
Flip-flop chaining architecture for power-efficient scan during test application

Shantanu Gupta and Tarang Vaish

Department of Computer Science

and Engineering, IIT Guwahati

North Guwahati, Assam - 781039

gshantanu@gmail.com, tarang@iitg.ernet.in

Santanu Chattopadhyay

Department of Electronics and

Electrical Communication Engineering,

IIT Kharagpur, West Bengal - 721302

santanu@ece.iitkgp.ernet.in

Abstract

Power dissipation in CMOS circuits during test time

poses a crucial bottleneck for circuit performance and ro-

bustness. The power consumption due to switching activity

while scan-in of test vectors and scan-out of responses is

of particular concern. In this paper a methodology for scan

chain modification and test vector adaptation is proposed to

effectively reduce the scan test power consumption by con-

trolling this switching activity. Proposed approach, unlike

the many in published literature, does not incorporate re-

ordering of scan cells; thus avoiding timing and routing

overheads. ATPG software ATALANTA was used for test

vector generation. The algorithm was verified for ISCAS’89

benchmark circuits, where it showed as much as 27.3% of

reduction in switching activity during scan operations.

1 Introduction

Power dissipation is a crucial issue because of its wide

ranged effects on circuit performance and life of circuit

under test (CUT). Exceeding peak power limitations of

any circuit can cause irreversible damages. During the

test, scan-in/scan-out of vector/response causes excessive

switching activity. In CMOS circuits average test power

consumption is much higher than the normal mode opera-

tion and is directly proportional to this switching activity

[3]. Several techniques have been proposed to reduce the

same. A rather popular technique - addition of extra de-

sign for test (DfT) logic - helps in reducing the switching

activity but adds area overhead. Many works [3,5] discuss

heuristics for test vector re-ordering. Works involving scan

cell re-ordering (or scan-latch ordering) [2,7,9] have also

been prevalent in the literature; but these face the criticism

for their test timing inconsistency and decoder buffer prob-

lem. Finally, methods have been explored which involve

scan chain partitioning that reduce the scan chain lengths

[10] but at the same time induces hardware overheads. In

a nutshell, most of the current day techniques for power

aware testing are inflicted with: (1) additional DfT logic

overhead, (2) test timing inconsistency due to re-ordering

of scan cells, and (3) decoder buffer problems due to re-

ordering of scan cells.

Evidently, an approach that does not involve the use of

an additional DfT logic will be ridden of problem 1. And

avoiding scan cell re-ordering will take care of problem 2

and 3. The proposed approach, named as Optimized Scan

Cell Testing (OSCT), fits exactly in this description. And

thus eliminates all of the aforementioned problems. The al-

gorithm does not interfere with the layout decision and thus

it can be optimized separately. At all times fault coverage

and test time of the circuit are left unaffected. The work

concentrates only upon the reduction of scan chain (flip-flop

cells) switching activity as it forms a significant part of the

total power consumed during scan-in. The switching activ-

ity in the combinational circuit is completely ignored. The

rest of the paper is organized as follows, section 2 discusses

the conventional scan cell testing method (CSCT). This sets

the foundation for explanation of proposed approach named

as optimized scan cell testing (OSCT) in section 3, section 4

lists the simulation results obtained for ISCAS’89 bench-

mark circuits. Section 5 concludes the work, followed by

important references.

2 Conventional Scan Cell Testing : CSCT

Conventional scan cell testing is a well documented tech-

nique. [1] deals thoroughly with the subject at hand. Tran-

sitions in the scan cells result from scan-in/scan-out of test

vectors/responses. Transitions also result from a clash that

can be defined as a condition where the MSB of predeces-

sor’s response differs from the LSB of successor’s vector.

The total number of transition count is therefore given by

(1) [12]. Clashes can therefore be effectively reduced in

number by test vector re-ordering. We shall use this obser-

vation in section 3.3.

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

Total Transitions =
∑

(Size of Chain −
Position of Transition) +

Size of Chain × Clashes (1)

3 Optimized Scan Cell Testing: OSCT

In this section we propose a new approach that effec-

tively reduces the number of scan chain transitions during

the scan cell testing. The input to the algorithm is a CUT

and its corresponding test pattern set. Output is a modified

scan cell architecture and a test pattern set that gives opti-

mal reduction in test power consumption. Our approach can

fundamentally be divided into three steps. The first step of

the algorithm does a modification of the scan chain architec-

ture. This modification neither involves addition of a DfT

logic nor does it involve scan cell re-ordering. Second step

deals with the customization of test vectors for the modi-

fied scan cell architecture. In this step, we basically harness

the benefits of effectively specifying the don’t care bits of

test vectors. In third and final step of the algorithm we do a

simple test vector re-ordering that does the job of reducing

total number of clashes and consequently the overall num-

ber of transitions. The approach taken in the final step for

test vector re-ordering is independent of the previous two

algorithmic steps.

3.1 Scan Architecture Modification (SAM)

Conventional way of connecting two consecutive flip-

flops in a scan chain involves connecting the Q (output of

predecessor) to D (input of successor). We make a simple

modification to this approach by allowing Q̄ (negated out-

put of predecessor) connection to D (input of successor).

This latter type of connection is selectively done at various

positions within the scan chain. During the scan-in/scan-

out of vectors/responses, any two differing consecutive bits

within the vector/response cause flip-flop transition at every

clock tick. These transitions can be reduced in number if we

set up the flip-flop interconnections optimally. Any modifi-

cation of the scan cell architecture will necessitate adaption

of test vectors such that after scan-in they take the original

form. This is dealt with in section 3.2.2.

Our objective is to make a scan architecture for effective

handling of all the given test patterns, i.e. we must con-

sider all test vector-response pairs together and decide con-

nections (at each flip-flop junction) that lead to best possi-

ble overall reduction in the number of transitions. The test

patterns are pre-determined using a suitable ATPG (ATA-

LANTA in our case). A significant number of bit positions

in the vectors/responses remain unspecified, or are don’t

care in nature. Ignoring these don’t care bits, that are tack-

led later in section 3.2.1, we can compute the cost at every

index i of the scan chain while having 1) Q − D connec-

tion and 2) Q̄ − D connection. The calculation given by

(2) decides an optimal connection type for every scan chain

index.

Costi
10,01 = V BitTotali10,01 × i +

RBitTotali10,01 × (Size of Chain − i)

Costi
11,00 = V BitTotali11,00 × i +

RBitTotali11,00 × (Size of Chain − i)

FF i
connection = Costi

11,00 ≥ Costi
10,01

∀i ∈ {1, Size of Chain − 1} (2)

In (2), i is the index of the flip-flop junction in the

scan chain, i.e. junction between ith and i + 1th flip-flop.

V BitTotali10,01 is the variable for number of times the con-

secutive bits differ at position i when considering all the test

vectors. RBitTotali10,01 is the variable for number of times

the consecutive bits differ at position i when considering

all the test responses. V BitTotali11,00 and RBitTotali11,00

are similarly defined when consecutive bits are same. For

each of these variables we leave out the count for don’t care

bits. Size of Chain is the number of flip-flops in the scan

chain. Costi10,01 stands for the number of transitions that

will take place due to consecutive bits at indexes i and i+1
while keeping flip-flop connection as Q − D. Similarly,

Costi11,00 is similarly defined while flip-flop connection is

kept as Q̄ − D. FF i
connection is assigned a boolean value

true or false whichever favors a lower value for transition

cost. True imposes a Q − D connection, whereas a false

imposes a Q̄ − D connection.

3.2 Test Vector Customization (TVC)

Test vector customization is responsible for the follow-

ing tasks:

• Taking the optimized scan cell architecture as a refer-

ence, it specifies the don’t care bits in the test vectors.

• It takes the test vectors and adapts them to the opti-

mized scan cell architecture such that after scanning in

they assume desired original form.

3.2.1 Specifying the don’t care bits

ATPGs provide partially specified vectors that can be used

to our advantage by customizing them for the optimized

scan cell architecture. Therefore, we can do an intelligent

fill-up of the don’t care bits in the test vectors such that

they incur lower transitions costs as compared to a situation

where the don’t care bits are randomly specified. The algo-

rithm proposed handles one test vector at a time. We shall

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

Figure 1. Illustration of Test Vector Cus-
tomization

explain this algorithm with the help of a simple example,

see figure 1. Alphabet X is used to represent a don’t care

bit. Q − D and Q̄ − D type of flip-flop (FF) interconnec-

tions are encoded as 1 and 0 respectively. Following steps

summarize the algorithm:

1. Start from last bit (LSB) of the test vector and move

toward the first bit (MSB).

2. While moving leftwards in the test vector, identify the

first don’t care bit, call this position S. See step 1 in

figure 1, X is the first don’t care bit.

3. Consider the right hand immediate neighbor bit of po-

sition S, call this bit R. In our example R = 1 for the

first don’t care bit.

4. Check out the connection type between the flip-flops

that correspond to positions S and R of the test vector.

• If we have a Q − D flip-flop connection (FF =
1), then assign S = R.

• If we have a Q̄ − D flip-flop connection (FF =
0), then assign S = inverse(R).

Refer to steps 1a, 1b, 1c, 2a etc. in the figure 1 to get

acquainted with this procedure. If the last bit in the test

vector is don’t care in nature, set it to a default binary

value.

5. If S is the first bit of the test vector, stop the algorithm,

otherwise go back to step 2 of this algorithm.

The test vector obtained at step 4b of the figure 1 is com-

pletely devoid of don’t care bits.

3.2.2 Adaptation of test vectors

At this stage of the algorithm, we have an optimized scan

cell architecture with completely specified test vectors. But

the modified scan architecture demands a change in test vec-

tors to nullify the transitions caused by Q̄ − D connections

during scan-in. This is important as we want the test vectors

to be in their original form after complete scan-in. We can

handle this problem in a straightforward manner; flip a bit

in the original test vector if it goes through an odd number

of Q̄ − D connections, and keep it unaltered otherwise. An

example of such an adaptation of a test vector is shown in

figure 1. Step 4b in the figure 1 shows a completely spec-

ified test vector. And step 5 shows an adapted test vector

that is ready for a scan-in.

3.3 Test Vector Reordering (TVR)

In this last and final step of our algorithm, we optimally

re-order the test patterns to reduce the scan chain switch-

ing transitions further. This essentially removes the clashes.

Following steps summarize the algorithm for test vector re-

ordering:

1. Attach a tag XY to every test pattern; where X is LSB

of the test vector, and Y is MSB of the output response.

2. Four types of tags are possible: 00, 01, 10 and 11.

Divide the complete set of test patterns into a maxi-

mum of 4 groups on the basis of these tags.

3. List all the test patterns in the group 00.

4. Pick test patterns from group 01 and 10 alternately.

If any one of these two groups exhausts, list all the

remaining patterns from the other group ignoring the

alternate picking policy.

5. List all the test patterns in the group 11.

The algorithm shown above is based on a simple obser-

vation. If a test pattern A has a tag XAYA, and another test

pattern B has a tag XBYB ; then A followed by B would cause

a clash if and only if YA �= XB . This follows directly from

the definition of a clash: YA is MSB of the predecessor’s

response and XB is LSB of successor’s vector. In the algo-

rithm we minimize the number of such occurings.

At the end of three simple steps, we have arrived at an

optimized scan cell architecture and suitably customized

test vectors that have been optimally ordered to reduce the

number of scan chain transitions.

4 Simulation Results and Discussions

The complete algorithm was implemented in C and ver-

ified on ISCAS’ 89 benchmark circuits [4]. The test pat-

terns were generated using ATALANTA [6]. FSIM fault

simulator [11] was used to obtain output responses for the

customized test vectors. Table 1 summarizes the results ob-

tained. CSCT column lists the number of transitions for

complete testing when using approach from section2, SAM

& TVC (section 3.1 and section 3.2) column lists the num-

ber of transitions obtained after scan architecture modifica-

tion and test vector customization. The following column

(%Imp) shows percentage improvement for this part. The

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

Circuit #Gates Fault Coverage CSCT SAM & TVC % Imp. TVR % Imp. % Imp. [9]
s298 119 100.00% 2926 2702 7.65% 2534 13.39% 10%

s510 211 100.00% 1115 1057 5.20% 913 18.12% 5.3%

s526 193 99.82% 12537 11383 9.21% 10774 14.06% -

s713 393 93.46% 8826 7712 12.62% 7674 13.05% 17%

s953 395 100.00% 27905 24211 13.24% 24095 13.65% -

s1238 508 94.91% 22625 19553 13.58% 19193 15.17% -

s1488 653 100.00% 1953 1953 0.00% 1683 13.82% -

s9234 5597 93.48% 9775460 7130370 27.06% 7105472 27.31% 22.4%

s15850 9775 96.68% 64559689 50710629 21.45% 50619849 21.59% -

Table 1. Simulation results

second to last column TVR (section 3.3) reflects the number

of transitions after application of the complete algorithm,

i.e. after test vector re-ordering. The second to last col-

umn shows overall saving in scan chain power consumption

for various benchmark circuits. [9] is fairly recent work

that makes use of scan cell ordering approach to reduce test

power and, therefore, has the problems associated with this

category of approaches. A comparison with [9] hence forms

an ideal ground for this work. The available values from [9]

in table 1 show our method to be competetive even against

a popular, but overhead ridden, scan cell re-ordering based

method.

5 Conclusions

In this paper, we have presented a robust and efficient

algorithm to reduce the scan test power consumption in

CMOS circuits. Our method explores the capability of flip-

flops to provide both Q and Q̄ as outputs simultaneously,

thus allowing us to modify the scan architecture for an effi-

cient handling of test patterns. We also exploit the unspec-

ified or the don’t care bits in a test vector to customize it;

thus giving us better performance with the optimized scan

cell architecture. Apart from these novel propositions, we

also do a simple test vector re-ordering. This is independent

of the rest of the algorithm and therefore gives a flexibility

to make future modifications and/or to employ aother test

vector re-ordering scheme published in literature. Proposed

method has no penalty on the fault coverage, IC test time

or circuit performance. No routing issues as the scan cell

remain in their original order. Finally, it is very easy to use

in a classical DfT flow and has therefore a very low impact

on the system design time.

References

[1] A. Crouch, Design-for-Test for Digital IC’s and Embed-

ded Core Systems, Number ISBN 0-13-08427-1 Prentice Hall,

1999.

[2] V. Dabholkar and S. Charkravarty, Techniques for minimizing

power in scan and combinational circuits during test applica-

tion, IEEE Trans, on Computer Aided Design, 17(12):1325-

1333, 1998.

[3] Devadas and S. Malik, A survey of optimization techniques

targeting low power VLSI circuits, In Proc. Of Design Automa-

tion Conferences, pages 242-247, 2002.

[4] D.Bryan F.Brglez and K.Kozminski, Combinational profiles

of sequential Benchmark circuits, IEEE ISCAS, 3:1929-1934,

May 1989.

[5] S. Gerstendorfer and H.J.Wunderlich,Minimized power con-

sumption for scan-based Bist, In Proc. IEEE International Test

Conference Pages 77-84, 1999.

[6] H.K.Lee and D.S. Ha, On the generation of test patterns for

combinational circuits, Technical Reports 12-93, Dept. of Elec.

Eng. Virginia Polytechnic Institute and State University.

[7] I. Bayraktarouglu O. Sinanoglu and A. Orailoglu. Scan power

reduction through test data transition frequency analysis. In

Proc. Of International Test Conference, pages 844-850, 2002.

[8] C. Laundrault P. Girard, L. Guiller and S. Pravossoudovitch, A

test vector ordering technique for switching activity reduction

during test operation. In IEEE Great Lakes Symp. On VLSI,

pages 24-27, 1999.

[9] C. Laundrault, Y. Bonhomme, P. Girard and S. Pravos-

soudovitch,Power driven chaining of flip-flops in scan archi-

tectures. In Proc. IEEE International Test Conference, pages

786-803, 2002.

[10] Ozgur Sinanoglu and Alex Orailoglu, A Novel Architecture

of Power-Efficient, Rapid Test, International Conference on

Computer-Aided Design (ICCAD ’02) , pages 299-303, 2002.

[11] H. K. Lee and D. S. Ha, An Efficient Forward Fault Fault

Simulation Algorithm Based on the Parallel Pattern Single

Fault Propagation, Proc. of the 1991 International Test Con-

ference, pp. 946-955, Oct. 1991.

[12] R. Sankaralingam, R. Oruganti and N. Touba, Static Com-

paction Techniques to Control Scan Vector Power Dissipation,

IEEE VLSI Test Symposium, pp 35-42, 2000.

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

