
Maestro: Orchestrating Lifetime Reliability in Chip
Multiprocessors

Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan, Ann Arbor, MI 48109

{shoe,shangupt,ansary,mahlke}@umich.edu

Abstract. As CMOS feature sizes venture deep into the nanometer regime,
wearout mechanisms including negative-bias temperature instability and time-
dependent dielectric breakdown can severely reduce processor operating lifetimes
and performance. This paper presents an introspective reliability management
system, Maestro, to tackle reliability challenges in future chip multiprocessors
(CMPs) head-on. Unlike traditional approaches, Maestro relies on low-level sen-
sors to monitor the CMP as it ages (introspection). Leveraging this real-time
assessment of CMP health, runtime heuristics identify wearout-centric job as-
signments (management). By exploiting the complementary effects of the natural
heterogeneity (due to process variation and wearout) that exists in CMPs and the
diversity found in system workloads, Maestro composes job schedules that intel-
ligently control the aging process. Monte Carlo experiments show that Maestro
significantly enhances lifetime reliability through intelligent wear-leveling, in-
creasing the expected service life of a population of 16-core CMPs by as much as
38% compared to a naive, round-robin scheduler. Furthermore, in the presence of
process variation, Maestro’s wearout-centric scheduling outperformed both per-
formance counter and temperature sensor based schedulers, achieving an order
of magnitude more improvement in lifetime throughput – the amount of useful
work done by a system prior to failure.

1 Introduction

In recent years, computer architects have accepted the fact that transistors become less
reliable with each new technology generation [4]. As technology scaling leads to higher
device counts, power densities and operating temperatures will continue to rise at an
alarming pace. With an exponential dependence on temperature, faults due to failure
mechanisms like negative-bias temperature instability (NBTI) and time-dependent di-
electric breakdown (TDDB) will result in ever-shrinking device lifetimes. Furthermore,
as process variation (random + systematic) and wearout gain more prominence in fu-
ture technology nodes, fundamental design assumptions will become increasingly less
accurate. For example, the characteristics of a core on one part of a chip multiprocessor
(CMP) may, due to manufacturing defects, only loosely resemble an identically de-
signed core on a different part of the CMP [23,26]. Even the behavior of the same core
can be expected to change over time as a result of age-dependent degradation [18,25].

In light of this uncertain landscape, researchers have begun investigating dynamic
thermal and reliability management (DTM and DRM). Such techniques hope to sustain

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 186–200, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Maestro: Orchestrating Lifetime Reliability in Chip Multiprocessors 187

current performance improvement trends deep into the nanometer regime, while main-
taining the levels of reliability and life-expectancy that consumers have come to expect,
by hiding a processor’s inherent susceptibility to failures and hotspots. Some recent
proposals rely on a combination of thread scheduling and dynamic voltage and fre-
quency scaling (DVFS) to recover performance lost to process variation [23,26]. Others
implement intelligent thermal management policies that can extend processor lifetimes
and alleviate hotspots by minimizing and bounding the overall thermal stress experi-
enced by a core [7,9,16,17]. There have also been efforts to design sophisticated cir-
cuits that tolerate faults and adaptive pipelines with flexible timing constraints [10,24].
Although many DTM schemes actively manipulate job-to-core assignments to avoid
thermal emergencies, most existing DRM approaches only react to faults, tolerating
them as they develop.

In contrast, Maestro takes a proactive approach to reliability. To the first order, Mae-
stro performs fine-grained, module-level wear-leveling for many-core CMPs. Although
analogous to wear-leveling in flash devices, the challenge of achieving successful wear-
leveling transparently in CMPs is considerably more difficult. Left unchecked, wearout
causes all structures within a core to age and eventually fail. However, due to process
variation, not all cores (or structures) will be created equal. Every core will invariably
possess some microarchitectural structures that are more “damaged” (more susceptible
to wearout) than others [23,24]. Performing post-mortems on failed cores (in simula-
tions) often reveals that a single microarchitectural module, which varies from core to
core, breaks down long before the rest. Maestro extends the life of these “weak” struc-
tures, their corresponding cores, and ultimately the CMP by ensuring uniform aging
with scheduling-driven wear-leveling across all levels of the hierarchy.

Maestro dynamically formulates wearout-centric schedules, where jobs are assigned
to cores such that cores do not execute workloads that apply excessive stress to their
weakest modules (i.e., a floating-point intensive thread is not bound to a core with a
weakened floating-point adder). This accomplishes local wear-leveling at the core level,
avoiding failures induced by a single weak structure. When two cores both have a strong
affinity for the same job, a heuristic, which enforces global wear-leveling at the CMP
level determines which core is given priority. Typically, unless there is a substantial
negative impact on local wear-leveling, deference is given to the weaker of the two
cores. This ensures that, when necessary, stronger cores are allowed to execute less
desirable jobs in order to postpone failures in weaker cores (details in Section 3.2).

By leveraging the natural, module-level diversity in application thermal footprints
(Section 2.1), Maestro has finer-grained control over the aging process than a standard
core-level DVFS approach, without any of the attendant hardware/design overheads.
Given the complex nature of wearout degradation, Maestro departs from the conven-
tional reliance on static analysis to project optimized schedules. Instead, the condition
of the underlying CMP hardware is continuously monitored, allowing Maestro to dy-
namically refine and adapt scheduling algorithms as the system ages. Architectures like
those envisioned in [22], with low-level circuit sensors, can readily supply this real-time
“health” monitoring.

Maestro offers two key benefits for future CMP systems. First, the fine-grained, lo-
cal wear-leveling prevents unnecessary core failures, maximizing the life of individual
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cores. Longer lasting cores translates to more work that can be done over the life of
the system. Second, it improves the ability of the system to sustain heavy workloads
despite the effects of aging. Enforcing global wear-leveling maximizes the number of
functional cores (throughout its useful life), which in turn maximizes the computational
horsepower available to meet peak demands. With higher degrees of process variation
on the horizon, premature core failures will make it increasingly more difficult to design
and qualify future CMPs. However, by harnessing the potential of Maestro, proactive
management will enable semiconductor manufacturers to provide chips with longer life-
times as well as ensure that system performance targets are consistently met throughout
that lifetime. The central contributions of this paper include:

• An evaluation of workload variability and its impact on reliability/wearout.
• An introspective system, Maestro, that utilizes low-level sensor feedback and

application-driven wear-leveling to proactively manage lifetime reliability.
• The design and evaluation of two reliability-centric job scheduling algorithms.

2 Scheduling for Damaged Cores and Dynamic Workloads

Scheduling, in the context of this paper, refers to the process of assigning jobs to cores
in a CMP, and is conceptually decoupled from the operating system (OS) scheduler. The
schedulers proposed by microarchitects in the past typically resided in a virtualization
layer (i.e., system firmware) that sits between the OS and the underlying hardware. At
each scheduling interval, the OS supplies a set of jobs, J , to this virtualization layer,
and it is the task of the low-level scheduler to bind the jobs to cores. Prior works have
investigated techniques that leverage intelligent job scheduling to manage on-core tem-
peratures or cope with process variation. However, none have studied the impact that
wearout-centric scheduling alone can have on the evolution of aging within a core.

Embracing process variation and workload diversity, Maestro can enhance lifetime
reliability without the extensive hardware support for adaptive body biasing (ABB) and
adaptive supply voltage (ASV) required by other approaches [25]. The remainder of
this paper targets TDDB and NBTI, which are expected to be the two leading causes
of wearout-related failures in future technologies, but can be easily extended to address
any progressive failure mechanisms that may emerge. Since both TDDB and NBTI are
highly dependent on temperature, it is important to understand the thermal footprints of
typical applications in order to appreciate the potential for reliability-centric scheduling.
Section 2.1 examines the module-level thermal diversity seen across a set of SPEC2000
applications and Section 2.2 presents preliminary results quantifying the impact of this
variation on processor lifetimes.

2.1 Workload Variation

Figure 1 shows the range of temperatures experienced by different structures within
an Alpha21364-like processor [1] across a set of 8 SPECINT (bzip2, gcc, gzip, mcf,
perlbmk, twolf, vortex, vpr) and 9 SPECFP benchmarks (ammp, applu, apsi, art, equake,
galgel, lucas, sixtrack, swim, wupwise). All temperatures are normalized to the peak
temperature, Tmax, seen across all modules and benchmarks, which corresponds to the
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Fig. 1. Variation of module temperatures across SPEC2000 workloads. All temperatures are nor-
malized to Tmax, the peak temperature seen across all benchmarks and modules (83◦C).

(a) SPECFP v. SPECINT (b) SPECFP v. SPECFP (c) Variation despite compara-
ble peak temperatures

Fig. 2. Head-to-head comparisons of applu (SPECFP), vpr (SPECINT), and wupwise (SPECFP).
No one benchmark in (a), (b), or (c) strictly dominates the other (with respect to temperature)
across all modules.

temperature of the FPAdd module when running lucas (83◦C). Notice the significant
variation in temperature within nearly every module. Apart from the more than 40%
variation seen in FPAdd (a 37◦C swing), other structures (whose utilizations are not as
strongly correlated with the execution of floating-point and integer benchmarks) also
exhibit significant temperature shifts, 10-15% for Bpred and IntReg. These large
temperature ranges suggest that scheduling alone can be a powerful tool for manipulat-
ing aging rates.

Figure 2 selects a few representative applications and examines them in greater de-
tail. Figures 2(a) and 2(b) highlight how the traditional view of “hot” and “cold” appli-
cations is perhaps too simplistic. Without accounting for the module-level variation in
temperatures, one could incorrectly assume that applu is more taxing, from a reliability
perspective, than vpr or wupwise simply because it exhibits a higher peak operating
temperature (FPMul). However, this would neglect the fact that for many structures,
like IntReg, temperatures for applu are actually much lower than the other two ap-
plications. For completeness, Figure 2(c) is included to show that variations in module
temperatures exist even between applications with comparable peak temperatures. All
things considered, deciding where on the CMP to schedule a particular application, to
achieve the least reliability impact, requires additional information about the strength
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of individual structures within every core. Although the magnitude of the temperature
differences may not seem impressive at first, with peak deltas in module temperatures
around 10-20% in Figure 2(a), these modest variations in temperature can have dramatic
impacts on a processor’s mean time to failure (MTTF).

2.2 Implications for Mean Time to Failure

From Figure 2, one could expect a core consistently running applu to fail because of a
fault in the FPMul unit due to its high operating temperatures. However, in the pres-
ence of process variation other structures within the core could have been manufactured
with more defects (or tighter timing margins), and therefore even more susceptible to
failure despite not ever realizing the same peak temperatures as FPMul. In this en-
vironment, a reliability-centric job scheduler must take into consideration the extent
of damage present within a core in addition to the per-module thermal footprint of run-
ning applications. Figure 3 presents the expected lifetime of a core running applu or vpr
as a function of the module identified as the weakest structure. The lifetimes are pro-
jected based on well-known MTTF equations for NBTI and TDDB [15,21]. The values
are normalized to the best achievable MTTF, which in this comparison is attained if
FPMap is the weakest module in the core and the core is running vpr. The optimal job
to schedule on a particular core to maximize its lifetime is dependent not just on the
application mix currently available, but also on the strengths of individual structures
within that core. Scheduling applu on a core with a weak IntReg can nearly triple its
operating lifetime compared to naively forcing it to run vpr. Similarly, scheduling vpr
instead of applu on a core with a weak FPAdd improves its projected lifetime by more
than 4x.

To further highlight the need to address process and workload variation, a quick
examination of the processors simulated in Section 4.1 reveals that 35% of core failures
are the result of failing structures that never experience peak on-chip temperatures.
Furthermore, 22% of core failures are caused by modules that do not rank among the
top three most thermally active. By accounting for the impact of process variation and
module-level thermal variation of applications, Maestro can prevent premature core
failures and reap the opportunity left on the table by previous schedulers.

Fig. 3. Projected core lifetime based on execution of applu and vpr as a function of the module
identified as the weakest structure. Values are normalized to the best achievable MTTF.
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Fig. 4. A high-level block diagram of the Maestro introspective reliability management system.
Dynamic monitoring of sensor feedback and detailed characterization of workload behavior en-
ables Maestro to improve lifetime system reliability with wearout-centric scheduling.

3 Maestro

Figure 4 presents a block diagram of Maestro, which consists of two main compo-
nents: 1) a health monitoring system (introspection) and 2) a virtualization layer that
implements wearout-centric job scheduling (management). Although this paper targets
reliability-centric scheduling, a broader vision of introspective reliability management
could use online sensor feedback to guide a range of solutions from traditional DVFS
to more radical approaches like system-level reconfiguration [14].

3.1 Health Monitoring

Tracking the evolution of wearout damage within a CMP (i.e., health monitoring) is
essential to forming intelligent reliability-centric schedules. Maestro assumes that the
underlying CMP is provisioned with circuit-level sensors like those described in [22].
Recognizing that the two mechanisms addressed in this work, NBTI and TDDB, both
impact physical device parameters as they evolve has led researchers to actively develop
circuit-level sensors that can track these changes. NBTI is known to shift threshold volt-
age (Vt) leading to slower devices and increased subthreshold/standby leakage current
(Iddq), while TDDB increases gate currents (Igs and Igd). Both result in statistically
measurable degradation in timing paths at the microarchitectural-level [3,6].

A runtime system collects raw data streams from the array of circuit-level sensors and
applies statistical filtering and trend analysis (similar to what is described in [3]) to con-
vert these streams into descriptions of system characteristics including, delay profiles,
leakage currents, and operating temperatures. These individual channels of informa-
tion are then processed to generate a comprehensive microarchitectural-level reliability
assessment of the CMP. This is shown in Figure 4 as a vector of per-module damage
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values (relative to the maximum damage sustainable prior to failure). Introducing the
additional analysis step allows the health monitoring system to account for things like
the presence of redundant devices within a structure, the influence of shifting envi-
ronmental conditions on sensor readings, and the interaction between different wearout
mechanisms. Ultimately, this allows the low-level sensor feedback to be abstracted with
each vector representing the effective damage profile for a particular core.

3.2 Maestro Virtualization Layer

The second portion of the Maestro framework resides in system firmware that serves as
the interface between the OS and the underlying hardware. The OS provides the virtu-
alization layer with a set of jobs that need to run on the CMP and other meta-data (op-
tional) that can guide Maestro in refining its scheduling policies (Section 3.2.3). Online
profiling of system workloads identifies application-specific thermal footprints, shown
in Figure 4 as a vector of per-module temperatures for each application. This thermal
footprint can either be generated by brief exploratory execution of jobs on the available
cores, similar to what is done in [26], or projected by correlating thermal behavior with
program phases (leveraging the existing body of work on runtime phase monitoring and
prediction). Given the prevalence of on-chip temperature sensors [13], Maestro assumes
low-overhead exploration is performed during each scheduling interval. Coupled with
the real-time health assessments, this detailed module-level application characterization
enables Maestro to create wearout-centric job schedules that intelligently manage CMP
aging.

As previously defined, scheduling in this paper will refer to the act of mapping
threads to cores and is initiated by two main events, 1) the OS issues new jobs for Mae-
stro to execute (pushes into a FIFO queue) or 2) the damage profile of the underlying
CMP has changed sufficiently (taking on the order of days/weeks) to warrant thread mi-
gration. The two reliability-centric scheduling policies evaluated in this work illustrate
two approaches to lifetime reliability. The greedy policy (Section 3.2.2) takes the posi-
tion that all core failures are unacceptable and aggressively preserves even the weakest
cores. The adaptive policy (Section 3.2.3) champions a more unconventional philoso-
phy that claims individual core failures are tolerable provided the lifetime reliability of
the CMP system is maximized.

Both wearout-centric policies, and the naive baseline scheduler, are presented be-
low along with corresponding pseudocode. Unless otherwise indicated, the following
definitions are common to all policies: m, a microarchitectural module (i.e., FPMul,
IntReg, etc.); LiveCores, the set of functional cores in the CMP, {c0, c1, ..., cN};
JobQueue, the set of all pending, uncompleted jobs issued from the OS; ActiveJobs,
the set of the N oldest, uncompleted, jobs, {j0, j1, ..., jN}; Dmg(m), the entry in the
CMP damage profile for module m; Temp(j, m), the entry for module m in the tem-
perature footprint for job j.

3.2.1 Naive Scheduler
A standard round-robin scheduler is used as the baseline policy. The least-recently-
used (LRU) core in the set of LiveCores is assigned the oldest job from the set of
ActiveJobs. This process is repeated until all jobs in ActiveJobs have been scheduled.
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Algorithm 1. Greedy wearout-centric scheduler
Step 1:

foreach c ∈ LiveCores do
find cdmg , the damage present in core c , where

cdmg ←− Dmg(m′) |m′ ∈ c ∧Dmg(m′) ≥ Dmg(m), ∀m ∈ c

end
sort LiveCores based on cdmg

end
Step 2:

until ActiveJobs is empty
cw ←− weakest core in LiveCores based on cdmg

mw ←− m′ |m′ ∈ cw ∧Dmg(m′) ≥ Dmg(m), ∀m ∈ cw

foreach j ∈ ActiveJobs do
find costj,cw , the cost of executing job j on core cw , where

costj,cw ←− Temp(j,mw)

end
jopt ←− j′ | j′ ∈ ActiveJobs ∧ costj′,cw ≤ costj,cw , ∀j ∈ ActiveJobs
Assign job jopt to core cw

Remove cw from LiveCores and jopt from ActiveJobs

end
end

This policy maintains high-level load balancing by distributing jobs uniformly across
the cores. However, without accounting for core damage profiles or application thermal
footprints, the resulting schedule is effectively a random mapping (from a reliability
perspective).

3.2.2 Greedy Scheduler
This policy attempts to minimize the number of premature core failures by greedily
favoring the weakest cores (Algorithm 1). Cores are sorted based upon their damage
profiles and priority is given to the cores whose weakest modules possess the most
damage (Step 1 of Algorithm 1). These “weak” cores are greedily assigned jobs with
the most favorable thermal footprints with respect to their damage profiles (Step 2 of
Algorithm 1), minimizing their effective thermal stress. This local wear-leveling re-
duces the probability that these weak cores will fail due to a single damaged structure.
Scheduling the weak cores first maximizes the probability of finding jobs with favor-
able thermal footprints with respect to each weak core since there is a larger application
mix to choose from. However, this also forces the stronger cores to execute the remain-
ing, potentially less desirable, jobs. In practice, this means that the stronger cores in the
CMP actually sacrifice a portion of their lifetime to lighten the burden on their weaker
counterparts (global wear-leveling).

3.2.3 Adaptive Scheduler
The adaptive scheduler recognizes that many CMP systems are often underutilized,
provisioned with more cores than they typically have jobs to run (see Section 4.3).
The scheduler exploits this fact by allowing a few weak cores to be sacrificed in



194 S. Feng et al.

Algorithm 2. Adaptive wearout-centric scheduler
let GA(J, C) be the optimal schedule generated by the GA for jobs J and cores C
Step 1:

foreach c ∈ LiveCores do
find cdmg , the damage present in core c , where

cdmg ←−
∑c

mi
αiDmg(mi) and αi is a scaling factor biased toward mod-

ules with more damage

end
sort LiveCores in increasing order of cdmg

PrimaryCores←− first n cores where n is set by the user through the OS
SecondaryCores←− remaining N − n cores

end
Step 2:

let Sprimary, be the set of job-to-core assignments, (j, c), ∀c ∈ PrimaryCores
Sprimary ←− GA(ActiveJobs, PrimaryCores)
Assign jobs for PrimaryCores according to Sprimary

Remove assigned jobs from ActiveJobs

end
Step 3:

let Ssecondary, be the set of job-to-core assignments, (j, c), ∀c ∈ SecondaryCores
Ssecondary ←− GA(ActiveJobs, SecondaryCores)
Assign jobs for SecondaryCores according to Ssecondary

end

order to preserve the remaining stronger cores (Algorithm 2). Although being com-
plicit in core failures may seem non-intuitive, in systems that are underutilized, the
greedy scheduler can lead to CMPs that are overprovisioned early in the CMP’s
life (LiveCores >> JobQueue) while not assuring enough available throughput
(LiveCores < JobQueue) later on. This insight forms the basis of the adaptive policy.

Promoting a survival-of-the-fittest environment, this policy maximizes the functional
life of the strongest subset of cores (PrimaryCores in Step 1 of Algorithm 2), those
with the least amount of initial damage and the potential to have the longest lifetimes.
By assigning jobs to the PrimaryCores first, Maestro ensures that they execute ap-
plications with the most appropriate thermal footprints (Step 2 of Algorithm 2). The
remaining jobs are assigned amongst the SecondaryCores (Step 3 of Algorithm 2).
This can lead to some weak cores failing sooner than under a greedy policy. Note, how-
ever, in Step 3 of Algorithm 2, the scheduler is still looking amongst the remaining
jobs for the one with the best thermal footprint given a core’s damage profile. This
local wear-leveling, common to both the greedy and adaptive policies, ensures that
the weaker cores even under the adaptive policy survive longer than they would un-
der the naive policy. Ultimately, over the lifetime of the CMP, if PrimaryCores ≥
JobQueue consistently, while avoiding periods when PrimaryCores >> JobQueue
or PrimaryCores < JobQueue, then Maestro has maximized the total amount of
computation performed by the system. The proper size of PrimaryCores, n, is ex-
posed to the OS so that the behavior of the scheduler can be customized to the needs of
the end user.
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Finally, note in Step 2 and Step 3 of Algorithm 2, the scheduler uses an optimization
scheme based on a genetic algorithm (GA) to identify the least-cost schedules for both
the PrimaryCores and SecondaryCores. This allows the adaptive scheduler to con-
sider the effect scheduling a job has on all structures within a core (unlike the greedy
scheduler which only looks at the weakest structure) for more effective local wear-
leveling. The optimization used in this work is derived from [8], a standard solution of
the generalized assignment problem. The cost function used by the GA is recalculated
at each scheduling interval, based on the CMP damage profile and application ther-
mal footprints, according to Equation 1, where Cost(S) is the cost of schedule S and
Cost(j, c) is the cost of scheduling job j on core c1.

Cost(S) =
S∑
j,c

Cost(j, c) =
S∑
j,c

( c∑
m

Dmg(m) · Temp(j,m)
)

(1)

4 Evaluation and Analysis

This section evaluates Maestro’s reliability-centric scheduling policies using lifetime
reliability simulations. A variety of system parameters including CMP size and sys-
tem utilization are varied to investigate their impact on Maestro’s performance. The
effectiveness of each wearout-centric policy is measured in terms of lifetime through-
put (LT), the number of cycles spent executing active jobs (real applications not idle
threads), summed across all cores, throughout the entire lifetime of the CMP. LT im-
provement metrics are the result of comparisons with the naive, round-robin scheduler
presented in Section 3.2.1.

Monte Carlo experiments are conducted using a simulation setup similar to the
framework in [12]. The standard toolchain of SimAlpha, Wattch [5], and Hotspot [20]
is used to simulate the thermal characteristics of workloads and Varius [19] is used
to model the impact of process variation. An adaptive simulation scheme is employed
that interleaves detailed and accelerated simulation phases, dramatically reducing sim-
ulation runtimes and minimizing error (addressed in greater detail by [11]). Results
presented in this section, unless otherwise indicated, are for a 16-core CMP with pro-
cessors modeled after the DEC Alpha 21264/21364 [1].

4.1 Lifetime Throughput Enhancement

Figure 5 shows the normalized LT improvement as a function of the scheduling policy,
CMP size, and failure threshold. In the context of this paper, failure threshold is defined
as the number of cores that must fail before a chip is considered unusable. This is
the point at which the risks/costs associated with maintaining a system with only a
fraction of its original computational capacity justifies replacing the chip. The CMP is
considered dead even though functional cores still remain. The results shown in Figure 5

1 The runtime overhead of the GA is negligible for long-running scientific and server workloads.
However, for shorter-running applications the GA optimization can be replaced by a greedy
version without severely impacting the effectiveness of the adaptive scheduler.
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Fig. 5. Performance of wearout-centric scheduling policies verses CMP size and failure threshold

are conducted for 2 to 16-core systems, and failure thresholds ranging from 1 core to all
cores. The value of the failure threshold is passed to the adaptive policy so that it can
optimize for the appropriate number of cores. Results are shown for CMP utilizations
of 100%, providing a lower-bound on the benefits of the adaptive policy (Section 4.3
examines the impact of CMP utilization).

As expected, both the greedy and adaptive policies perform well across all CMP
sizes and the majority of failure thresholds. As the size of the CMP grows, Maestro has
more cores to work with, increasing the chances of finding complementary job-to-core
mappings. This results in more effective schedules for both wearout-centric policies
improving their performance. Yet even with the lack of scheduling alternatives in a
2-core system, both policies can still achieve a respectable 30% improvement.

A strong dependence on failure threshold is also evident. By aggressively minimiz-
ing premature core failures, the greedy scheduler achieves large gains for small failure
thresholds. However, as the failure threshold nears the size of the CMP, the LT improve-
ment attenuates. This is expected since under the greedy policy, stronger cores sacrifice
a portion of their lifetime in order to preserve their weaker counterparts. The cost of this
sacrifice is most apparent when the failure threshold allows all the cores to fail. In these
systems, the increased contribution toward LT by the weak cores is offset by the loss in
LT resulting from the strong cores failing earlier. Notice also that the adaptive sched-
uler outperforms greedy by the largest margins when the failure threshold is roughly
half the size of the CMP. In these situations, the adaptive scheduler has the maximum
freedom to sacrifice SecondaryCores to preserve PrimaryCores (Section 3.2.3). At
either extreme for failure threshold, it performs similarly to greedy.

Lastly, it is important to note that, although the benefits of wearout-centric schedul-
ing are less impressive for these extreme values of failure threshold, the scenarios when
a user could actually afford to wait for all the cores within a system to fail are also quite
remote. For the remainder of the paper, all the experiments shown are for a 16-core
CMP with a failure threshold of 8 cores and 100% system utilization unless otherwise
indicated.
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(a) Failure distribution (Core) (b) CMP failure distribution (CMP)

Fig. 6. Failure distributions for individual cores and the 16-core CMP with a failure threshold of
8 cores and 100% utilization. Trendlines are added (between markers) to improve readability.

4.2 Failure Distributions

Figure 6 presents the failure distributions for the individual cores, as well as the CMPs
that correspond to the results in Figure 5. Figure 6(a) illustrates the effectiveness of the
wearout-centric policies at distributing the workload stress appropriately. The distribu-
tion for the baseline naive policy reveals a bias towards early premature core failures.
The greedy scheduler, exploiting effective wear-leveling, produced a tighter distribu-
tion, lacking in both premature failures as well as cores that significantly outlasted their
peers. Lastly, the adaptive policy also delivers on its promises by preserving a subset of
cores for a longer period of time than either the naive or greedy schedulers.

Figure 6(b) tells a similar story, but with chip-level failures. As with the individual
core distributions, both wearout-centric policies are able to increase the mean failure
time of the CMP population. Note that because the failure time of a CMP is limited by
the weakest set of its constituent cores, the distributions in Figure 6(b) are considerably
tighter than those in Figure 6(a). The corresponding tables of expected lifetimes embed-
ded within the plots present the data slightly differently. From a product yield/warranty
perspective, intelligent wearout-centric scheduling can be thought of as an additional
means of ensuring that cores meet their expected reliability qualified lifetimes. For ex-
ample, the table in Figure 6(b) shows that the adaptive scheduler enabled 99% of the
chips to survive beyond 1.9 years, compared to just 1.4 years with the naive baseline, a
38% improvement. Granted, job assignment alone cannot make guarantees on lifetime,
but it can complement existing more aggressive techniques like thermal throttling.

4.3 Sensitivity to System Utilization

The utilization of computer systems can be highly variable, both within the same do-
main (e.g., variability inside data centers) and across domains. One might expect com-
putationally intensive scientific codes (e.g., physics simulations, oil exploration, etc.) to
consistently utilize the hardware. On the other hand, since designers build web servers
to accommodate peak loads (periodic by season, day, and hour), they are often over-
provisioned for the common case. Some reports claim average utilization as low as
20% of peak [2].
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Fig. 7. Impact of CMP utilization on reliability
enhancement

Fig. 8. Performance of wearout-centric
scheduling with different sensors

Figure 7 plots the performance of Maestro’s wearout-centric schedulers as a function
of system utilization. The results are shown for nominal utilizations ranging from 20%
(light duty mail server or embedded system) to 100% (scientific cluster)2. Note that
initially as average utilization drops, improvement in lifetime throughput actually in-
creases. A system that is slightly underutilized can be more aggressively load balanced
since some cores are allowed to remain idle. However, as utilization continues to drop
these gains are eventually lost, until finally improvements are actually worse than at
full utilization. In these highly over-provisioned systems, the efforts of wearout-centric
scheduling to prevent premature failures are partially wasted because so few cores are
actually necessary to sustain demand. Nevertheless, in the long run, the periodic spikes
in utilization do accumulate, and thanks to the longer overall core lifetimes (lower uti-
lization means less overall stress that translates to longer lifetimes), the greedy and
adaptive schedulers still manage to exhibit improvements.

4.4 Sensor Selection

Lastly, Figure 8 presents a comparison between the low-level damage sensors advocated
in this work and more conventional hardware like temperature sensors and performance
counters. Given that Maestro is targeting an environment with significant amounts of
process variation, it is not surprising that employing temperature and activity readings
as proxies for wearout/manufacturing induced damage is inadequate. They are unable
to account for the extent to which non-uniform, pre-existing damage within the CMP
responds to the same thermal stimuli. In the absence of variation, a scheduler relying
on only temperature might effectively enhance lifetime reliability by evenly distribut-
ing the thermal stress across the CMP. However, without any knowledge of CMP dam-
age profiles, as process variation is swept from one extreme (no variation) to the other
(100% expected variation at 32nm), thermal load balancing alone is insufficient and Fig-
ure 8 shows a dramatic plunge in the effectiveness of these temperature based schemes.
Similarly, the performance counter approach performed poorly across the spectrum of
variation.

2 Although the mean utilization per simulation run is fixed, the instantaneous utilization experi-
enced by the CMP is allowed to vary over time, sometimes peaking at 100% even for a system
nominally at 20% load. Furthermore, the average effective utilization is also changing as cores
on the CMP begin to fail.
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5 Conclusion

As large CMP systems grow in popularity and technology scaling continues to exac-
erbate lifetime reliability challenges, the research community must develop innovative
ways for systems to dynamically adapt. Although issues like process variation are the
source of design and validation nightmares, this inherent heterogeneity in future systems
is also a source of potential opportunity. Maestro recognizes that although emerging re-
liability obstacles cannot be ignored, with the appropriate monitoring and intelligent
management, they can be overcome. By exploiting low-level sensor feedback, Maestro
was able to demonstrate the effectiveness of wearout-centric scheduling at preventing
premature core failures, improving expected CMP lifetimes by as much as 38%. For-
mulating wearout-centric schedules that achieved both local and global wear-leveling,
Maestro enhanced the lifetime throughput of a 16-core CMP by as much as 180%. Fu-
ture work that leverages sensor feedback to improve upon other traditional reliability
management mechanisms (e.g., DVFS) could demonstrate still more potential.

Acknowledgements

We thank the anonymous referees for their valuable comments and suggestions. We
also owe thanks to Jason Blome and Prabhakar Kudva for their feedback on initial
drafts of this work. This research was supported by National Science Foundation grants
CPA-0916689 and CCF-0347411, ARM Limited, and the Gigascale Systems Research
Center, one of five research centers funded under the Focus Center Research Program,
a Semiconductor Research Corporation program.

References

1. Alpha. 21364 family (2001), http://www.alphaprocessors.com/21364.htm
2. Andrzejak, A., Arlitt, M., Rolia, J.: Bounding the resource savings of utility computing mod-

els. HP Laboratories (December 2002),
http://www.hpl.hp.com/techreports/2002/HPL-2002-339.html

3. Blome, J., Feng, S., Gupta, S., Mahlke, S.: Self-calibrating online wearout detection. In: Proc.
of the 40th Annual International Symposium on Microarchitecture, pp. 109–120 (2007)

4. Borkar, S.: Designing reliable systems from unreliable components: The challenges of tran-
sistor variability and degradation. IEEE Micro 25(6), 10–16 (2005)

5. Brooks, D., Tiwari, V., Martonosi, M.: A framework for architectural-level power analysis
and optimizations. In: Proc. of the 27th Annual International Symposium on Computer Ar-
chitecture, June 2000, pp. 83–94 (2000)

6. Cabe, A., Qi, Z., Wooters, S., Blalock, T., Stan, M.: Small embeddable nbti sensors (sens) for
tracking on-chip performance decay, Washington, DC, USA. IEEE Computer Society, Los
Alamitos (2009)

7. Choi, J., Cher, C., Franke, H., Haman, H., Wedger, A., Bose, P.: Thermal-aware task schedul-
ing at the system software level. In: Proc. of the 2007 International Symposium on Low
Power Electronics and Design, August 2007, pp. 213–218 (2007)

8. Chu, P.C., Beasley, J.E.: A genetic algorithm for the generalised assignment problem 24(1),
17–23 (1997)

9. Donald, J., Martonosi, M.: Techniques for multicore thermal management: Classification
and new exploration. In: Proc. of the 33rd Annual International Symposium on Computer
Architecture (June 2006)

http://www.alphaprocessors.com/21364.htm
http://www.hpl.hp.com/techreports/2002/HPL-2002-339.html


200 S. Feng et al.

10. Ernst, D., Das, S., Lee, S., Blaauw, D., Austin, T., Mudge, T., Kim, N.S., Flautner, K.: Razor:
Circuit-level correction of timing errors for low-power operation. In: Proc. of the 37th Annual
International Symposium on Microarchitecture, pp. 10–20 (2004)

11. Feng, S., Gupta, S., Ansari, A., Mahlke, S.: Maestro: Orchestrating lifetime reliability in
chip multiprocessors. Technical Report CSE-TR-557-09, University of Michigan, Ann Arbor
(November 2009),
http://cccp.eecs.umich.edu/papers/CSE-TR-557-09.pdf

12. Feng, S., Gupta, S., Mahlke, S.: Olay: Combat the signs of aging with intropsective reliability
management. In: Proc. of the Workshop on Architectural Reliability (June 2008)

13. Friedrich, J., et al.: Desing of the power6 microprocessor. In: Proc. of ISSCC (February 2007)
14. Gupta, S., Feng, S., Ansari, A., Blome, J., Mahlke, S.: The stagenet fabric for construct-

ing resilient multicore systems. In: Proc. of the 41st Annual International Symposium on
Microarchitecture, pp. 141–151 (2008)

15. Li, X., Huang, B., Qin, J., Zhang, X., Talmor, M., Gur, Z., Bernstein, J.B.: Deep submicron
cmos integrated circuit reliability simulation with spice. In: Proc. of the 2005 International
Symposium on Quality of Electronic Design, March 2005, pp. 382–389 (2005)

16. Lu, Z., Lach, J., Stan, M.R., Skadron, K.: Improved thermal management with reliability
banking. IEEE Micro 25(6), 40–49 (2005)

17. Powell, M., Gomaa, M., Vijaykumar, T.: Heat-and-run: Leveraging smt and cmp to manage
power density through the operating system. In: 12th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, October 2004, pp.
260–270 (2004)

18. Roberts, D., Dreslinski, R., Karl, E., Mudge, T., Sylvester, D., Blaauw, D.: When homoge-
neous becomes heterogeneous: Wearout aware task scheduling for streaming applications.
In: Proc. of the Workshop on Operationg System Support for Heterogeneous Multicore Ar-
chitectures (September 2007)

19. Sarangi, S., Greskamp, B., Teodorescu, R., Nakano, J., Tiwari, A., Torrellas, J.: Varius: A
model of process variation and resulting timing errors for microarchitects. IEEE Transactions
on Semiconductor Manufacturing, 3–13 (February 2008)

20. Skadron, K., Stan, M.R., Sankaranarayanan, K., Huang, W., Velusamy, S., Tarjan, D.:
Temperature-aware microarchitecture: Modeling and implementation. ACM Transactions on
Architecture and Code Optimization 1(1), 94–125 (2004)

21. Srinivasan, J., Adve, S.V., Bose, P., Rivers, J.A.: The case for lifetime reliability-aware micro-
processors. In: Proc. of the 31st Annual International Symposium on Computer Architecture,
June 2004, pp. 276–287 (2004)

22. Sylvester, D., Blaauw, D., Karl, E.: Elastic: An adaptive self-healing architecture for unpre-
dictable silicon. IEEE Journal of Design and Test 23(6), 484–490 (2006)

23. Teodorescu, R., Torrellas, J.: Variation-aware application scheduling and power management
for chip multiprocessors. In: Proc. of the 35th Annual International Symposium on Computer
Architecture, June 2008, pp. 363–374 (2008)

24. Tiwari, A., Sarangi, S., Torrellas, J.: Recycle: Pipeline adaptation to tolerate process varia-
tion. In: Proc. of the 34th Annual International Symposium on Computer Architecture, June
2007, pp. 323–334 (2007)

25. Tiwari, A., Torrellas, J.: Facelift: Hiding and slowing down aging in multicores. In: Proc. of
the 41st Annual International Symposium on Microarchitecture, December 2008, pp. 129–
140 (2008)

26. Winter, J., Albonesi, D.: Scheduling algorithms for unpredictably heterogeneous cmp archi-
tectures. In: Proc. of the 2008 International Conference on Dependable Systems and Net-
works (June 2008) (to appear)

http://cccp.eecs.umich.edu/papers/CSE-TR-557-09.pdf

	Maestro: Orchestrating Lifetime Reliability in Chip Multiprocessors
	Introduction
	Scheduling for Damaged Cores and Dynamic Workloads
	Workload Variation
	Implications for Mean Time to Failure

	Maestro
	Health Monitoring
	Maestro Virtualization Layer

	Evaluation and Analysis
	Lifetime Throughput Enhancement
	Failure Distributions
	Sensitivity to System Utilization
	Sensor Selection

	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


