|Si − Vi|. Then, if

K (140 in our example) is less than a pre-specified threshold, a sig-
nal will be sent to the undead core to stop gathering that particular
hint for the back-off period.
Disabling branch prediction hints can solely be done by the ani-

mator core. Apart from prioritizing the original BP of the animator
core for a subset of PCs, the NM BP can be also employed for
global disabling of the branch prediction hints. For this purpose,
we continuously monitor the performance of the NM BP and if
this performance – compared to the original BP – is worse than a
pre-specified threshold for the last disabling time interval, we dis-
able branch prediction hints. As Figure 7(b) depicts, for branch
prediction hint disabling, we use a score-based scheme with a sin-
gle counter. For every branch that the original and NM BPs either
both correctly predict or both mispredict no action should be taken.
Nonetheless, for the branches that the NM BP correctly predicts
and the original BP does not, the score counter is incremented by
one. Similarly, for the ones that NMBP mispredicts but the original
BP correctly predicts, the score counter is decremented. Finally, at
the end of each disabling time interval, if the score counter (2 in
our example) is less than a certain threshold, the branch prediction
hints will be disabled for the back-off period. For performing in-
frequent disabling-related computations, we add a 4-bit ALU to the
hint disabling unit.

4.5 Resynchronization
Since the undead core might get off the correct execution path, a

mechanism is required to take it back to a valid architectural state.
In order to do so, we use resynchronization between the two cores
during which the animator core’s PC and architectural register val-
ues get copied to the undead core. According to [27], for a modern
processor, the process of copying PC and register values between
cores takes on the order of 100 cycles. Moreover, all instructions in
the undead core’s pipelines are squashed, the rename table is reset,
and the D-cache content is also invalidated for “resynchronizing”
the memory state.

Resynchronization should happen when the undead core gets off
the correct execution path and it can no longer provide useful hints
for the animator core. The simplest policy is to resynchronize every
N committed instructions whereN is a constant number like 100K.
However, as we will show in Section 5.2, a more dynamic resyn-
chronization policy can achieve a higher overall speed-up for the
NM system. We take advantage of the hint disabling information
to identify when resynchronization should happen. An aggressive
policy is to resynchronize every time a hint gets disabled. However,
such a policy results in too many resynchronizations in a short time
which clearly reduces the efficiency of our scheme. Another poten-
tial policy is to resynchronize only if at some point in time all or
at least two of the hints get disabled. Later in Section 5.2, we will
compare some of these potential resynchronization policies.

4.6 NM Design for CMP Systems
So far, we described the NM heterogeneous coupled core exe-

cution approach and its architectural details. Here, NM for CMP
systems will be discussed. Figure 8 illustrates the NM design for
a 16-core CMP system with 4 clusters modeled after the Sun Rock
processor. Each cluster contains 4 cores which share a single an-
imator core, shown in the call-out. In order to maintain scalabil-
ity of the NM design, we employ the aforementioned 4-core clus-
ter design as the building block. Although a single animator core
might be shared among more cores, it introduces long interconnec-
tion wires that should travel from one corner of the die to another.

Cl ust er 1 C o r e 1 L 2C a c h eB a n k sL 2 C a c h e B a n k s L 2 C a c h e B a n k sD a t aS w i t c hL 2C a c h eB a n k s
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Figure 8: The high-level NM design for a large CMP system

with 16 cores, modeled after the Sun Rock processor, which

has 4 cores per cluster. The details of NM core coupling can be

found in Figure 4.



Therefore, given the low area overhead of NM for a 4-core CMP
(5.3% as will be discussed in Section 5.2), the proposed building
block preserves design scalability. On the other hand, since many
dies are fault-free, in order to avoid disabling the animator cores,
these cores can be leveraged for accelerating the operation of live
cores. One possibility is to use the animator cores to exploit Spec-
ulative Method-Level Parallelism by spawning an extra thread and
moving it to the animator core to execute the method call. The
original thread executes the code that follows the method’s return
by leveraging a return value predictor. This is based on the ob-
servation that inter-method dependency violations are infrequent.
However, evaluation of the latter is beyond the scope of this work.
For a heterogeneous CMP system, the problem is slightly more

difficult due to the inherent diversity of the cores. Therefore, shar-
ing an animator core between multiple cores might not be possible
since those cores have different computational capabilities. A po-
tential solution is to partition the CMP system to groups of cores
in which each group contains cores with similar characteristics and
performance. Therefore, each group can share an animator core
with different specifications. An alternative is to partition the cores
to groups such that in each group, we have several large cores and
a small core – all from the original set of heterogeneous cores. In
each group, the smaller core should have the capability of operating
as a conventional core or as an animator core when there is a de-
fect in one of the larger cores in its own group. These dual purpose
cores are a suitable fit for many heterogeneous CMP systems that
come with a bunch of simpler cores such as the IBMCell processor.
In our design, since the animator core is shared among multi-

ple cores, it is reasonable to shift the overheads to the animator
core side to avoid replicating of the same module in the baseline
cores. For instance, most of the similarity matching structures for
hint disabling are located on the animator core side. Furthermore,
since the undead core runs significantly ahead of the animator core
in the program stream, the communication queue should also be
closer to the animator core to reduce the timing overhead of access-
ing the queue and checking the age tags. Finally, disabling hints,
when they are no longer beneficial, allows the undead core to avoid
gathering and sending the hints which saves power/energy on both
sides.

5. EVALUATION
In this section, we describe experiments performed to quantify

the potential of NM in enhancing the system throughput.

5.1 Experimental Methodology
In order to model NM’s heterogeneous coupled core execution,

we heavily modified SimAlpha, a validated cycle accurate microar-
chitectural simulator based on SimpleScalar [5]. We run two dif-
ferent versions of the simulator, implementing the undead and ani-
mator cores, and use inter process communication (IPC) to model
the information flow between two cores (e.g., L2 warm-up, hints,
and cache fingerprints). As mentioned earlier, a 6-issue OoO EV6
and a 2-issue OoO EV4 are chosen as our baseline and animator
cores, respectively. The configuration of these two coupled cores
and the memory system is summarized in Table 1. We simulate
the SPEC-CPU-2K benchmark suite cross-compiled for DEC Al-
pha and fast-forwarded to an early SimPoint [31].
To study the effect of manufacturing defects on the NM system,

we developed an area-weighted, Monte Carlo fault injection en-
gine. During each iteration of Monte Carlo simulation, a microar-
chitectural structure is selected and a random single stuck-at fault is
injected into the timing simulator. Table 2 summarizes the fault lo-
cations used in our experiments. Since every transistor has the same

Table 1: The target NM system configuration.

Parameter The animator core A baseline core

Fetch/issue/commit width 2 per cycle 6 per cycle

Reorder buffer entries 32 128

Load/store queue entries 8/8 32/32

Issue queue entries 16 64

Instruction fetch queue 8 entries 32 entries

Branch predictor tournament tournament

(bimodal + NM BP) (bimodal + 2-level)

Branch target buffer size 256 entries, direct-map 1024 entries, 2-way

Branch history table 1024 entries 4096 entries

Return address stack - 32 entries

L1 data cache 8KB direct-map, 3 64KB, 4-way, 5

cycles latency, 2 ports cycles latency, 4 ports

L1 instr. cache 4KB direct-map, 2 64KB, 4-way, 5

cycles latency, 2 ports cycles latency, 1 port

L2 cache 2MB Unified, 8-way, 15 cycles latency

Main memory 250 cycles access latency

probability of being defective, hard-fault injections should be dis-
tributed across microarchitectural structures in proportion to their
area. Therefore, for each fault injection experiment, we inject 5000
hard-faults while artificially prioritizing structures that have larger
area. These stuck-at faults are injected one by one in the course of
each individual experiment. As a result, at any point in time, there
is a single stuck-at fault in the undead core. Given an operational
frequency of 600MHz [22] for EV6 in 0.35µm, scaling to a 90nm
technology node would result in a frequency of 2.3GHz at 1.2V.
This frequency is a pessimistic value for the animator core and NM
can clearly achieve even better overall performance if the animator
core were allowed to operate at a higher frequency. Nevertheless,
since the amount of work per pipeline stage remains relatively con-
sistent across Alpha microprocessor generations [22], for a given
supply voltage level and a technology node, the peak operational
frequency of these different cores are essentially the same.
Dynamic power consumption for both cores is evaluated using

Wattch [13] and leakage power is evaluated with HotLeakage [39].
Area for our EV6-like core – excluding the I/O pads, interconnec-
tion wires, the bus-interface unit, L2 cache, and control logic – is
derived from [22]. In order to derive the area for the animator core,

Table 2: Fault injection locations and their corresponding

pipeline stages along with stage-level area break-down for EV6.

Pipeline Stage Area Break-down Fault Location

Program counter

Fetch 14.3% Branch target buffer

Instruction fetch queue

Decode 15.6% Input latch of decoder

Rename 5.1% Rename alias table

Integer register file

Dispatch 24.1% Floating point register file

Reorder buffer

Integer ALU

Integer multiplier

Integer divider

Backend 40.8% Floating point ALU

Floating point multiplier

Floating point divider

Load/store queue
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(c) Effect of CAM size that are used for reducing the number of D-cache hints – generated in the undead core – on the data cache
miss rate of the animator core. Here, the lines show the number of data cache hints should be sent to the animator core per cycle,
normalized to the the case without any CAM.
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(d) Number of instructions committed in the animator core before the branch prediction hint is disabled for different pre-specified
branch prediction hint disabling thresholds (i.e., 50%, 70%, 80%, 90%, and 99% similarities).

00 . 511 . 522 . 53
P erf ormanceN ormtoth eA ni matorC ore 1 0 0 K 1 � h i n t 2 � h i n t s 3 � h i n t s
(e) Effect of different resynchronization policies on the overall
speed-up of the NM coupled cores normalized to the perfor-
mance of the baseline animator core.
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(f) Effect of communication queue size on the overall speed-up
of the NM coupled cores normalized to the performance of the
baseline animator core.

Figure 9: Design space exploration for the NM system described in Table 1.

we start from the publicly available area break-down for the EV6
and resize every structure based on the size and number of ports.
Furthermore, CACTI [26] is used to evaluate the delay, area, and
power of the on-chip caches. Overheads for the SRAM memory
structures that we have added to the design, such as the NM branch
prediction table, are evaluated with the SRAM generator module
provided by the 90nm Artisan Memory Compiler. Moreover, the
Synopsys standard industrial tool-chain, with a TSMC 90nm tech-

nology library, is used to evaluate the overheads of the remaining
miscellaneous logic (e.g., MUXes, shift registers, and compara-
tors). Finally, the area for interconnection wires between the cou-
pled cores is estimated using the same methodology as in [23], with
intermediate wiring pitch taken from the ITRS road map [19].

5.2 Experimental Results
In this section, we evaluate different aspects of the NM design



Figure 10: Variations in the speed-up of the animator core

for different hard-fault locations across SPEC-CPU-2K bench-

marks. To only highlight the impact of hard-fault locations, in

each row, results are normalized to the average speed-up that

can be achieved by the NM coupled cores for that particular

benchmark.

such as design space, achievable speed-up in the presence of de-
fects, performance impact of different hard-fault locations, area and
power overheads, and finally throughput enhancement.
Design Space Exploration: Here, we fix the architectural pa-

rameters that are involved in the NM design. Since there is a variety
of parameters (both hardware and policy), due to space considera-
tions, we only present a subset of the exploration for parameters
with the most interesting behaviors. During the exploration, we
initially assign a nominal value to each of the parameters and as
we select a proper value for each parameter, we use the updated
value for the reminder of the experiments. Figure 9 depicts this de-
sign space exploration for a pruned set of NM parameters. In Fig-
ure 9(a), the release window size is varied between 0 to 256 com-
mitted instructions while monitoring the data cache miss rate of the
animator core. As can be seen, there is an optimal window size (i.e.,
16 committed instructions) that maximizes prefetching efficiency,
given the variations in the number of committed instructions on the
undead core. The D-cache miss rate, even before optimizing other
parameters, is reduced from 10.7% to 5.3%. Figure 9(b) illustrates
the effect of reducing the branch history table (BHT) size of the
NM BP on the branch prediction accuracy of the animator core. To
save area, we limit the BHT size to 1024 entries, causing less than
0.5% reduction in the achievable branch prediction accuracy.
The size of the D-cache hint CAM is a double-edged sword and

its impact on the D-cache miss rate and communication traffic is
shown in Figure 9(c). Increasing the CAM size, reduces the com-
munication traffic and queue size. However, this aggravates the
efficiency of D-cache hints. The reason is that sending more up-
to-date hints increases the likelihood that data is present in the lo-
cal D-cache of the animator core when it is needed. Nevertheless,
using a CAM with 2 entries can reduce the number of transmit-
ted D-cache hints by more than 30% while affecting the D-cache
miss rate by less than 0.5%. Next, Figure 9(d) illustrates the ef-
fect of varying the threshold for disabling branch prediction hints.
For each injected hard-fault and benchmark, we record the number
of instructions committed before the branch prediction hint is dis-
abled. Results of this process are depicted for 5 different threshold
values (i.e., 50%, 70%, 80%. 90%, and 99% similarities). For high
similarity requirements, such as 99%, the branch prediction hints
are mostly disabled even before 5K instruction are committed in
the animator core. Consequently, we select 70% similarity so that
the hint disabling does not occur too frequently while still receiv-

ing occasional feedback about the effectiveness of the hints during
program execution.
Finally, Figures 9(e) and (f) show the impact of different resyn-

chronization policies and communication queue sizes on the achiev-
able speed-up by NM, respectively. In these two plots, speed-ups
are normalized to the performance of a baseline animator core. We
consider 4 candidates for the resynchronization policy, consisting
of one static and 3 dynamic polices. For the static policy, resyn-
chronization occurs periodically after committing 100K instruc-
tions while for the dynamic policies, the number of disabled hints
determines whether resynchronization is required. Since we ag-
gressively exploit the hints by rarely disabling them, the resynchro-
nization policy that is invoked on the first disabled hint achieves
a better speed-up. Finally, the sensitivity to the communication
queue size is presented in Figure 9(f). Although it seems that a
larger queue is always better, an extremely large queue enables the
undead core to get too far ahead of the animator core, polluting the
L2 cache with unprofitable prefetches.
The values for the remaining parameters were identified in a

similar fashion: I-cache release window size (4 committed instruc-
tions), branch prediction release window size (4 committed instruc-
tions), I-cache hint CAM size (2 entries), branch prediction hint
disabling threshold (70% similarity), D-cache hint disabling thresh-
old (70% similarity), I-cache hint disabling threshold (80% similar-
ity), D-cache hint disabling table size (32 entries), and I-cache hint
disabling table size (32 entries). Given these parameter values, on
average, NM can achieve 39.5% speed-up over the baseline anima-
tor core. In our simulation, we set the queue delay to 15 cycles –
same as L2 cache; however, since the NM coupled core design is
highly pipelined, it has a minimal sensitivity to the queue delay.
For instance, even setting this delay to 45 cycles, only affects the
final speed-up by less than 1%.
Performance Impact of Different Hard-Fault Locations: In

order to highlight the impact of a fault location on the achievable
speed-up by the NM system, Figure 10 depicts the performance
breakdown results for the fault locations described in Table 2. Re-
sults in each row of this plot is normalized to the average speed-
up that can be achieved by the NM coupled core for that particular
benchmark. This was done to eliminate the advantage/disadvantage
that comes from the inherent benchmark suitability for core cou-
pling. As can be seen, hard-faults in some locations are more harm-
ful than others. These locations consist of the PC, integer ALU, and
instruction fetch queue. Another interesting observation is that, for
a benchmark like 197.parser, reaction to defects can significantly
differ from other benchmarks. We conclude two main points from
this plot. First, on average, there are only a few fault locations that
can drastically impact the NM speed-up gain. Second, for a given
fault location, different benchmarks show various degrees of sus-
ceptibility; thus, heterogeneity across the benchmarks running on
a CMP system helps NM to achieve a higher speed-up by having a
more suitable workload assigned to the coupled cores.
Summary of Benefits and Overheads: Figure 11(a) demon-

strates the amount of speed-up that can be achieved by the NM
coupled cores for CMP systems with different numbers of cores.
As can be seen, NM achieves a higher overall speed-up as the num-
ber of cores increases. For a 16-core system, on average, the cou-
pled cores can achieve the performance of a live core, essentially
providing the appearance of a fully-functional 6-issue baseline core
with a 2-issue animator core. This is because NM achieves different
speed-ups based on the defect type, location, and the workload run-
ning on the system. Here, we assume full utilization, which means
there is always one job per core. Hence, for larger CMPs, with
more heterogeneity across the benchmarks running on the system,
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(a) Performance of the baseline animator core, NM coupled
cores, and a live core normalized to the average performance of
a baseline animator core. Due to the higher heterogeneity across
the benchmarks for a CMP system with more cores, NM can
achieve a higher overall speed-up.
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(b) Break-down of NM area and power overheads for CMP
systems with different numbers of cores. As can be seen, the
overheads that are imposed by the the baseline animator core
is typically the major component, which gets amortized as the
number of cores grows.

Figure 11: Summary of benefits and overheads of our scheme for CMP systems with different number of cores.

there is more opportunity for NM to exploit. The speed-up evalua-
tion was done by conducting a Monte Carlo simulation with 1000
iterations. In each iteration, we select one benchmark for each core,
while allowing replication in the selected benchmarks.
Figure 11(b) shows the breakdown of area and power overheads

for our scheme. Here, we assume a single core system has 2MB L2
while assuming 1MB shared L2 per core for CMP systems. As can
be seen, the area overhead gradually shrinks as the number of cores
grows since the cost of the animator core is amortized among more
cores. Nevertheless, since we simply replicate the 4-core building
block to construct CMPs with more than 4 cores, the area overhead
remains the same. In terms of power overhead, two points should
be noted. First, based on our target defect rate, for CMPs with
more than 4 cores, other animator cores remain disabled and do not
contribute to the power consumption. Next, as the speed-up results
show, for CMPs with less than 8 cores, the undead core remains
ahead of the animator core and it needs to stall when the queue gets
full. During stall times, the undead core does not consume dynamic
power which is accounted for in the net overhead of the animator
core – Figure 11(b).
Finally, as discussed earlier, based on the expected defect rate

for current and near future CMOS technologies, on average one
defect per five manufactured 100mm2 dies should be expected.
In the case of a defect in one of the original cores, we apply our
scheme. On the other hand, if any of the animator cores, communi-
cation queues, or NM specific modules like the hint gathering unit
are faulty, we simply disable the animator core and the rest of the
system can continue their normal operation.

6. RELATED WORK
Manufacturing defects can cause transistors in different parts

of a microprocessor to get corrupted. Prior work on defect tol-
erance mostly focused on on-chip caches since there is less ho-
mogeneity in the non-cache parts of a core, making defect tol-
erance a more challenging issue. Typically, for high-end server
systems designed with reliability as a first-order design constraint
(e.g., HP Tandem NonStop [7], Teramac [15], and the IBM eServer
zSeries [7]), coarse-grained replication has been employed [8, 33].
Configurable Isolation [2] is a high availability chip multiprocessor
architecture for partitioning cores to multiple fault domains which
allows independent redundant executions. However, dual and triple
modular redundant systems incur significant overheads in terms of
area and power which is not generally acceptable for mainstream
computing. An easy solution is to disable the faulty cores – to
avoid yield loss – which clearly causes a significant reduction in

the system throughput and sale price [2]. This simple core dis-
abling approach has been taken by microprocessor vendors, such
as IBM, Intel, AMD, and Sun Microsystems, to maintain an ac-
ceptable level of manufacturing yield.
Core Cannibalization [29] and StageNet [17] suggest breaking

each core into pipeline stages and allowing one core to borrow
stages from other cores through interconnection networks. Intro-
duction of these interconnection networks in the processor pipeline
presents performance, power consumption, and design complex-
ity challenges. Finer-grained redundancy maintenance has been
used by Bulletproof [14] and sparing of array structures [11]. In
the same vein, Shivakumar et. al. [32] proposed a method to dis-
able non-functional microarchitectural components (e.g., execution
units) and faulty entries in small array structures (e.g., register file).
Rescue is mainly a microarchitectural design-for-test (DFT) tech-
nique which can map out faulty pipeline units that have spares [30].
However, as shown in [27], these schemes have a limited applica-
bility due to the small amount of microarchitectural redundancy
that exists in a modern high-performance processor.
Architectural Core Salvaging [27] is a high-level low-cost archi-

tectural proposals which uses thread migration between the cores to
guarantee the correct execution. To avoid incorrect execution, for
each instruction, it assesses whether the fault location might be ex-
ercised by the corresponding opcode. Thus, without using extra re-
dundancy, it is only applicable to defects in about 10% of core area.
DIVA [4] was proposed for dynamic verification of complex high-
performance microprocessors. It employs a checker pipeline that
re-runs the same instruction stream for ensuring correct program
execution. Given the fact that DIVA is not a defect tolerant scheme,
as shown in [4], a “catastrophic” core processor failure results in
about 10X slow-down. Detour [25] is a completely software-based
approach which leverages binary translation for handling defects in
execution units and register files. Apart from limited defect types
that can be handled, a binary translation layer cannot typically be
applied to high-performance x86 cores [27].

7. CONCLUSION
Since manufacturing defects directly impact yield in nanoscale

CMOS technologies, to maintain an acceptable level of manufac-
turing yield, these defects need to be addressed properly. Non-
cache parts of a core are less structured and homogeneous; thus, tol-
erating defects in the general core area has remained a challenging
problem. In this work, we presented Necromancer, an architectural
scheme to enhance the system throughput by exploiting dead cores.
Although a dead core cannot be trusted to perform program execu-



tion, for most defect incidences, its execution flow – when starting
from a valid architectural state – coarsely matches the intact pro-
gram behavior for a long time period. Hence, Necromancer does
not rely on correct program execution on a dead core; instead, it
only expects this undead core to generate effective execution hints
to accelerate the animator core. In order to increase Necromancer
efficacy, we use microarchitectural techniques to provide intrinsi-
cally robust hints, effective hint disabling, and dynamic inter-core
state resynchronization. For a 4-core CMP system, on average, our
approach enables the coupled core to achieve 87.6% of the perfor-
mance of a live core. This defect tolerance and throughput enhance-
ment comes at modest area and power overheads of 5.3% and 8.5%,
respectively. We believe NM is a valuable and low-cost solution for
tolerating manufacturing defects and improving the throughput of
the current and near future mainstream CMP systems.
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