
Erasing Core Boundaries for Robust and
Configurable Performance∗

Shantanu Gupta Shuguang Feng Amin Ansari Scott Mahlke
Advanced Computer Architecture Laboratory

University of Michigan Ann Arbor, MI
{shangupt, ansary, shoe, mahlke} @umich.edu

ABSTRACT

Single-thread performance, reliability and power efficiency are crit-
ical design challenges of future multicore systems. Although point
solutions have been proposed to address these issues, a more fun-
damental change to the fabric of multicore systems is necessary
to seamlessly combat these challenges. Towards this end, this pa-
per proposes CoreGenesis, a dynamically adaptive multiprocessor
fabric that blurs out individual core boundaries, and encourages re-
source sharing across cores for performance, fault tolerance and
customized processing. Further, as a manifestation of this vision,
the paper provides details of a unified performance-reliability solu-
tion that can assemble variable-width processors from a network of
(potentially broken) pipeline stage-level resources. This design re-
lies on interconnection flexibility, microarchitectural innovations,
and compiler directed instruction steering, to merge pipeline re-
sources for high single-thread performance. The same flexibility
enables it to route around broken components, achieving sub-core
level defect isolation. Together, the resulting fabric consists of a
pool of pipeline stage-level resources that can be fluidly allocated
for accelerating single-thread performance, throughput computing,
or tolerating failures.

Keywords

Multicores, Performance, Reliability, Reconfigurable Architectures

1. INTRODUCTION
As a result of growing power, thermal and complexity concerns

in monolithic processors, major hardware vendors have lead a mi-
gration to multicore processors composed of relatively simple cores.
Today, the sizes of multicores vary from 2-6 cores in desktop sys-
tems to 16-64 cores in throughput-oriented computing domains,
e.g. SUN Niagara [1], Intel Larrabee [2] and Tilera TILE64 [3].
Despite having been attenuated, several challenges pertaining to
performance, power and reliability still remain in the multicore
paradigm. First, multiple cores are effective for throughput com-
puting, but they provide little to no gains for sequential applica-
tions. Even if a major transition towards parallel programming oc-
curs in the future, Amdahl’s law dictates that the sequential com-
ponent of an application will present itself as a performance bot-
tleneck. Second, power constraints limit the number of cores /
resources that can be kept active on a chip, motivating the need
for customized and power-proportional processing [4]. Finally,
the increasing vulnerability of transistors with each passing gen-
eration [5, 6], jeopardize the objective of throughput sustainability
over the lifetime of a multicore chip.

In this landscape of multicore challenges, prior research efforts

∗To appear in the 43rd International Symposium on Microarchitec-
ture, December 2010.

have focused on addressing these issues in isolation. For exam-
ple, to tackle single-thread performance, a recent article by Hill
and Marty [7] introduces the concept of dynamic multicores (Fig-
ure 1(a)) that can allow multiple cores on a chip to work in uni-
son while executing sequential codes. This notion of configurable
performance allows chips to efficiently address scenarios requir-
ing throughput computing, high sequential performance, and any-
thing in between. Core Fusion [8], Composable Lightweight Pro-
cessors [9] and Federation [10] are representative works with this
objective. However, the scope of present day dynamic multicore so-
lutions is limited as they cannot provide customized processing, as
in [4, 11], or better throughput sustainability, as achieved by tech-
niques in [12, 13]. The customized processing in [4] (Figure 1(b))
is typically accommodated by introducing heterogeneity of types
and number of functional units, execution models (in-order, OoO),
etc., into different cores. Whereas, better throughput sustainability
can be provided by fine-grained reliability solutions like CCA [12]
and StageNet [13], that disable broken pipeline stages, instead of
entire cores (Figure 1(c)), within a multicore.

Unfortunately, by virtue of being independent efforts, combining
existing performance, power and reliability solutions for multicores
is neither cost-effective nor straightforward. The overheads quickly
become prohibitive as the changes required for each solution are
introduced, with very little that can be amortized across multiple
techniques. Configurable performance requires dedicated central-
ized structures (adding drawbacks such as access contention/latency,
global wiring), customization requires a variety of static core de-
signs, and fine-grained reliability requires either large amounts area
for cold spares or the flexibility to share resources across cores.
Apart from excessive overheads, a direct attempt to combine these
solution also faces engineering hurdles. For instance, when com-
bining CoreFusion [8] (a configurable performance solution) and
StageNet [13] (a fine-grained reliability solution), two prominent
issues arise: 1) CoreFusion requires centralized structures for co-
ordinating fetch, steering, commit across fused pipelines. These
structures become single points of failure and limit reliability ben-
efits of StageNet. 2) StageNet requires a decoupled microarchi-
tecture for its sub-core defect tolerance. This is not compatible
with CoreFusion, as resources within a single CoreFusion core are
tightly coupled together.

Instead of targeting one challenge at a time, the goal of this
paper is to devise a design philosophy that can naturally be ex-
tended to handle a multitude of multicore challenges seamlessly,
while overlapping costs, maintaining efficiency and avoiding cen-
tralized structures. Towards this end, this paper proposes the Core-
Genesis (CG) architecture (see Figure 1(d)), an adaptive computing
substrate that is inherently flexible, and can best align itself to the
immediate system needs. CG eliminates the traditional core bound-
aries and organizes the chip multiprocessor as a dynamically con-

C C C C

C C C C

C C C C

C C C C

B0

B0

B1

B1

B2

B2

Bn

Bn

(a) Dynamic multicore with

centralized resources

Distributed resources

(d) CoreGenesis: A sea of building blocks (B) that can be

configured for throughput computing, single-thread

performance, fault tolerance, customized processing, etc.

B: A block can be a pipeline stage

or a group of pipeline stages

C C C

C C C

C C C

(c) Core disabling for

fault tolerance

C C C

CC

C

C

C C

(b) Static design for a

heterogeneous multicore

C: core
Centralized

resources

BnB0 B1
B2

B0 B2

B0 B1

B1B0 B2

B2

Bn

Bn

B1 Bn

H
e

te
ro

g
e

n
o

u
s

C

o
re

2
-w

id
e

C

o
re

1
-w

id
e

C

o
re

Adaptive Multipurpose SubstrateTargeted Single-point Solutions

Figure 1: Contemporary solutions for multicore challenges (a,b,c) and vision of this work (d). In (a), centralized resources are used to assist in
fusing neighboring cores. In (b) and (d), different shapes/sizes denote heterogeneity. In (c) and (d), dark shading marks broken components.

figurable network of building blocks. This sea of building blocks
can be symmetric or heterogeneous in nature, while varying in
granularity from individual pipeline stages to groups of stages. Fur-
ther, the CG pipeline microarchitecture is decoupled at block bound-
aries, providing full flexibility to construct logical processors from
any complete set of building blocks. Another key feature of the
CG proposal is the use of distributed resources to coordinate in-
struction execution across decoupled blocks, without any signifi-
cant changes to the ISA or the execution model. This is a major
advancement over prior configurable performance works, and ad-
dresses the shortcomings of centralized resources.

Resources from CG’s sea of blocks can be fluidly allocated for a
number of performance, power and reliability requirements. Through-
put computing can be optimized by forming many single-issue pipelines,
whereas sequential performance can be accelerated by forming wider-
issue pipelines. Power and performance characteristics can be fur-
ther improved by introducing heterogeneous building blocks in the
fabric, and appropriately configuring them (dynamically or stati-
cally) for active program phases or entire workloads. This enables
a dynamic approach to customized processing. Finally, fault tol-
erance in CG can be administered at the block granularity, by dis-
abling the broken components over time.

Guided by this architectural vision, in this paper, we present a
CG instance that targets configurable performance and fine-grained
reliability. For the fabric, an in-order pipeline model is used with
single pipeline stages as its building blocks. As a first step, we
define mechanisms for decoupling pipeline stages from one an-
other (inspired by the StageNet architecture [13]). This enables
salvaging of working stages from different rows of the fabric to
form logical processors, thereby tackling the throughput sustain-
ability challenge. To address configurable performance, we gener-
alize the notion of logical processors to form processors of varying
issue widths.

The engineering of distributed resources to support the assembly
of decoupled pipeline stages into a wide-issue processor is espe-
cially hard due to the heavy co-ordination and communication re-
quirements of an in-order superscalar. Our solution adopts a best
effort strategy here, speculating on control and data dependencies
across pipeline ways, and falling back to a light-weight replay in
case of a violation. To register these violations, hardware schemes
were formulated for distributed control, register and memory data
flow management. The frequency of data flow violations from in-
structions executing on two different pipeline ways was found to
be a leading cause of performance loss. We address this by in-
corporating compiler hints for instruction steering in the program

binary. This circumvents the hurdles in fusing in-order cores, as
presented in [14], while also achieving a near-optimal pipeline way
assignment. Overall, the manifestation of CG presented in this pa-
per relies on interconnection flexibility, microarchitectural innova-
tions, and compiler directed instruction steering, to provide a uni-
fied performance-reliability solution.

2. RELATED WORK
Within the framework of multicore chips, efficient solutions that

can deliver configurable performance and throughput sustainability
are desirable. This section gives an overview of prior works tar-
geting these issues. Table 1 summarizes the key aspects of CG in
comparison to the relevant prior proposals. CG stands out by si-
multaneously offering configurable performance and fine-grained
reliability while eliminating centralized structures. This section
also presents a study that motivates a need for unified performance-
reliability solutions for the sake of efficiency.

2.1 SingleThread Performance Techniques

Dynamic multicores. Dynamic multicore processors consists of
a collection of homogeneous cores that can work independently to
provide throughput computing, or a subset of them can be fused
together to provide better single-thread performance. Core Fu-
sion [8] is a dynamic multicore design that enables the fusion of
adjacent OoO cores to form wider-issue OoO processors. Federa-
tion [10], on the other hand, combines neighboring in-order cores to
form an OoO superscalar. Both these approaches employ central-
ized structures (for fetch management, register renaming, instruc-
tion steering, etc.) to assist in aggregation of pipeline resources.
In contrast, Composable Lightweight Processors (CLP) [9] lever-
ages the EDGE ISA and compiler support to eliminate centralized
structures, enabling it to scale up to 64-cores. CG also eliminates
centralized structures, but its compiler support is limited to gener-
ating hints for instruction steering, and ISA is modified to include
this hint carrying instruction. Multiscalar [15] is a seminal work
that can compose a large logical processor from many smaller pro-
cessing elements. It uses an instruction sequencer to distribute task
sub-graphs among the processing elements, and relies on hardware
to satisfy dependencies. However, in all these prior schemes, re-
sources within individual cores are tightly coupled together, dis-
missing the opportunity for fine-grained reliability.

Another distinction of CG is that it fuses in-order pipelines to
form wider-issue in-order processors. While out-of-order fusion
provides opportunities for hiding latency (large instruction window

Table 1: Comparison to Prior Work

Configurable Fine-grained No centralized Supports Supports
Performance Reliability structures in-order model heterogeneity

CG (this paper) X X X X X

CLP [9] X X X

Core Fusion [8], Federation [10], Multiscalar [15] X

StageNet [13], CCA [12] X X X

Heterogeneous CMPs [4] X X X

sizes), in-order fusion is made harder due to the negligible room for
inefficiency. In fact, Salverda et al. [14] argue that in-order pipeline
fusion is impractical because of the associated hardware overheads
for interleaving active data flow chains (instruction steering). CG
circumvents these challenges by using compiler hints to guide in-
struction steering, and employing simple mechanisms to detect and
recover from data flow violations.

Heterogeneous CMPs. Heterogeneous designs exhibit good power
and performance characteristics for their targeted class of applica-
tions. However, being a static design, its effectiveness is limited
outside this set or when flexibility is desired. For instance, in a sce-
nario where all applications prefer throughput computing, a hetero-
geneous CMP will operate sub-optimally.

In addition to static scheduling of jobs on heterogeneous CMP
cores, there have also been dynamic scheduling approaches to match
program phase behaviors to cores. Core contesting [11] is one such
example, but it runs the same program redundantly on different
cores to allow a faster transfer of state between them. In CG, inclu-
sion of heterogeneous blocks can allow static, dynamic as well as
fine-grained dynamic exploitation of program phase to architecture
mapping. This is possible due to CG’s inherent flexibility to swap
resources between pipelines.

Clustered Architectures. The early research in clustered architec-
tures was to enable wider issue capabilities, without adding sophis-
ticated hardware support. The Multicluster [16] architecture is a
good example of this, and it uses static instruction scheduling from
compile time. CG, on the other hand, uses a compiler clustering
algorithm [17] to generate hints that are used for dynamic instruc-
tion steering. This is also in contrast to past works that solely use
hardware support [18] to implement heuristics for distributing in-
structions among clusters in a superscalar.

2.2 Multicore Reliability Solutions

Coarse-Grained Reconfiguration. High-end server systems, like
Tandem NonStop and IBM zSeries [19], typically rely on coarse
grained spatial redundancy to provide a high degree of reliability.
However, dual and triple modular redundant systems incur signif-
icant overheads in terms of area and power, and cannot tolerate
a high failure rate. More recently, ElastIC [20] and Configurable
Isolation [21] proposed disabling of broken cores in a chip multi-
processor. Architectural Core Salvaging [22] is an interesting ap-
proach that continues to use broken cores for a subset of computa-
tion, while the results are not impacted by the failures. Although
good in a limited failure rate scenario, all of these proposals need
a massive number of redundant cores, without which they face the
prospect of rapidly declining processing throughput as faults lead
to core disabling.

Fine-Grained Reconfiguration. A newer category of techniques
use stage-level reconfiguration (isolates broken stages, not cores)
for reliability. StageNet (SN) [13] groups together a small set of
pipelines stages with a simple crossbar interconnect. By enabling
reconfiguration at the granularity of a pipeline stage, SN can toler-

1

2

3

4

5

6

7

A
re

a
 O

v
er

h
ea

d
 (

#
 o

f
co

re
s)

Configurable Performance (P) Throughput Sustainability (R) P + R

12.1%

27.1%

39.2%

0

1

2

3

4

5

6

7

2 4 8 16

A
re

a
 O

v
er

h
ea

d
 (

#
 o

f
co

re
s)

Number of cores in the CMP

Configurable Performance (P) Throughput Sustainability (R) P + R

12.1%

27.1%

39.2%

Figure 2: Area overhead projections (measured as number of cores)
for supporting configurable performance (P) and throughput sus-
tainability (R) in different sized CMP systems. P+R curve shows
the cumulative overhead. For this plot, throughput sustainability is
defined as the ability to maintain 50% of original chip’s throughput
after three years of usage in the field.

ate a considerable number of failures. Romanescu et al. [12] also
propose a similar multicore architecture, Core Cannibalization Ar-
chitecture (CCA), that exploits stage level reconfigurability. How-
ever, CCA allows only a subset of pipelines to lend their stages to
other broken pipelines, thereby avoiding full interconnection. In
CG, fine-grained reconfiguration is supported in the same way as
SN.

2.3 Combining Performance and Reliability
All prior works target the multicore challenges separately, either

configurable performance or throughput sustainability (reliability).
The central problem here is that solutions for each of these require
new hardware to be incorporated into existing CMPs. This turns out
to be an expensive proposition, as the hardware costs are additive.
We conducted a small study to assess this cost. Figure 2 shows the
results from this study using Core Fusion [9] as the configurable
performance solution, and standard core disabling for throughput
sustainability. The line plot shows the cumulative overhead of per-
formance (Core Fusion) and reliability (core disabling) solutions
(P+R). Resulting overhead is almost 40% additional area. There
are two factors at play here: 1) costs are additive, as the two solu-
tions share nothing in common, 2) reliability is administered at core
level (instead of being fine-grained). On top of this, the design, test,
verification and validation efforts need to be duplicated for perfor-
mance and reliability separately. The next section presents CG,
our unified performance-reliability solution, that overcomes these
issues to a large extent.

3. THE COREGENESIS ARCHITECTURE

3.1 Overview
The manifestation of CoreGenesis (CG) architecture presented

here is a unified performance-reliability solution that allows fusion
of standalone cores for accelerating single-thread performance as
well as isolation of defective pipeline stages for sustainable through-
put. The CG fabric consists of a large group of pipeline stages
connected using non-blocking crossbar switches, yielding a highly

configurable multiprocessor fabric. These switches replace all di-
rect wire links that exist between the pipeline stages including the
bypass network, branch mis-prediction signals and stall signals.
The pipeline microarchitecture within CG is completely decou-

pled, and all pipeline stages are standalone entities. The symmetric
crossbar interconnection allows any set of unique stages to assem-
ble as a logical pipeline. As a basis for the CG design, an in-order
core is used1, consisting of five stages namely, fetch (F), decode
(D), issue (I), execute/memory (E/M) and writeback [23]. Fig-
ure 3 shows the arrangement of pipeline stages across four intercon-
nected cores and a conceptual floorplan of an 8-core CG chip. Note
that all modifications introduced within CG are limited to the core
microarchitecture, leaving the memory hierarchy (private L1 / uni-
fied L2) untouched. Further, the caches are assumed to have their
own protection mechanism (like [24]), while CG tolerates faults
within the core microarchitecture.

In Figure 3, despite having one stage failure (shaded) per core,
CG is able to salvage three working pipelines. Further, given a
set of active threads, CG can judiciously allocate these pipeline re-
source to them in proportion to their instruction level parallelism.
For instance, in the figure, thread 1 (low ILP) is allocated one
pipeline and thread 2 (high ILP) is allocated the remaining two
pipelines.

Configurable performance helps CG in dealing with the software
diversity present in modern day CMP systems. It keeps pipelines
separate for throughput computing and dynamically configures two
(or more) pipelines into a multi-issue processor for sequential work-
loads. This morphing of individual pipelines into a conjoint pro-

cessor requires no centralized structures, maintains reliability ben-
efits, and is transparent to the programmer. In Figure 3, CG proces-
sor 2 is an example of a conjoint processor assimilated using two
pipeline stages of each type. As part of a conjoint processor, the
two pipelines cooperatively execute a single thread. The instruc-
tion stream is fetched alternately by the two pipelines - odd num-
bered ops by one pipeline and the even numbered ops by the other.
All instructions are tagged with an age to maintain the program or-
der during execution and instruction commit. Regardless of where
an instruction is fetched, it can be executed on either of the two
pipelines depending upon its source operands. We refer to this as
instruction steering. An instruction executing on the same pipeline
that fetches it is said to be straight-steered, while that executing
on some other pipeline is said to be cross-steered. This dynamic
instruction steering is performed with an objective of minimizing
data dependency violations, and is critical for achieving true multi-
issue performance. CG employs a compiler level analysis for stati-
cally identifying data dependency chains (Section 3.5) and the issue
stage applies this knowledge (during run-time) to steer instructions
to the most suitable pipeline.

The natural support for fine-grained reconfiguration allows CG
to achieve its second objective of throughput sustainability. For in-
stance, in Figure 3, CG is able to efficiently salvage the working
stages from the pool of defective components to form functional
processors. By the virtue of losing resources at a smaller granu-
larity, isolation of broken pipeline stages reaps far better rewards
than traditional core disabling. To realize its reliability benefits, the
CG system relies on a fault detection mechanism to identify bro-
ken stages and a software configuration manager to consolidate the
working ones (by reprogramming the crossbars). Fault detection
can be achieved using a combination of manufacture-time and in-
field periodic testing, details of which are beyond the scope of this
paper.

1Deeper and more complex pipelines can be segmented at logi-
cal boundaries of elementary pipeline stages (F,D,I,E,W) to benefit
from the CG approach.

Table 2: CoreGenesis (CG) challenges. The challenges can be clas-
sified on the basis of single and conjoint pipeline configurations.
The check marks (X) are used for solutions that were straightfor-
ward extension of prior work on decoupled architectures. Whereas
the question marks (?) are open problems that are solved in this
paper.

Control Register Memory Instruction
flow data flow data flow steering

Single pipeline X X N/A N/A

Conjoint pipelines ? ? ? ?

3.2 Challenges
Although the performance and reliability benefits of its config-

uration flexibility are substantial, there are a number of hurdles
faced by the CG architecture. There are four principal challenges,
and they span correctness and performance issues for both single
pipeline processors as well as conjoint pipelines processors:

Control flow management: The decoupled nature of the CG pipeline
makes global signals such as pipeline flush and stall infeasi-
ble. In the context of a single pipelines, the control flow man-
agement is crippled by the absence of a global flush signal.
The problem is even more severe in the case of conjoint pro-
cessors. Pipeline fetch stages need to read complementary
instructions from a single program stream, and make consis-
tent decisions about the control flow (i.e., whether to take a
branch or not).

Register data flow management: Back-to-back register data de-
pendencies are typically handled by the operand bypass net-
work, which relies on timely inter-stage communication. Un-
fortunately, the decoupled design of CG pipelines makes the
bypass network impractical. In the case of conjoint proces-
sors, this problem is further aggravated by the presence of
cross pipeline register dependencies. The decentralized in-
struction execution needs a mechanism to track dependen-
cies, detect violations, and replay instructions for guarantee-
ing correctness.

Memory data flow management: Memory instructions are natu-
rally serialized in the case of a single pipeline CG processor,
as all of them reach the same memory stage. However, sim-
ilar to register data flow violations, memory data flow viola-
tions can also occur between pipelines of a conjoint proces-
sor, leading to a corruption in global state.

Instruction steering: In a conjoint processor, issue stages have
the option to straight steer the instructions to same pipeline
or cross steer it to the other pipeline. This decision has to be
dynamically made for every instruction such that the number
of cross pipeline data dependencies is minimized. A recent
study by Salverda et. al [14] establishes that steering is cen-
tral to the challenge of in-order pipeline fusion, and further
concludes that a hardware-only steering solution is impracti-
cal.

Table 2 summarizes all the challenges in the context of single and
multiple pipelines working as a logical processor. A subset of these
challenges have been solved (marked with a X) by a prior work,
StageNet(SN) [13]. SN is a decoupled pipeline microarchitecture
for fine-grained fault tolerance. The interconnection bandwidth so-
lution from SN is generic and applies to both single/conjoint sce-
narios.

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

F

D

D

D

I

I

E/MI

E/M

E/M

E/MF

F

F

I

D

CG Processor 1 (single pipeline)

CG Processor 2 (conjoint pipelines)

8-core CoreGenesis Chip

Thread 1
(low ILP)

Thread 2
(high ILP)

L2$

F/D
Xbar

D/I
Xbar I/E

Xbar

I$ D
$

I$ D
$

I$ D
$

I$ D
$

I$ D
$

I$ D
$

I$ D
$

I$ D
$

Figure 3: An 8-core CoreGenesis (CG) chip with a detailed look at four tightly coupled cores. Stages with permanent faults are shaded in
red. The cores within this architecture are connected by a high speed interconnection network, allowing any set of stages to come together
and form a logical processor. In addition to the feed-forward connections shown here, there exist two feedback paths: E/M to I for register
writeback and E/M to F for control updates. In CG processor 2 (conjoint pipelines), instructions (prior to reaching E/M stage) can switch
pipelines midway, as a result of dynamic steering.

The control, register data flow, memory data flow, and instruc-
tion steering solutions for conjoint processors are contributions of
this paper (marked with a ?). All of these are new mechanisms,
and were made harder by the fact that unlike a true multi-issue
machine (and even Core Fusion [8]), CG does not have central-
ized structures, and needs to get performance by combining very
loosely coupled resources. For the sake of completeness, in the
descriptions that follow, we also provide a quick overview of the
solutions for single pipeline case from [13].

3.3 Microarchitectural Details
This section describes microarchitectural changes needed by the

CG architecture, a majority of which are clever tricks to detect con-
trol and data flow violations in a distributed fashion. The relatively
complex task of instruction steering is off-loaded to the compiler
(Section 3.5).

3.3.1 Control Flow

Single Pipeline. For a single pipeline CG processor, the absence
of a global pipeline flush signal complicates the control flow man-
agement. In the event of a branch mis-prediction, the decoupled
pipeline needs a mechanism to squash the instructions fetched along
the incorrect path. The introduction of a 1-bit stream identifica-
tion (SID) to all the in-flight instructions targets this problem [13].
The basic idea is to use the SID for distinguishing instructions on
the correct path from those on the incorrect path. The fetch and
the execute stages maintain single bit SID registers, both of which
are initialized to the same value (the discussion here is simplified,
the actual scheme adds a SID register to every stage). The fetch
SID is used to tag all incoming instructions. And, the execute stage
matches an instruction’s SID tag against the execute SID before let-
ting it run. If at any point in time, a branch instruction is resolved
as a mis-prediction by the execute stage, the execute SID is toggled
and the update is sent to the fetch stage. All in-flight instructions
that are tagged with the stale SID are recognized (by the execute) to
be on the incorrect path and are systematically squashed over time.
In parallel to this squashing, after receiving the branch update from
the execute, the fetch toggles its own SID and starts fetching cor-
rect path instructions. Note that a single bit suffices here because
the pipeline execution model is in-order and can have only one re-
solved branch mis-predict outstanding at any given time (since all
instructions following it become invalid).

Table 3: Control cases. Each case represents a pair of consecutive
program instructions in a 2-issue conjoint processor. The first and
second rows in this table show the instructions fetched in the leader
and follower pipelines, respectively.

Case 1 Case 2 Case 3 Case 4

branch not taken branch not taken branch taken branch taken

OP BR OP BR

BR OP BR OP

Conjoint Pipelines. In a dual-pipeline conjoint processor, one
pipeline is designated as the leader and other as the follower. To
balance the usage, both pipelines fetch alternate instructions from
the program stream, i.e., if leader fetches from PC, follower fetches
from PC + 4. The logical program order is maintained by tag-
ging every instruction with a unique (monotonically increasing)
age tag. Fetch stages are augmented with age counters (offset by
1) that are incremented in steps of two whenever an instruction is
fetched and tagged. Thus, the leader pipeline will tag instructions
with ages 0, 2, 4, and so on; and follower will tag them with ages
1, 3, 5, and so on. By virtue of interleaving program counter val-
ues, both pipelines together fetch the complete program stream and
record the program order in the age tags. These tags are later used
by the execute → issue crossbar (EI xbar) to commit instructions
in the program order.

The above description of distributed fetch works fine until a branch
instruction is encountered. For proper operation, CG needs a de-
centralized control handling mechanism that keeps both pipelines
in sync when making a control decision. The control flow can en-
counter four distinct cases shown in Table 3.

Cases 1 and 2 are the most straightforward ones, as the branch is
not taken. Both pipelines continue as normal as the branch has no
impact on the control flow. For case 3, we need both pipelines to
take the branch simultaneously. This can be achieved if their branch
predictors completely mirror each other and same address look-
up is performed by both pipelines. We maintain this mirroring by
sending all branch prediction updates (from execute/memory stage)
to both fetch stages. For consistent look-ups, the leader pipeline ad-
dresses its branch predictor using Leader PC+4, and the follower
addresses it using Follower PC (and by design Follower PC =

Leader PC + 4). As both the predictors are synchronized, they
will return the same prediction and target address. Finally, for case
4, we again need both pipelines to take the branch. In addition to
the mechanism for case 3, the follower pipeline must also invali-

Buffer
head

Buffer
tail

OP Pending
Replay

Exec
Alloc

Dest Age

CAM

Src

`

RF

OIB

CFT

FUs

BP$

SID

CFT

Issue Execute/Memory

Outstanding Instruction Buffer (OIB) F E/MID

I/E
XBAR

E/I
XBAR

Figure 4: CG pipeline back-end with structures for detecting register data flow violations and initiating replays. The outstanding instruction
buffer (OIB) and current flow tag (CFT) registers are the two additions for conjoint processors. Also shown here is the bypass cache (BP$)
for data forwarding within a single pipeline.

date its OP which is on the wrong path. A simple logic is added to
the decode stage to carry this out. The decode stage invalidates any
operation that is 1) in the follower pipeline and 2) is predicted as a
taken branch by the fetch and 3) is not a real branch instruction.

In the case of a branch mis-predict, the squashing of instructions
for conjoint processors is a direct extension of the SID scheme pre-
sented for single pipelines. In conjoint processors, both pipelines
maintain a single logical value for the SID, and all branch resolu-
tion updates are sent back concurrently to the fetch stages.

3.3.2 Register Data Flow

Single Pipeline. The data forwarding within a single pipeline can
be emulated using a small bypass cache in the execute stage. The
key idea is to use this bypass cache for storing results from recently
executed instructions, and supplying them to later instructions. The
experiments in [13] show that a bypass cache that holds last six
results is sufficient.

Conjoint Pipelines. For conjoint processors, the data flow man-
agement gets involved due to the distributed nature of execution.
The instructions are issued and executed on different pipelines, and
cross-pipeline register data dependencies can occur frequently (in-
struction fetched by pipeline X, but needs register produced by
pipeline Y). In an ideal scenario, we would like issue stages to al-
ways steer the dependent instructions to the execute which most
recently produced the source values. More of this discussion on
instruction steering follows later in Section 3.5. Nevertheless, in
a practical design, the steering mechanism is bound to make some
mistakes as each pipeline’s issue stage has incomplete information
about the in-flight instructions. Our solution, in a nutshell, is to
have each pipeline maintain a local version of the outstanding data
dependencies, and monitor write-backs by the other pipelines to
detect any data flow violations that might have occurred. Upon de-
tecting such a violation, a replay is initiated.

The first requirement for data flow management is proper main-
tenance of the register file. The register files for all pipelines (that
constitute a conjoint processor) are kept coherent with each other.
This is achieved by sending all register write-backs to both issue
stages simultaneously, similar to the way Alpha 21364 [25] kept
its two clusters consistent. Further, the write-backs from the two
pipelines are serialized by the network interface between the exe-
cute and the issues stages. The crossbar switch prioritizes the write-
back based on the age tag of the instructions, maintaining correct
program commit order. This way, cross-pipeline data dependen-
cies, which are sufficiently far away in the program, go through
the register file. However, all the instructions that are issued be-
fore their producers have written back to the register file remain
vulnerable to undetected data flow violations.

To catch such undetected data flow violations, each pipeline can

track locally issued (in-flight) instructions and monitor the write-
backs to detect any data dependency violations. We accomplish
this using a new structure in the issue stage named outstanding in-

struction buffer (OIB) (see Figure 4). The OIB is similar in con-
cept to the reorder buffer in an OoO processor. However, it is much
smaller in size, and needs to store only 5 (pipeline depth from issue
to write-back) instructions in the worst case. Each instruction en-
try in the OIB stores: (1) op code, (2) sources, (3) destination, (4)
age tag, (5) execute stage allocation (execute stage where the in-
struction was steered), and (6) pending replay bits (one per source
operand). The OIB behaves as a CAM for its second field (in-
struction source). Pending replay bit for a source operand denotes
whether it can cause a data flow violation. Instructions are inserted
into the OIB at the time they are issued. At the time of an instruc-
tion write-back, following actions take place:

• The destination value (Rdest) of the instruction writing-back
(Iwb) updates the register file. The corresponding OIB entry
for Iwb is also freed.

• Rdest is used to do a CAM look-up in the OIB. This re-
turns any in-flight instruction (Iin flight) that uses Rdest as
a source.

• If Iin flight was sent to the same execute stage where Iwb

executed, then the bypass cache would have successfully for-
warded the register value. The pending replay bit is reset (to
0) for this source operand of Iin flight.

• If Iin flight was sent to some other execute stage, then a data
flow violation is possible and the pending replay bit for this
source is set (to 1).

Over time, the replay bit for a source operand can get set/reset
multiple times, with the final write to it made by the closest pro-
ducer operation for every consumer. If an issue stage receives a
write-back for an instruction with a pending replay bit set for any of
its source operands, it implies that the producer of value(s) for this
instruction has executed on an execute stage different from where
this instruction was steered. And, therefore, a data flow violation
has occurred. A replay is initiated at this point (replay mechanism
is discussed later in this section).

3.3.3 Memory Data Flow

To provide correct memory ordering behavior in a conjoint pipelines
processor, we use a local store queue in the issue stages that mon-
itors load operations performing write-back for store-to-load for-
warding violations, and a speculative store buffer in the execute/memory
stage to allow delayed release of memory store operations (to save
against accidental memory corruption). Note that cache hierarchy
is left unmodified in CG. L1 caches are private to the pipelines, sin-
gle ported and naturally kept coherent by standard cache coherence
protocols.

Figure 5 shows the back-end of a CG pipeline with an emphasis
on structures needed for proper memory handling. A store buffer

Issue
Age EX # State

CAM

Address

RF

OIB

CFT

SQueue

Execute/Memory

FUs

BP$

SID

CFT

StoreBuffer

AddrValue

FIFO

F E/MID

I/E
XBAR

E/I
XBAR

Figure 5: CG pipeline back-end with an emphasis on structures added for handling memory data flow violations.

(StoreBuffer) is added to the execute/memory stage to hold onto
the store values before they are released to the memory hierarchy.
Although a common structure in many processors, in CG, the store
buffer also serves the purpose of keeping speculative stores from
corrupting memory state. A store queue (SQueue) is added to the
issue stages to tabulate the outstanding store instructions, and their
present states. Every store instruction can have two possible states.
All issued store instructions are entered into the local store queue
and get into the store sent state. Write-back for this store instruction
confirms that it is not on an incorrect execution path. At this point,
a pseudo commit signal is sent (over the same crossbar switch) to
the execute/memory stage that executed this store, and the store
instruction state becomes pseudo commit sent. Upon receiving this
signal, the execute releases the store value at the head of the store
buffer to the memory. This way, only stores on the correct path
of execution update the memory. There are three possible cases
involving the memory operations that need a closer scrutiny (see
Table 4).

Table 4: Memory flow cases. Each case represents a pair of instruc-
tions that are flowing together in a 2-issue conjoint processor.

Case 1 Case 2 Case 3

Leader pipeline
BR

ST1 ST
(mis-predicted)

Follower pipeline ST ST2 LD

In case 1, a mis-predicted branch occurs right before a store in
the program order. Since this store is already executed by the ex-
ecute/memory stage, its value is entered into the store buffer. For-
tunately, in accordance to the commit order, the branch operation
writes back before the store. Thus, the store never gets to write-
back and does not release a pseudo commit for itself. Eventually
this store is removed from the store buffer when the mis-predicted
branch flushes the pipeline. In case 2, the pseudo-commit is re-
leased for ST1 before ST2. Thus, to the memory hierarchy, the
correct ordering is presented. In case 3, when the load is about to
commit, both issue stages check if any of the outstanding stores
conflicts with this load (using the store queues). If there is indeed
such a store that precedes the load in the program order (based on
age), and was sent to a different execution stage, then a replay is
initiated starting from this load.

3.3.4 Replay Mechanism

The replay mechanism adds a single bit of state in the issue and
execute/memory stage called the current flow tag (CFT), and lever-
ages the OIB in the issue stage for re-streaming instructions (see
Figure 4). The CFT is a single bit (similar to the SID for branches)
to identify the old (wrong) instructions from the new (replaying) in-
structions in the back-end. All issued instructions are tagged with
the CFT bit. The head and the tail pointers in the OIB mark the
window of in-flight instructions, which are replayed in the event of

a register or memory data flow violation. The violation is first iden-
tified by any one issue stage, which consequently sends out a flush

instruction to both execute stages. This flips the CFT bit, resets the
bypass cache and clears the store buffer. Following this, other issue
stages are sent replay signals, and all of them start re-issuing in-
structions from their respective OIBs (starting at the head pointer)
and tagged with an updated CFT bit. The old instructions, tagged
with a stale CFT, are uniformly discarded by both issues during the
write-back.

3.4 Interconnection
CG interconnection network is a simple, one-hop connection.

It employs bufferless, non-blocking crossbars to connect adjacent
levels of pipeline stages. This allows all pairs of stages, that share
a crossbar, to communicate simultaneously. As an interface to the
interconnection network, pipeline stages maintain a latch on both
inputs and outputs. This makes the interconnection network a sep-
arate stage, and thus, it does not interfere with critical paths in the
main processor stages.

In order to make the basic crossbar design suitable for the CG
architecture, three features are required:

Multicast: The CG depends on the capability of the interconnec-
tion to send one value to multiple receivers. For instance,
write-backs are sent to both issue stage register files simulta-
neously.

Instruction steering: CG requires capability to steer instructions
from issue to the appropriate execute stage. A single (header)
bit in the instruction payload is added to specify the output
(execute stage) an instruction wants to reach.

Age prioritization: In the case of write-backs, older instructions
have to be given priority. This requires an addition to the
router to let it prioritize packets (instructions in our case) on
the basis of their age.

Crossbar switch fabrics with crosspoints can support multicast
by setting the crosspoint gate logic to high for multiple outputs.
A recently proposed SRAM based crossbar architecture, named
XRAM [26], demonstrates this ability with a low power and area
overhead. The instruction steering and age prioritization can be
added in the wrapping logic around the crossbars. However, the
XRAM paper suggests that these features can also be implemented
using circuits.

Crossbar reliability, power and timing: In order to protect the
interconnection network, fault tolerant version of the crossbars are
used in CG. This is similar to the approach in [27]. The intercon-
nection power can be broken into crossbar power and interconnec-
tion link power. Both of these are accounted for in our evaluations,
as per the methodology in [28]. The absence of buffers in our net-
work significantly cuts down on this overhead. And finally, we

model interconnection link latency using intermediate pitch wire
model from ITRS 2008 in 65nm technology, and make sure that it
does not exceed critical paths of pipeline stages.

3.5 Instruction Steering
CG depends upon intelligent steering of instructions between

conjoint pipelines in order to minimize performance degradation
from data dependency replays. The instruction steering decisions
need to be made at the time of instruction issue. Broadly speaking,
the objectives of instruction steering are two-fold: 1) balance the
workload on the two pipelines, and 2) minimize the number of re-
plays. Our experiments showed that using a purely hardware based
solution for dynamic steering is neither cheap nor effective for in-
order pipeline fusion. This concurs with the conclusion of [14].
Thus, CG adopts a hybrid software/hardware approach for instruc-
tion steering. In a nutshell, a compiler pass is used to assign in-
struction streams to the pipelines. These hints are then encoded
into steering instructions that are made part of the compiled ap-
plication binary. The hardware recognizes these special steering
instructions and uses them to effectively conduct dynamic steering.

Steering instructions between different pipelines in a conjoint
processor is analogous to data-flow graph (DFG) partitioning for
clustered VLIWs. The goal is to obtain a balanced workload that
takes advantage of hardware parallelism (multiple clusters) and re-
duces the need for inter-cluster moves (transferring values between
clusters). Leveraging generic clustering algorithms to form instruc-
tion streams for CG is fairly straightforward. When cross-pipeline
dependencies cannot be avoided, the CG equivalent of an inter-
cluster move is the replay mechanism described in the previous
section. Further, CG’s broadcast-based write-back ensures that any
dependent instructions that are separated by more than n interven-
ing instructions will not incur a replay even if they are steered to
different execute stages, where n is the issue-to-writeback latency.
Therefore, the two main objectives of clustering algorithms, mini-
mizing inter-cluster moves and overlapping moves with other com-
putation, naturally result in instruction streams that are amenable to
the CG architecture. For our evaluations, we used the well known
Bottom-Up Greedy (BUG) [17] clustering algorithm to generate
hints for steering.

A STEER OP instruction is introduced in order to encode this
compiler-generated steering information. Two such instructions are
inserted (for leader and follower pipelines) at the beginning of ev-
ery instruction block (basic block / super block). STEER OP in-
structions are simply bit encoding of the pipeline assignment for ev-
ery instruction within that block (multiple instructions are inserted
for large code blocks).

Figure 6 shows an example of the complete hybrid steering setup
in action. The first step consists of performing the BUG clustering
algorithm in the compiler. The second step encodes the cluster-
ing algorithm suggested pipeline assignments and embeds them as
STEER OP (top two instructions in the final code, ’L’ here stands
for leader pipeline assignment and ’F’ for follower pipeline assign-
ment). When the leader pipeline fetches its STEER OP LFLLF, it
learns the steering directions for instruction 1 (L), 3 (F), 5 (L), 7
(L) and 9 (F). The follower pipeline behaves analogously.

4. EVALUATION

4.1 Methodology
A comprehensive set of tools are used for the evaluation of CG.

The evaluation setup spans program compilation and microarchi-
tecture level simulation, down to area, power and wearout model-
ing.

Table 5: Architectural parameters.

Baseline architecture

Pipeline 4-stage in-order OR1200 RISC [30]

Frequency 400 MHz

Area 0.71mm
2 (65nm process)

Power (baseline OR1200 core) 94mW

Branch predictor Global, 16-bit history,
gshare predictor, BTB size - 2KB

L1 I$, D$ 4-way, 16 KB, 1 cycle hit latency

L2 $ 8-way, 64 KB (per core), 5 cycles

Memory 40 cycle hit latency

CG specific parameters

Interconnection full non-blocking crossbars,
64-bit wide, bufferless

Outstanding instruction buffer (OIB) 5 entries

Store queue, store buffer sizes 3, 3

Bypass cache size 6

Compilation for instruction steering. The Trimaran compilation
system [29] is used to perform the BUG clustering algorithm [17]
for instruction steering. Inter-cluster move latency of five cycles is
used as an input to the algorithm.

Microarchitectural simulation. The microarchitectural simula-
tor for CG models a group of 4-stage in-order pipelines (simi-
lar to the OR1200 core [30]) interconnected to form a network of
stages. The simulator was developed using the Liberty Simula-
tion Environment [31] from Princeton. The architectural attributes
are detailed in Table 5. The L2 cache is unified and its size is
64 KB × the number of cores. The original OR1200 pipeline is
also used as the baseline for single-thread performance. The ar-
chitectural simulations are conducted for benchmarks chosen from
three sources: SPEC2000int, SPEC2000fp and multimedia kernels.

Area overhead (for design blocks and wires). Industry stan-
dard CAD tools with a library characterized for a 65nm process
are used for estimating the area of design blocks. A Verilog de-
scription for the OR1200 microprocessor was obtained from [30].
Most CG modifications: OIB, SQ, SB, bypass cache, etc., are es-
sentially small memory structures, and their areas are estimated
using similar sized CAM structures. All non-memory structures,
such as replay logic, stream identification control, and crossbars,
are implemented as Verilog modules to obtain accurate area num-
bers. The area for the interconnection wires between stages and
crossbars is estimated using the same methodology as in [32, 8],
with the intermediate wiring-pitch (at 65nm) taken from the ITRS
road map [33].

Power and thermal modeling. Power dissipation for various mod-
ules in the design is simulated using Synopsys Primepower an exe-
cution trace of OR1200 running media kernels. The crossbar power
dissipation was simulated separately using a representative activ-
ity trace. The crossbar Verilog was placed and routed using Ca-
dence Encounter before running it through Primepower. The stage
to crossbar interconnection power was calculated using standard
power equations [28] with capacitance from Predictive Technol-
ogy Model [34] and intermediate wiring-pitch from 65nm node
(ITRS [33]). The thermal modeling was conducted using HotSpot
3.0 [35].

Wearout modeling. For wearout modeling, mean-time-to-failure
(MTTF) was calculated for various components in the system using
the empirical models found in [36]. An entire core was qualified to
have an MTTF of 10 years. The calculated MTTFs are used as the
mean of the Weibull distributions for generating time to failures
(TTF) for each module (stage/crossbar) in the system. For the sake
of consistency in comparisons, wearout modeling makes assump-
tions similar to those in [13].

The MTTF of 10 years was chosen as a rough estimate for the

1 : r1 <- MEM[r1]

2 : r4 <- r3 + r4

3 : r4 <- r5 - r4

4 : r2 <- r1 + r2

5 : r2 <- r2 << 2

6 : r0 <- r0 >> 2

7 : r2 <- MEM[r2]

8 : MEM[r2] <- r4

9 : r0 <- r0 + 4

10: MEM[r0] <- r1

8

1

10

6

9

4

5

7

2

3
Leader (L) pipeline
assignment

Follower (F)
pipeline assignment

Cross pipeline
dependency

- : STEER_OP LFLLF

- : STEER_OP FLFLF

1 :r1 <- MEM[r1]

2 :r4 <- r3 + r4

3 :r4 <- r5 - r4

4 :r2 <- r1 + r2

5 :r2 <- r2 << 2

6 :r0 <- r0 >> 2

7 :r2 <- MEM[r2]

8 :MEM[r2] <- r4

9 :r0 <- r0 + 4

10:MEM[r0] <- r1Original code

Final code with STEER ops

Step 1. Pipeline
assignment hints
from compiler

Step 2. STEER
ops inserted with
compiler hints

Fetch Pipeline Execution
Pipeline

Figure 6: Instruction steering. The white nodes indicate instructions assigned to the leader pipeline while the shaded nodes correspond to the
follower pipeline. The instruction fetch is perfectly balanced between the two pipeline, but the execution is guided by the steering.

future technologies: 22nm and beyond. Note that the 65nm tech-
nology node was only used to get power and area overheads for
comparisons.

Quantitative comparison against other schemes. For experi-
ments involving multicores, CG is compared against two other sys-
tems: 1) A conventional CMP chip where, a core is considered to
be faulty when any of its modules fail; 2) a SN chip [13], as it
shares similarities with CG in the way it tackles reliability.

4.2 Singlethread performance
Configurable performance in CG relies on its ability to accel-

erate single-thread performance by conjoining in-order pipelines.
Figure 7 shows a plot comparing the performance of four CG con-
figurations normalized to the 1-issue in-order baseline (OR1200).
The plot also includes a 2-issue in-order baseline for the sake of
comparisons. The CG configurations are expressed as:
number of pipelines conjoint × issue width of pipeline stages.
The following configurations are examined: 1-issue (1x1) CG sin-
gle pipeline, 2-issue (2x1) CG conjoint pipelines, 2-issue (1x2) CG
single pipeline, and 4-issue (2x2) CG conjoint pipelines.

Conjoining single-issue stages. This compares a (1x1) CG pipeline
and a (2x1) CG conjoint pipeline against the two baselines. All
pipeline stages are inherently single-issue in this set up. The 1-
issue CG pipeline (1x1) performs roughly 10% worse than the 1-
issue baseline, primarily due to the inter-stage transfer inefficien-
cies from decoupling (this is similar to results in the SN work [13]).
On the other hand, the (2x1) CG conjoint pipeline was found to
deliver a consistent performance advantage over the 1-issue base-
line, while lagging behind the 2-issue baseline. The gains are most
prominent for the SPECfp and kernel benchmarks. In fact, for some
of the kernel benchmarks, almost a 2X performance gain was seen
while using the conjoint processor. The availability of long and in-
dependent data dependence chains in these benchmarks made this
result possible.

In contrast, a few of the benchmarks showed negligible to neg-
ative performance improvements while using the conjoint proces-
sor, namely 176.gcc, 197.parser and 177.mesa. This was due to the
lack of independent streams of instructions in these workloads. In-
structions in these benchmarks typically formed long dependence
chains, and the compiler pass (for steering) ended up allocating
most instructions to the same pipeline (to minimize the replay cost).
This resulted in a nearly complete serialization of the program,
rendering half of the execution resources useless. The few cases
where instructions were steered to different pipelines lead to data
flow violations and worsened the overall performance by initiating

the replay. Barring these three benchmarks, the rest of the results
strongly favor the conjoint pipelines CG processor design. On aver-
age, a 48% IPC gain is seen over the single pipeline CG processor.

Conjoining dual-issue stages. This compares a (1x2) CG single
pipeline processor, a (2x2) CG conjoint pipeline processor and a
2-issue baseline processor. All pipeline stages are inherently dual-
issue in this set up. A single logical pipeline in this system would
behave as a dual-issue processor. Using the CG conjoining prin-
ciples, any two dual-issue pipelines can be then combined to form
a quad-issue CG processor. The (2x2) 4-issue conjoint pipeline
shows a 35% improvement in performance over the (1x2) 2-issue
pipeline, and a 25% improvement in over the 2-issue baseline. Note
that by making the pipeline stages dual-issue, the fault isolation
granularity for the system is reduced by half. This discussion is
continued later in this section along with the reliability implica-
tions.

Our experiments with conjoining more than two pipelines (both
single and dual-issue) at a time did not show very favorable results.
The two main reasons for this were: 1) the limited availability of
independent data-flow chains, and 2) the constraints placed by an
in-order issue architecture.

Replay costs. The performance advantage of a conjoint CG pro-
cessor is largely determined by the efficiency of instruction steering
in balancing the load between the two pipelines, while minimizing
replays. Here, we analyze the cost of these replays in a 2-issue
(2x1) CG conjoint pipelines processor. Figure 8 shows three com-
ponents of the total execution time for all the benchmarks: memory
flow (MemFlow) violation replay cycles, register flow (RegFlow)
violation replay cycles and normal operation cycles. A majority of
the benchmarks devote a small fraction of their execution time to
the replay cycles, with an average of 15%. Out of the total replay
cycles, memory replay contributes a negligible fraction. This is an
expected result because memory replay only happens when a store
to load forwarding is missed by the system, which by itself is a
rare event for in-order processors. From the perspective of power
efficiency, these results are encouraging because only a very small
percentage of the work performed by the system goes to waste.
Note that a low number of replay cycles does not necessarily imply
good benchmark performance. For instance, all instructions in a
conjoint processor can be steered to the same pipeline resulting in
zero replays (no cross-pipeline dependency). However, no speedup
compared to the baseline would be observed.

4.3 Energyefficiency Comparison
Energy-efficiency of designs can be compared using BIPS3/watt

0

0.5

1

1.5

2

2.5

3

3.5

N
o

r
m

a
li

ze
d

 I
P

C
Baseline (1 issue) 1x1 CG single pipeline (1 issue) 2x1 CG conjoint pipelines (2 issue)

Baseline (2 issue) 1x2 CG single pipeline (2 issue) 2x2 CG conjoint pipelines (4 issue)

0

0.5

1

1.5

2

2.5

3

3.5

N
o

r
m

a
li

ze
d

 I
P

C
Baseline (1 issue) 1x1 CG single pipeline (1 issue) 2x1 CG conjoint pipelines (2 issue)

Baseline (2 issue) 1x2 CG single pipeline (2 issue) 2x2 CG conjoint pipelines (4 issue)

Figure 7: Single thread performance results for CG normalized to a single-issue in-order processor. The configurations are expressed as
(number of pipelines conjoint X issue width of pipeline stages).

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MemFlow replay cycles RegFlow replay cycles Normal operation cycles

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MemFlow replay cycles RegFlow replay cycles Normal operation cycles

Figure 8: Contribution of memory replay cycles, register flow replay
cycles and normal operation cycles to the total computational time of
individual benchmarks running on a 2-issue conjoint processor. On an
average, the replays contributed to about 15% of the execution time.

0

0.5

1

1.5

2

2.5

3

3.5

Baseline 1x1 CG pipeline
(1 issue)

2x1 CG
conjoint
pipelines
(2 issue)

1x2 CG pipeline
(2 issue)

2x2 CG
conjoint
pipelines
(4 issue)

IPC BIPS^3/watt
5.3X

Figure 9: Comparing IPC and energy efficiency (BIPS3/watt). The
baseline is a single-issue in-order core (OR1200).

as a metric [37]. This metric is more sensitive to performance
changes, and optimizing for it yields the same results as optimizing
for ED2 (energy times delay squared). Figure 9 shows the aver-
age IPC and BIPS3/watt comparisons for the four CG config-
urations normalized to the single-issue baseline processor. When
going from the baseline to the single-issue CG pipeline, about 20%
energy efficiency is sacrificed. However, the superior performance
in wider-issue configurations, significantly improves CG’s energy
efficiency.

4.4 Multiworkload throughput
Performance of a CMP system can be measured either as the la-

tency of thread execution (single-thread performance, prior experi-
ment) or the rate at which jobs complete (system throughput). For
the throughput comparison, three systems were compared against
one another: an 8-core CMP, an 8-core SN [13] and an 8-core CG.
A core here refers to a single issue in-order pipeline resource, thus
an 8-core SN and CG would have eight pipelines interconnected.
The system utilization was varied from 0.25 occupancy to 1.0 occu-
pancy. This refers to the number of threads assigned to the system
versus its capacity (measured as number of cores). Monte-Carlo
experiments were conducted by varying the set of threads allocated
to the system at each utilization level. Figure 10 shows the final
throughput results from this experiment. At the peak utilization
level (1.0), the 8-core CMP delivers the best throughput. This is
due to the performance advantage the baseline processor has over
both single pipeline SN and CG processors (see single-thread per-
formance results above). Further, the throughput of SN and CG
are identical because CG defaults to using one pipeline per thread

2

3

4

5

6

7

8

h
ro

u
g
h

p
u

t
(I

P
C

)

8 Core CMP 8 Core SN 8 Core CG

0

1

2

3

4

5

6

7

8

0.25 0.5 0.75 1

T
h

ro
u

g
h

p
u

t
(I

P
C

)

System utilization (number threads / number of cores)

8 Core CMP 8 Core SN 8 Core CG

Figure 10: Throughput comparison of 8-core CMP, SN and CG
systems at different levels of system utilization. A utilization of 0.5
implies that 4 working threads are assigned to the 8-core system. At
this utilization, CG multicore delivers 46% throughput advantage
over the baseline CMP.

in this peak utilization scenario. As the system utilization is low-
ered, CG is able to leverage the idle pipeline resources to form
conjoint processors. Thus, the CG system consistently delivers the
best throughput at all utilization levels < 1, which is a realistic
expectation for over-provisioned systems.

4.5 Fault tolerance
The experiments so far have targeted the performance aspect of

the CG architecture. In order to evaluate its reliability in the face
of wearout failures, we conducted some experiments that track the
throughput of the system over the course of its lifetime. For these

1

2

3

4

5

6

7
T

h
ro

u
g

h
p

u
t

(I
P

C
)

8 core CMP 8 core SN 8 core CG

0

1

2

3

4

5

6

7

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

T
h

ro
u

g
h

p
u

t
(I

P
C

)

Time (years)

8 core CMP 8 core SN 8 core CG

(a) Throughput over the lifetime of 8-core CMP, SN and CG
at a fixed utilization of 0.75. After a few initial years, CG’s
throughput settles down to that of a SN system.

1

2
3

4

5

6
7

8

T
h

ro
u

g
h

p
u

t
(I

P
C

)

10 core CMP 4 core dual-issue CG 8 core CG

0

1

2
3

4

5

6
7

8

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

T
h

ro
u

g
h

p
u

t
(I

P
C

)

Time (years)

10 core CMP 4 core dual-issue CG 8 core CG

(b) Throughput over the lifetime of 10-core CMP, 4-core
dual-issue CG and 8-core CG at a fixed utilization of 0.75.
CG system shows the most convincing results among all the
three configurations considered.

Figure 11: Lifetime reliability experiments for the various CMP,
SN and CG systems. Only wearout failures were considered for
this experiment.

experiments, the stages/crossbars fail as they reach their respec-
tive time-to-failures (TTFs). The system gets reconfigured over
its lifetime whenever a failure is introduced. Broken stages are
isolated using interconnection flexibility, and fault tolerant cross-
bars naturally handle crosspoint failures. A software configuration
manager is re-invoked every time a failure occurs or the workload
set changes. We assume a simple reconfiguration policy where:
1) all workloads are assigned a single pipeline, 2) any remaining
pipelines are allocated to the threads on the basis of available ILP.
The throughput of the system is computed for each new configu-
ration based on the number of working logical pipelines and the
workloads assigned to them. Monte-Carlo simulations are run for
1000 chips to get statistically significant results. The average sys-
tem utilization for these experiments is kept at 0.75. Since the
throughput delivered by the CG system improves as the system uti-
lization is lowered (see Figure 10), the CG results reported here are
conservative.

Figure 11(a) shows the throughput over the lifetime for three
systems: an 8-core CMP, an 8-core SN and an 8-core CG. CG
clearly outperforms both of the other systems for the entire life-
time. Early on, CG achieves a throughput advantage by utilizing the
idle pipelines (only 6 threads are active, leaving 2 pipelines free) to
form conjoint processors. The regular CMP and SN systems can-
not benefit from this. Later in the lifetime, CG sustains a through-
put advantage over the CMP by effectively salvaging the working
stages and maintaining a higher number of working pipelines. For
instance, the CMP system’s throughput drops below 2 IPC around
the 3.5 year mark, whereas the CG system throughput breaches that
level around the 6 year mark. The gains add up over the lifetime,
and cumulative work done (integral of throughput over the lifetime)

advantage of CG is 68% over the baseline CMP. Also note that
CG’s throughput converges with that of SN in the later part of the
lifetime. This happens when the number of threads assigned to the
system exceeds the number of working pipelines, and CG is left
with no option but to default back to single pipeline processors.

Figure 11(b) compares two more system configurations to the 8-
core CG: a 10-core CMP and a 4-core dual-issue CG. The 10-core
CMP is chosen to have an area-neutral comparison with the CG
system. The area overhead for CG is about 20% (discussed later),
translating to roughly two cores for an 8-core CG system. The re-
sults show that early in the lifetime, the 10-core CMP dominates
the other two configurations. This is expected as it starts off with
the maximum amount of resources. However, as the failures accu-
mulate, it quickly loses its advantage. Beyond the two year mark,
the 8-core CG consistently dominates the system throughput. The
4-core dual-issue CG system performs the worst among the three.
There are two reasons for this: 1) it can run fewer threads concur-
rently (4-cores instead of 8/10), and 2) failures in stages result in a
bigger resource loss (as each stage is dual-issue).

4.6 Area overheads
The area for various structures that are part of the CG architec-

ture is shown in Table 6. The overhead percentages are relative to
our baseline processor - the OR1200 core. A total of five intercon-
nection crossbars are present in the CG architecture, but since the
pipelines share crossbars, its overhead is not attributable to just one
pipeline. For a case where eight pipelines are connected together to
form CG, each of them bears 5/8th of the crossbar overhead. With
this assumption, the total area overhead for the CG architecture is
19.6% over a traditional CMP (containing OR1200 cores).

Table 6: Area overheads from different design blocks in CG.

Design block Area Percent

(mm
2) overhead

Outstanding instructions 0.037 5.7%
buffer (OIB) (5 entries)

Store buffer (SB) (3 entries) 0.015 2.3%

Store queue (SQ) (3 entries) 0.021 3.4%

Bypass cache (6 entries) 0.02 3.1%

Extra stage latches (input and output) 0.0115 1.8%

Miscellaneous logic 0.055 0.9%

8x8 fault tolerant crossbar (with 0.025 3.9%
interconnection wires) five such crossbars
are shared between eight pipelines

Total area overhead of CG 19.6%

4.7 Power overheads
The power overhead in CG comes from three sources: cross-

bars, stage/crossbar interconnection and miscellaneous logic (extra
latches, new modules). Table 7 shows the breakdown, with total
power overhead at 16.9%. The actual power numbers in the ta-
ble are overheads for one CG pipeline while it is part of a 2-issue
CG conjoint processor. Note that a part of this overhead will be
there even in a traditional 2-way superscalar (relative to having 2
independent 1-way pipelines).

Table 7: Power overhead for CG. These overheads are reported
with OR1200 power consumption as the baseline.

Component Power overhead Percent overhead

pipeline (mW) Percent overhead

Crossbars 4.0 4.26%

Interconnection links 5.8 6.19%

Other design blocks 6.1 6.38%

Total power overhead 16.9%

5. CONCLUSION

In the multicore era, where on one hand abundant throughput ca-
pabilities are being incorporated on die, single-thread performance
and power efficiency challenges still confront the designers. Fur-
ther, the increasing process variation and thermal densities are stress-
ing the limits of CMOS scaling. To efficiently address all these
solutions, designers can no longer rely on an evolutionary design
process. Further, simply combining existing research solutions for
performance and reliability is neither easy nor cost-effective. In this
paper, we presented CoreGenesis, a highly adaptive multiprocessor
fabric that was designed with performance and reliability targets
from the ground up. The interconnection flexibility within Core-
Genesis not only ensures impressive fault-tolerance, but coupled
with the addition of decentralized instruction flow management,
it can also merge pipeline resources to accommodate dynamically
changing application requirements. Our experiments demonstrate
that merging of two pipelines within CoreGenesis can deliver on
average 1.5X IPC gain with respect to a standalone pipeline. In
a CMP, with only half of its cores occupied, this merging can en-
hance throughput performance by 46%. Finally, the lifetime relia-
bility experiments show that an 8-core CoreGenesis chip increases
the cumulative work done by 68% over a traditional 8-core CMP.

6. ACKNOWLEDGMENTS
We thank the anonymous referees for their valuable comments

and suggestions. The authors acknowledge the support of the Gi-
gascale Systems Research Center, one of five research centers funded
under the Focus Center Research Program, a Semiconductor Re-
search Corporation program. This research was also supported by
National Science Foundation grants CCF-0916689 and ARM Lim-
ited.

7. REFERENCES

[1] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: a 32-way multithreaded
sparc processor,” IEEE Micro, vol. 25, no. 2, pp. 21–29, Mar. 2005.

[2] L. Seiler et al., “Larrabee: a many-core x86 architecture for visual computing,”
ACM Transactions on Graphics, vol. 27, no. 3, pp. 1–15, 2008.

[3] Tilera, “Tile64 processor - product brief,” 2008, http://www.tilera.com/
pdf/.

[4] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-ISA Heterogeneous Multi-Core Architectures: The Potential for
Processor Power Reduction,” in Proc. of the 36th Annual International

Symposium on Microarchitecture, Dec. 2003, pp. 81–92.

[5] S. Borkar, “Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation,” IEEE Micro, vol. 25, no. 6,
pp. 10–16, 2005.

[6] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The impact of technology
scaling on lifetime reliability,” in Proc. of the 2004 International Conference on

Dependable Systems and Networks, Jun. 2004, pp. 177–186.

[7] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” IEEE

Computer, vol. 41, no. 1, pp. 33–38, 2008.

[8] E. Ipek, M. Kirman, N. Kirman, and J. Martinez, “Core fusion:
Accommodating software diversity in chip multiprocessors,” in Proc. of the

34th Annual International Symposium on Computer Architecture, 2007, pp.
186–197.

[9] C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganathan, D. Gulati,
D. Burger, and S. W. Keckler, “Composable lightweight processors,” in Proc. of

the 40th Annual International Symposium on Microarchitecture, Dec. 2007, pp.
381–393.

[10] D. Tarjan, M. Boyer, and K. Skadron, “Federation: Repurposing scalar cores for
out-of-order instruction issue,” in Proc. of the 45th Design Automation

Conference, Jun. 2008.

[11] H. H. Najaf-abadi and E. Rotenberg, “Architectural contesting,” in Proc. of the

15th International Symposium on High-Performance Computer Architecture,
2009, pp. 189–200.

[12] B. F. Romanescu and D. J. Sorin, “Core cannibalization architecture: Improving
lifetime chip performance for multicore processor in the presence of hard
faults,” in Proc. of the 17th International Conference on Parallel Architectures

and Compilation Techniques, 2008.

[13] S. Gupta, S. Feng, A. Ansari, J. A. Blome, and S. Mahlke, “The stagenet fabric
for constructing resilient multicore systems,” in Proc. of the 41st Annual

International Symposium on Microarchitecture, 2008, pp. 141–151.

[14] P. Salverda and C. Zilles, “Fundamental performance constraints in horizontal
fusion of in-order cores,” in Proc. of the 14th International Symposium on

High-Performance Computer Architecture, Feb. 2008.

[15] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multiscalar processors,” in
Proc. of the 22nd Annual International Symposium on Computer Architecture,
Jun. 1995, pp. 414–425.

[16] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic, “The multicluster architecture:
Reducing cycle time through partitioning,” in Proc. of the 30th Annual

International Symposium on Microarchitecture, Dec. 1997, pp. 149–159.

[17] J. Ellis, Bulldog: A Compiler for VLIW Architectures. Cambridge, MA: MIT
Press, 1985.

[18] A. Baniasadi and A. Moshovos, “Instruction distribution heuristics for
quad-cluster, dynamically-scheduled, superscalar processors,” in Proc. of the

33rd Annual International Symposium on Microarchitecture, 2000, pp.
337–347.

[19] W. Bartlett and L. Spainhower, “Commercial fault tolerance: A tale of two
systems,” IEEE Transactions on Dependable and Secure Computing, vol. 1,
no. 1, pp. 87–96, 2004.

[20] D. Sylvester, D. Blaauw, and E. Karl, “Elastic: An adaptive self-healing
architecture for unpredictable silicon,” IEEE Journal of Design and Test,
vol. 23, no. 6, pp. 484–490, 2006.

[21] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith, “Configurable
isolation: building high availability systems with commodity multi-core
processors,” in Proc. of the 34th Annual International Symposium on Computer

Architecture, 2007, pp. 470–481.

[22] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee, “Architectural core
salvaging in a multi-core processor for hard-error tolerance,” in Proc. of the

36th Annual International Symposium on Computer Architecture, Jun. 2009.

[23] ARM, “Arm9,”
http://www.arm.com/products/CPUs/families/ARM9Family.html.

[24] A. Ansari, S. Gupta, S. Feng, and S. Mahlke, “Zerehcache: Armoring cache
architectures in high defect density technologies,” in Proc. of the 42nd Annual

International Symposium on Microarchitecture, 2009, pp. 100–110.

[25] Alpha, “21364 family,” 2001, http://www.alphaprocessors.com/21364.htm.

[26] S. Satpathy, Z. Foo, B. Giridhar, D. Sylvester, T. Mudge, and D. Blaauw, “A
1.07 tbit/s 128128 swizzle network for simd processors,” in Proc. of the

2010Symposium on VLSI Technology, 2010.

[27] S. Gupta, A. Ansari, S. Feng, and S. Mahlke, “Stageweb: Interweaving pipeline
stages into a wearout and variation tolerant cmp fabric,” in Proc. of the 2010

International Conference on Dependable Systems and Networks, Jun. 2010.

[28] T. T. Ye, L. Benini, and G. D. Micheli, “Analysis of power consumption on
switch fabrics in network routers,” in Proc. of the 39th Design Automation

Conference, 2002, pp. 524–529.

[29] Trimaran, “An infrastructure for research in ILP,” 2000,
http://www.trimaran.org/.

[30] OpenCores, “OpenRISC 1200,” 2006,
http://www.opencores.org/projects.cgi/web/ or1k/openrisc 1200.

[31] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, S. Malik, and D. I.
August, “The liberty simulation environment: A deliberate approach to
high-level system modeling,” ACM Transactions on Computer Systems, vol. 24,
no. 3, pp. 211–249, 2006.

[32] R. Kumar, N. Jouppi, and D. Tullsen, “Conjoined-core chip multiprocessing,”
in Proc. of the 37th Annual International Symposium on Microarchitecture,
2004, pp. 195–206.

[33] ITRS, “International technology roadmap for semiconductors 2008,” 2008,
http://www.itrs.net/.

[34] PTM, “Predictive technology model,” http://ptm.asu.edu/.

[35] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, and S. Ghosh,
“Hotspot: A compact thermal modeling method for cmos vlsi systems,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 5, pp.
501–513, May 2006.

[36] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for lifetime
reliability-aware microprocessors,” in Proc. of the 31st Annual International

Symposium on Computer Architecture, Jun. 2004, pp. 276–287.

[37] D. Brooks, V. Tiwari, and M. Martonosi, “A framework for architectural-level
power analysis and optimizations,” in Proc. of the 27th Annual International

Symposium on Computer Architecture, Jun. 2000, pp. 83–94.

