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Abstract
Aggressive technology scaling provides designers with an ever in-
creasing budget of cheaper and faster transistors. Unfortunately,
this trend is accompanied by a decline in individual device relia-
bility as transistors become increasingly susceptible to soft errors.
We are quickly approaching a new era where resilience to soft er-
rors is no longer a luxury that can be reserved for just processors
in high-reliability, mission-critical domains. Even processors used
in mainstream computing will soon require protection. However,
due to tighter profit margins, reliable operation for these devices
must come at little or no cost. This paper presents Shoestring, a
minimally invasive software solution that provides high soft er-
ror coverage with very little overhead, enabling its deployment
even in commodity processors with “shoestring” reliability bud-
gets. Leveraging intelligent analysis at compile time, and exploit-
ing low-cost, symptom-based error detection, Shoestring is able to
focus its efforts on protecting statistically-vulnerable portions of
program code. Shoestring effectively applies instruction duplica-
tion to protect only those segments of code that, when subjected
to a soft error, are likely to result in user-visible faults without
first exhibiting symptomatic behavior. Shoestring is able to recover
from an additional 33.9% of soft errors that are undetected by a
symptom-only approach, achieving an overall user-visible failure
rate of 1.6%. This reliability improvement comes at a modest per-
formance overhead of 15.8%.

Categories and Subject Descriptors B.8.1 [Performance and Re-
liability]: Reliability, Testing, and Fault Tolerance; D.3.4 [Pro-
gramming Languages]: Processors—Compilers

General Terms Design, Experimentation, Reliability

Keywords Compiler Analysis, Error Detection, Fault Injection

1. Introduction
A critical aspect of any computer system is its reliability. Comput-
ers are expected to perform tasks not only quickly, but also cor-
rectly. Whether they are trading stocks from a laptop or watching
the latest YouTube video on an iPhone, users expect their experi-
ence to be fault-free. Although it is impossible to build a completely
reliable system, hardware vendors target failure rates that are im-
perceptibly small.
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One pervasive cause of computer system failure and the focus
of this paper is soft errors. A soft error, or transient fault, can
be induced by electrical noise or high-energy particle strikes that
result from cosmic radiation and chip packaging impurities. Unlike
manufacturing or design defects, which are persistent, transient
faults as their name suggests, only sporadically influence program
execution.

One of the first reports of soft errors came in 1978 from In-
tel Corporation, when chip packaging modules were contaminated
with uranium from a nearby mine [13]. In 2004, Cypress semi-
conductor reported a number of incidents arising from soft er-
rors [42]. In one incident, a single soft error crashed an entire data
center and in another soft errors caused a billion-dollar automotive
factory to halt every month.

Since the susceptibility of devices to soft error events is di-
rectly related to their size and operating voltage, current scaling
trends suggest that dramatic increases in microprocessor soft error
rates (SER) are inevitable. Traditionally, reliability research has fo-
cused largely on the high-performance server market. Historically
the gold standards in this space have been the IBM S/360 (now Z-
series servers) [32] and the HP NonStop systems [3], which rely on
large scale modular redundancy to provide fault tolerance. Other
research has focused on providing fault protection using redun-
dant multithreading [8, 17, 24, 27, 30] or hardware checkers like
DIVA [6, 39]. In general, these techniques are expensive in terms
of both the area and power required for redundant computation and
are not applicable outside mission-critical domains.

The design constraints of computer systems for the commodity
electronics market differ substantially from those in the high-end
server domain. In this space, area and power are primary consid-
erations. Consumers are not willing to pay the additional costs (in
terms of hardware price, performance loss, or reduced battery life-
time) for the solutions adopted in the server space. At the same
time, they do not demand “five-nines” of reliability, regularly toler-
ating dropped phone calls, glitches in video playback, and crashes
of their desktop/laptop computers (commonly caused by software
bugs). The key challenge facing the consumer electronics market in
future deep submicron technologies is providing just enough cov-
erage of soft errors, such that the effective fault rate (the raw SER
scaled by the available coverage) remains at level to which peo-
ple have become accustomed. Examining how this coverage can be
achieved “on the cheap” is the goal of this paper.

To garner statistically high soft error coverage at low overheads,
we propose Shoestring, a software-centric approach for detecting
and correcting soft errors. Shoestring is built upon two areas of
prior research: symptom-based fault detection and software-based
instruction duplication. Symptom-based detection schemes recog-
nize that applications often exhibit anomalous behavior (symp-
toms) in the presence of a transient fault [11, 37]. These symptoms
can include memory access exceptions, mispredicted branches, and
even cache misses. Although symptom-based detection is inexpen-



sive, the amount of coverage that can be obtained from a symptom-
only approach is typically limited. To address this limitation we
leverage the second area of prior research, software-based instruc-
tion duplication [25, 26]. With this approach, instructions are dupli-
cated and results are validated within a single thread of execution.
This solution has the advantage of being purely software-based, re-
quiring no specialized hardware, and can achieve nearly 100% cov-
erage. However, the overheads in terms of performance and power
are quite high since a large fraction of the application is replicated.

The key insight that Shoestring exploits is that the majority
of transient faults can either be ignored (because they do not ul-
timately propagate to user-visible corruptions at the application
level) or are easily covered by light-weight symptom-based de-
tection. To address the remaining faults, compiler analysis is uti-
lized to identify high-value portions of the application code that are
both susceptible to soft errors (i.e., likely to corrupt system state)
and statistically unlikely to be covered by the timely appearance
of symptoms. These portions of the code are then protected with
instruction duplication. In essence, Shoestring intelligently selects
between relying on symptoms and judiciously applying instruc-
tion duplication to optimize the coverage and performance trade-
off. In this manner, Shoestring transparently provides a low-cost,
high-coverage solution for soft errors in processors targeted for the
consumer electronics market. However, unlike the high-availability
IBM and HP servers which can provide provable guarantees on
coverage, Shoestring provides only opportunistic coverage, and is
therefore not suitable for mission-critical applications.

The contributions of this paper are as follows:

• A transparent software solution for addressing soft errors in
commodity processors that incurs minimal performance over-
head while providing high fault coverage.

• A new reliability-aware compiler analysis that quantifies the
likelihood that a fault corrupting an instruction will be covered
by symptom-based fault detection.

• A selective instruction duplication approach that leverages
compiler analysis to identify and replicate a small subset of
vulnerable instructions.

• Microarchitectural fault injection experiments to demonstrate
the effectiveness of Shoestring in terms of fault coverage and
performance overhead.

2. Background and Motivation
2.1 Soft Error Rate

The vulnerability of individual transistors to soft errors is contin-
uing to grow as device dimensions shrink with each new technol-
ogy generation. Traditionally, soft errors were a major concern for
memory cells due to their higher sensitivity to changes in operating
conditions. However, protecting memory cells is relatively straight-
forward using parity checks or error correcting codes (ECC). On
the other hand, combinational logic faults are harder to detect and
correct. Furthermore, Shivakumar et al. [29] has reported that the
SER for SRAM cells is expected to remain stable, while the SER
for logic is steadily rising. Both these factors have motivated a
flurry of research activities investigating solutions to protect the
microproccessor core against transient faults. This body of related
work will be addressed in Section 6.

Figure 1 shows the SER trend for a range of silicon technology
generations reported in terms of failures in time (FIT1) per chip.
Leveraging data presented by Shivakumar et al. [29], the SER trend
for processor logic was scaled down to deep submicron technolo-
gies (similar to what is done by Borkar [5]) to generate the curve

1 The number of failures observed per one billion hours of operation.

Figure 1: The soft error rate trend for processor logic across a range of
silicon technology nodes. The Nominal curve illustrates past and present
trends while the Vscale L, Vscale M, and Vscale H curves assume low,
medium and high amounts (respectively) of voltage scaling in future deep
submicron technologies. The user-visible failure rates highlighted at 45 nm
and 16 nm are calculated assuming a 92% system-wide masking rate.

Figure 2: Fault coverage versus dynamic instruction penalty trade-off for
two existing fault detection schemes: symptom-based detection and instruc-
tion duplication-based detection. Also indicated is the region of the solution
space targeted by Shoestring. The mapping of fault coverage to user-visible
failure rate (dashed horizontal lines) is with respect to a single chip in a
16 nm technology node with aggressive voltage scaling (Vscale H).

labeled Nominal. Note the exponential rise in SER with each new
technology generation. Further exacerbating the SER challenge is
the fact that in future technologies aggressive voltage scaling (both
static and dynamic) will be required to meet power/thermal en-
velopes in the presence of unprecedented transistor densities. The
curves, Vscale L, Vscale M, and Vscale H illustrate the potential
impact low, medium, and high amounts (respectively) of voltage
scaling can have on SER.

Fortunately, a large fraction of transient faults are masked and
do not corrupt actual program state. This masking can occur at
the circuit, microarchitectural, or software levels. Our experiments,
consistent with prior findings by Wang and Patel [35], show this
masking rate to be around 92% collectively from all sources. Ac-
counting for this masking, the raw SER at 45nm (the present tech-
nology node) translates to about one failure every month in a popu-
lation of 100 chips. For a typical user of laptop/desktop computers
this is likely imperceptible. However, in future nodes like 16nm
the user-visible fault rate could be as high as one failure a day for
every chip. The potential for this dramatic increase in the effective
fault rate will necessitate incorporating soft error tolerance mecha-
nisms into even low-cost, commodity systems.



2.2 Solution Landscape and Shoestring

As previously discussed, a soft error solution tailored for the com-
modity user space needs to be cheap, minimally invasive, and ca-
pable of providing sufficient fault coverage. Figure 2 is a concep-
tual plot of fault coverage versus performance overhead for the
two types of fault detection schemes that form the foundation of
Shoestring, one based on symptoms and the other on instruction
duplication. The bottom region in this plot indicates the amount of
fault coverage that results from intrinsic sources of soft error mask-
ing, available for free.

Of the remaining, unmasked faults, symptom-based detection
is able to cover a significant fraction without incurring any ap-
preciable overhead, mostly from detecting hardware exceptions.
However, as a more inclusive set of symptoms are considered
the overall coverage only improves incrementally while the per-
formance overhead increases substantially. This is expected since
these schemes relies on monitoring a set of rare events, treating
their occurrence as symptomatic of a soft error, and initiating roll-
back to a lightweight checkpoint2. When the set of symptoms mon-
itored is limited to events that rarely (if ever) occur under fault-free
conditions (e.g., hardware exceptions) the performance overhead
is negligible. However, when the set of symptoms is expanded to
include more common events like branch mispredicts and cache
misses, the overhead associated with false-positives increases [37].

In contrast the coverage versus performance curve is far less
steep for instruction duplication. Since instruction duplication
schemes achieve fault coverage by replicating computation and
validating the original and duplicate code sequences, the amount of
coverage is easily tunable, with coverage increasing almost linearly
with the amount of duplication.

The horizontal lines in Figure 2 highlight three fault coverage
thresholds that map to effective failure rates of one failure per day,
week, and month (in the context of a single chip in 16nm with
aggressive voltage scaling Vscale H). The fault coverage provided
by the intrinsic sources of masking translates to about one failure a
day, clearly unacceptable. To achieve a more tolerable failure rate
of one fault per week or even month, comparable to other sources of
failure in consumer electronics (e.g., software, power supply, etc.),
the amount of fault coverage must be significantly improved. Note
that although the symptom-based detection solution is both cheap
and minimally invasive, it falls short of achieving these coverage
thresholds. Similarly, although instruction duplication is capable
of meeting these reliability targets, it does so by sacrificing con-
siderable performance and power (from executing more dynamic
instructions).

Although neither existing technique alone provides the de-
sired performance and coverage tradeoffs, as a hybrid method,
Shoestring is able to exploit the strengths of each, ultimately pro-
viding a technique that is optimally positioned within the solution
space.

3. Shoestring
The main intuition behind Shoestring is the notion that near-perfect,
“five-nines” reliability is not always necessary. In fact, in most
commodity systems, the presence of such ultra-high resilience may
go unnoticed. Shoestring exploits this reality by advocating the use
of minimally invasive techniques that provide “just enough” re-
silience to transient faults. This is achieved by relying on symptom-
based error detection to supply the bulk of the fault coverage at little
to no cost. After this low-hanging fruit is harvested, judicious appli-

2 The checkpointing required for the symptom detection employed by
Shoestring already exists in modern processors to support performance
speculation (see Section 4).

// inpData is a global array
// process() is a global macro
1: index = 0
2: while (!stop)
3: process(inpData[index])
4: process(inpData[index + 1])
5: process(inpData[index + 2])
6: process(inpData[index + 3])
7: index = index + 4
8: stop = (index + 3) >= inpDataSize
9: end

10: // clean-up code
11: for (; index < inpDataSize; index++)
12: process (inpData[index])
13: end

Figure 3: A representative example of performance optimized code (loop
unrolled).

cation of software-based instruction duplication is then leveraged to
target the remaining faults that never manifest as symptoms.

To the first order, program execution consists of data compu-
tation and traversing the control flow graph (CFG). Correct pro-
gram execution, strictly speaking, requires 1) that data be computed
properly and 2) that execution proceeds down the right paths, i.e.,
compute the data correctly and compute the correct data. Working
from this definition, previous software-based reliability schemes
like SWIFT [25] have assumed that a program executes correctly
(from the user’s perspective) if all stores in the program are per-
formed properly. This essentially redefines correct program execu-
tion as 1) storing the correct data (to the correct addresses) and
2) performing the right stores. Implicit is the assumption that the
sphere of replication (SoR) [24], or the scope beyond which a tech-
nique cannot tolerate faults, is limited to the processing core. Faults
in the caches and external memories are not addressed, but can be
efficiently protected by techniques like ECC [9].

Shoestring, makes similar assumptions about SoR and cor-
rect program execution. However, unlike SWIFT [25] and other
schemes, we are not targeting complete fault coverage. Relaxing
the coverage constraint frees Shoestring from having to protect
all portions of a program in order to guarantee correctness. This
affords Shoestring the flexibility to only selectively protect those
stores that are most likely to impact program output and least likely
to already be covered by symptom detectors. Furthermore, we ac-
knowledge that recent work by Wang et al. [36] has shown that as
many as 40% of all dynamic branches are outcome tolerant. That
is, they do not affect correct program behavior when forced down
the incorrect path. The authors demonstrate that many of these so-
called “Y-branches” are the result of partially dead control (i.e.,
they are data dependent and outcome tolerant the majority of the
time). Leveraging this insight, Shoestring can also shed the over-
head required to ensure that the CFG is always properly traversed.
Instead, we focus on only protecting a subset of control flow deci-
sions that impact “high-value” instructions.

Figure 3 shows a snippet of code where some manipulation of
an array data structure is being performed. The computation is per-
formed within a tight loop that uses the process macro to ma-
nipulate elements of the array data. Performance optimizations
cause the loop to be unrolled 4 times into lines 2 through 9. Addi-
tional cleanup code (lines 11 through 13) is also inserted to main-
tain program semantics. Note that in this example not all compu-
tation is essential for correct program behavior. The instruction at
line 8 determines if the early loop termination condition is met. If
the instruction(s) computing stop is (are) subjected to a transient
fault, the unrolled loop could exit prematurely. Although this early
exit degrades performance, program correctness is still maintained.
In contrast, properly updating the variable index at line 7 is re-



Figure 4: A standard compiler flow augmented with Shoestring’s
reliability-aware code generation passes.

quired for program correctness (assuming of course that inpData
is a user-visible variable). However, since index is also used as
a base address to access inpData, there is a significant probabil-
ity that a fault corrupting index would manifest as a symptomatic
memory access exception. Given the proper symptom-based detec-
tion scheme, this could decrease the effective vulnerability of the
computation at line 7. Identifying instructions critical to program
correctness and pruning from this set those instructions that are al-
ready “covered” by symptom-based detection is the focus of the
remainder of this section.

3.1 Compiler Overview

Implementing the most cost effective means of deploying instruc-
tion duplication requires detailed compiler analysis. Shoestring in-
troduces additional reliability-aware code generation passes into
the standard compiler backend. Figure 4 highlights these passes
in the context of typical program compilation. Shoestring’s com-
pilation passes are scheduled after the program has already been
lowered to the machine-specific representation but before register
allocation.

The first two passes, Preliminary Classification and Vulnerabil-
ity Analysis, are designed to categorize instructions based on their
expected behavior in the presence of a transient fault. These cate-
gories are briefly described below.

• Symptom-generating: these instructions, if they consume a
corrupted input, are likely to produce detectable symptoms.

• High-value: these instructions, if they consume a corrupted
input, are likely to produce outputs that result in user-visible
program corruption.

• Safe: these instructions are naturally covered by symptom-
generating consumers. For any safe instruction, IS , the expec-
tation is that if a transient fault is propagated by IS , or arises
during its execution, there is a high probability that one of its
consumers will generate a symptom within an acceptable la-
tency Slat.

• Vulnerable: all instructions that are not safe are considered
vulnerable.

Following the initial characterization passes, a third pass, Code
Duplication, performs selective, software-based instruction dupli-
cation to protect instructions that are not inherently covered by
symptoms. This duplication pass further minimizes wasted effort
by protecting only the high-value instructions, those likely to im-
pact program output. By only duplicating instructions that are along
the dataflow graph (DFG) between safe and high-value instructions,
the performance overhead can be dramatically reduced without sig-
nificantly impacting reliability.

The following sections describe the details of the heuristics used
in the analysis and duplication passes.

3.2 Preliminary Classification

Shoestring’s initial characterization pass iterates over all instruc-
tions in the program and identifies symptom-generating and high-
value instructions. For clarity, this classification is described as a
separate compiler pass. However, in practice the identification of
symptom-generating and high-value instructions can be performed
as part of the vulnerability analysis pass.

3.2.1 Symptom-generating Instructions

The symptom events considered by prior symptom-based detection
work can be broadly separated into the following categories [11,
37]:

• ISA-defined Exceptions: these are exceptions defined by the
instruction set architecture (ISA) and must already be detected
by any hardware implementing the ISA (e.g., page fault or
overflow).

• Fatal Exceptions: these are the subset of the ISA-defined ex-
ceptions that never occur under normal user program execution
(e.g., segment fault or illegal opcode).

• Anomalous Behavior: these events occur during normal pro-
gram execution but can also be symptomatic of a fault (e.g.,
branch mispredict or cache miss).

The relative usefulness of symptoms in each of these cate-
gories is dependent on how strongly their appearance is correlated
with an actual fault. Ideal candidates occur very rarely during nor-
mal execution, minimizing overhead due to false positives, but al-
ways manifest in the wake of a fault. Therefore, to maximize the
overhead-to-coverage tradeoff the experiments in Section 5 eval-
uate a Shoestring implementation that only considers instructions
that can elicit the second category of fatal, ISA-defined exceptions
as potentially symptom generating. Since these are events that dur-
ing the normal execution of user programs never arise, they incur
no performance overhead in the absence of faults.

Although additional coverage can be gleaned by evaluating a
more inclusive set of symptoms, prior work has shown that the
additional coverage often does not justify the accompanying costs.
For example, Wang and Patel [37] presented results where using
branch mispredictions on high-confidence branches as a symptom
gained an additional 0.3% of coverage with an 8% performance
penalty. Other non-fatal symptoms like data cache misses also have
similar coverage and overhead profiles.

3.2.2 High-value Instructions

Ideally, we would like to only consider instructions that impact pro-
gram output as high-value. However, given that the analysis neces-
sary to provably make such determinations is impractical, if not
intractable, heuristics must be employed. Currently, any instruc-
tions that can potentially impact global memory is considered high-
value. In addition, any instructions that can produce arguments
passed to function calls (especially library calls) are also included.
To provide a truly transparent solution, Shoestring, at present, as-
sumes that no user annotations are available to assist in instruction
classification. Future extensions could leverage techniques from
information-flow theory [14, 33] to further refine the instruction
selection process or even exploit the work by Li and Yeung [12]
to prune instructions that only impact “soft” program outputs. Al-
though investigating more sophisticated heuristics for identifying
high-value instructions is a very promising avenue of future work,
it is beyond the scope of the current paper.

3.3 Vulnerability Analysis

After the preliminary instruction classification is complete, Shoestring
analyzes the vulnerability of each instruction to determine whether
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Figure 5: Example data flow graphs illustrating Shoestring’s vulnerability analysis. The data flow edge numbers represent the distance between two instructions
in the statically scheduled code. Shaded nodes represent symptom-generating instructions and dashed circles highlight high-value instructions. Dashed edges
in (d) represent control flow.

it is safe. As stated previously, a safe instruction, IS , is one with
enough symptom-generating consumers such that a fault corrupt-
ing the result of IS is likely to exercise a symptom within a
fixed latency Slat. For each instruction, the number of symptom-
generating consumers is first tabulated based on distance. For a
given producer (Ip) and consumer (Ic ) pair, we define the dis-
tance, Dp,c, as the number of intervening instructions between Ip

and Ic within the statically scheduled code. It is used as a compile-
time estimate of the symptom detection latency if the consumer,
Ic, were to trigger a symptom. For a given instruction, I , if the
number of symptom-generating consumers at distance i is Ni, then
I is considered safe if Ntot =

∑Slat

i=1
Ni is greater than a fixed

threshold St. The value for the threshold parameter St controls the
selectivity of safe instruction classification and can be used to trade
off coverage for performance overhead (see Section 5).

Figure 5 and the corresponding case studies illustrate how the
vulnerability analysis heuristic is applied for a few sample DFGs.
The numbers along the data-flow edges represent the distance,
Dp,c, between the two nodes (instructions). Shaded nodes indi-
cate symptom-generating instructions, and nodes highlighted by a
dashed circle are high-value instructions. For all the case studies,
Slat = 100 and St = 2.

3.3.1 Case Study 1: Direct Consumers

In Figure 5a, instruction Ia is being analyzed for safe-ness. In-
structions 1, 2, and 3 are all direct consumers of Ia. Instructions
2 and 3 have already been identified as symptom-generating in-
structions and 3 is also a high-value instruction. In this example, Ia

would be classified as vulnerable because it only has one symptom-
generating consumer within a distance of 100 (Slat), instruction 2.

3.3.2 Case Study 2: Indirect Consumers

Figure 5b presents a more interesting example that includes direct
as well as indirect consumers as we analyze Ib. As with direct con-
sumers, indirect consumers that have been identified as symptom-
generating also contribute to the Ntot of Ib. However, their contri-

bution is reduced by a scaling factor Siscale to to account for the
potential for partial fault masking.

In Figure 5b, instructions 3, 4, and 5 are all symptom generating
consumers of Ib. Since 3 is a direct consumer, any fault that cor-
rupts the result of Ib will cause instruction 3 to generate a symp-
tom (probabilistically of course). However, the same fault would
have to propagate through instruction 2 before it reaches the in-
direct consumer, instruction 4. This allows for the possibility that
the fault may be masked by 2 before it actually reaches 4. For
example, if the soft error flipped an upper bit in the result of Ib

and instruction 2 was an AND that masked the upper bits, the fault
would never be visible to instruction 4, reducing its ability to man-
ifest a symptom. However, instruction 1 would still consume the
tainted value and potentially write it out to memory, corrupting sys-
tem state. Therefore, due to the potential for masking, an indirect
consumer is less likely than a direct consumer to cover the exact
same fault. Ultimately with respect to Ib in Figure 5b, given an
Siscale = 0.8, we have N20 = 1, N3 = 0.8, and N5 = 0.64.
Since Ntot =

∑100

i=1
Ni = 2.44 and is greater than the threshold

St of 2, Ib is classified as safe.

3.3.3 Case Study 3: Minimizing Analysis Overhead

Figure 5c presents a more complete example and further illus-
trates how memoization is used to avoid redundant computation.
Rather than identifying indirect symptom-generating consumers
recursively for every instruction, we maintain a global symptom-
generation table of Ni values for every instruction. By traversing
the DFG in a depth-first fashion, we guarantee that all the con-
sumers of an instruction are processed before the instruction itself
is encountered. Creating an entry in the symptom-generation table
(labeled S-Gen Table in the Figure 5c) for every instruction as it is
being analyzed ensures that each node in the DFG only needs to be
visited once3.

3 Although this optimization is beneficial for programs with large functions,
even a naive recursive analysis for the SPEC2K applications evaluated in
this work did not appreciably increase compilation time.



For example, assuming the vulnerability analysis begins with
Ic, Shoestring analyzes the instructions in the following order, 4,
7, 6, 8, 5, 1, 2 and eventually marks Ic as safe. When the anal-
ysis pass reaches instruction 3 it can determine its classification
directly, without identifying any of its indirect consumers, since
the symptom-generation table entry for instruction 5 was already
populated during the analysis pass for Ic. The corresponding ta-
ble entry for 3 is computed by scaling all Ni entries for 5 by
Siscale, adjusting the corresponding distances by adding 2, and fi-
nally accounting for the symptom-generating potential of instruc-
tion 5 itself. The table entry for instruction 3 would then contain
N2 = 1, N12 = 0.8, N17 = 0.64 and instruction 3 would subse-
quently also be classified as safe.

Obviously, this depth-first traversal is complicated in the pres-
ence of loops (not present in Figure 5c) where circular dependen-
cies can exist and the traversal could loop indefinitely never reach-
ing a leaf node. Consequently, whenever Shoestring encounters a
loop it forces the depth-first traversal to backtrack when the dis-
tance between the instruction currently being processed and the
instruction at the bottom of the loop exceeds Slat. This guaran-
tees all relevant symptom-generating consumers are accounted for
while also ensuring forward progress.

3.3.4 Case Study 4: Control Flow

The examples examined so far have been limited to analyzing in-
struction DFGs and control has to a large extent been ignored.
Although Shoestring takes a relaxed approach with respect to en-
forcing correct control flow, branching is taken into consideration
when performing vulnerability analysis. Figure 5d shows an exam-
ple where the instruction being analyzed, Id, is in a basic block
(bb0) that has a highly biased branch. In this scenario, although in-
struction 5 is a symptom-generating consumer, because it is in a
basic block (bb2) that is unlikely to be executed, it will not provide
dependable coverage for Id. Therefore, the contribution of every
consumer to Ni is scaled by their respective execution probabili-
ties. These execution probabilities are extracted from profiled exe-
cution (provided to the experiments in Section 5), or when profile
data is unavailable, generated from static approximations.

Lastly, although Wang et al. [36] showed that execution down
the wrong direction of many branches ultimately reconverges with
the correct execution path, in Figure 5d if the branch terminating
bb0 is corrupted causing execution to proceed to bb2 instead of
bb1, there is no time for control to reconverge before instruction 4
potentially corrupts system state. Therefore, Shoestring also selec-
tively protects (by duplicating input operand chains) all branches
that have a control-dependence edge with a high-value instruction.
For sake of brevity, the standard algorithm for identifying control-
dependence edges will not be presented here but it is important to
note that not all branches that can influence whether instruction
4 is executed will be protected. Only those branches that are ef-
fectively the “nearest” to instruction 4 will possess the requisite
control-dependence edges and be protected, leaving the rest (which
are further away and more likely to reconverge) vulnerable.

3.4 Code Duplication

The process of inserting redundant code into a single thread of ex-
ecution has been well studied in the past [19, 26]. In general, this
process involves duplicating all computation instructions along the
path of replication and inserting comparison instructions at syn-
chronization points (e.g., at memory and control flow instructions)
to determine if faults have manifested since the last comparison
was performed. This section will highlight how Shoestring’s code
duplication pass departs from this existing practice. The reader is
encouraged to examine prior work for a detailed description of the
mechanics of code duplication.

(a)

(b)

Figure 6: Example data flow graph illustrating Shoestring’s code duplica-
tion pass. Nodes labeled with an “S” represent safe instructions and dashed
circles highlight high-value instructions. In (a) the shaded portions of the
graph represent code duplication chains. (b) shows the new DFG with all
duplicated instructions inserted as shaded nodes. Nodes labeled with an “=”
represent checker instructions.

The code duplication pass begins by selecting a single high-
value instruction, IHV , from the set of all high-value instructions.
It then proceeds to recursively duplicate all instructions that pro-
duce values for IHV . This duplication is terminated when 1) no
more producers exist, 2) a safe instruction is encountered, or 3)
the producer has already been previously duplicated. In all cases,
it is guaranteed that every vulnerable instructions that could pos-
sibly influence data consumed by IHV is duplicated. Comparison
instructions are inserted right before IHV to verify the computation
of each of its input operands.

Figure 6a presents a section of a DFG with three high-value in-
structions (nodes 6, 7, and 8), three safe instructions (nodes labeled
with an “S”), and five vulnerable instructions (nodes 1-5). For this
example, we start with instruction 6 and begin by duplicating its
producer, instruction 3. Next, we attempt to duplicate the producers
for 3 and notice that one of the producers has been classified as safe
and terminate code duplication on that path. The other producer
for 3 (instruction 2), however, is vulnerable so we duplicate 2 and
continue along its producer chain duplicating instruction 1 as well.



Subsequent attempts to duplicate 1’s consumers encounters safe in-
structions, at which point all vulnerable code relevant to high-value
instruction 6 has been duplicated. Shoestring then moves on to the
next high-value instruction and repeats the process with instruction
7. At this point, instruction 3 has already been duplicated as a result
of protecting instruction 6 so nothing needs to be done. Next, in-
struction 8 is considered, resulting in the duplication of instruction
4.

Figure 6b shows the new DFG with all the duplicated instruc-
tions (shaded nodes) and checkers (“=” nodes) inserted. Note that
both high-value instructions 6 and 7 each have their own checker
to compare the results from instruction 3 and its redundant copy 3’.
Although both 6 and 7 consume the same value, only relying on a
single checker at instruction 6 to detect faults that corrupt 3’s result
could leave 7 vulnerable to faults that corrupt the result of 3 after 6
has already executed. Depending on how far apart 6 and 7 execute,
this vulnerability window could be significant. Nevertheless, in sit-
uations where high-value instructions with common producers also
execute in close proximity, the need for duplicate checkers can also
be avoided. However, this optimization is not investigated in this
work.

4. Experimental Methodology
Given that this paper is targeting coverage of faults induced by soft
errors on commodity processors, we would ideally conduct electron
beam experiments using real hardware running code instrumented
by Shoestring. Given limited resources a popular alternative to
beam experiments is statistical fault injection (SFI) into a detailed
register transfer language (RTL) processor model. However, since
Shoestring exploits fault masking at the application level, full pro-
gram simulation is also required. Since simulating realistic bench-
marks on RTL models is extremely slow, a common practice in the
literature is to rely on microarchitectural-level simulators to pro-
vide the appropriate compromise between simulation fidelity and
speed.

4.1 Fault Model and Injection Framework

The fault injection results presented in this paper are generated us-
ing the PTLsim x86 microarchitectural simulator [41]. PTLsim is
able to run x86 binaries on the native (host) machine as well as
within a detailed microarchitectural simulator. Being able to ef-
fectively switch between native hardware execution and microar-
chitectural simulation on-the-fly enables fast, highly detailed sim-
ulations. We simulated a modern, high performance, out-of-order
processor modeled after the AMD K8 running x86 binaries. The
details of the processor configuration can be found in Table 1.

The fault model we assume is a single bit flip within the physical
register file. Although they are not explicitly modeled, most faults
in other portions of the processor eventually manifest as corrupted
state in the register file, making it an attractive target for injection
studies4. Furthermore, Wang et al. [38] showed that the bulk of
transient-induced failures are dominated by corruptions introduced
from injections into the register file. Nevertheless, our methodology
may not fully capture the ability of Shoestring to handle faults from
combinational logic with large fanouts.

The experimental results shown in this paper are produced with
Monte Carlo simulations. At the start of each Monte Carlo trial a
random physical register bit is selected for injection. It has been
shown that the memory footprint of SPEC2K applications are sig-
nificantly smaller than the full size of a 64-bit virtual address space.

4 Only performing fault injections into the register file is a limitation of
our evaluation infrastructure, not a limitation of Shoestring’s fault coverage
abilities. In reality Shoestring will detect soft errors that strike other parts
of the processing core as well.

Table 1: Processor details (configured to model an AMD-K8).
Processor core @ 2.2GHz

Fetch queue size 36 entries
Reorder buffer size 72 entries
Issue queue size 16 entries
Issue width 16 entries
Fetch/Dispatch/Writeback/

3Commit width
Load/Store queue size 44 entries (each)
Physical register file size 128 entries
Physical register file size 128 entries

Memory
L1-I/L1-D cache 64KB, 2-way, 3 cycle lat
L2 cache (unified) 1MB, 16-way, 10 cycle latency
DTLB/ITLB 32 entries (each)
Main memory 112 cycle lat

Allowing faults to occur in any of the 64-bits of a register would
increase the likelihood of it resulting in a symptomatic excep-
tion [37], and consequently being covered by Shoestring. There-
fore, although PTLsim simulates a 64-bit register file, we limit our
fault injections to only the lower 32 bits to avoid artificially inflat-
ing Shoestring’s coverage results.

Once an injection site is determined, program simulation is
allowed to run in native mode (running on real hardware) until
it reaches a representative code segment (identified using Sim-
Point [28] and manual source code inspection). At this point PTL-
sim switches to detailed mode and warms up the microarchitectural
simulator. After a randomly selected number of cycles has elapsed,
a fault is induced at the predetermined injection site. Detailed simu-
lation continues until 10M instructions commit, at which time PTL-
Sim copies architectural state back to the host machine and resumes
simulating the remainder of the program in native mode. This of
course assumes that the fault did not result in a fatal exception or
program crash prior to 10M instructions. At the end of every sim-
ulation the log files are analyzed to determine the outcome of the
Monte Carlo run as described in the next section.

4.2 Outcome Classification

The result of each Monte Carlo trial is classified into one of four
categories:

1. Masked: the injected fault was naturally masked by the system
stack. This includes trials where the fault was architecturally
masked as well as those that were masked at the application
level.

2. Covered by symptoms: the injected fault resulted in anoma-
lous program behavior that is symptomatic of a transient fault.
For these trials it is assumed that system firmware is able to trig-
ger recovery from a lightweight checkpoint. The details of this
assumed checkpointing mechanism are described in the next
section.

3. Covered by duplication: faults in this category were the result
of injecting code that was selectively duplicated by Shoestring.
During these trials the comparison instructions at the end of
every duplication chain would trigger a function call to initiate
recovery.

4. Failed: In this work the definition of failure is limited to only
those simulation runs which completed (or prematurely termi-
nated) with user-visible data corruptions.



Although the definition for failure used in this paper may seem
unconventional, it is consistent with recent symptom-based work
and is the most appropriate in the context of evaluating Shoestring.
The main premise behind the Shoestring philosophy is that the cost
of ensuring reliable computation can be reduced by focusing on
covering only the faults that are ultimately noticeable by the end
user. Therefore, the figure of merit is not the number of faults
that propagated into microarchitectural (or architectural) state, but
rather the fraction that actually resulted in user-visible failures.

4.3 System Support

As briefly discussed in the previous section, Shoestring (and
symptom-based schemes in general) relies on the ability to roll-
back processor state to a clean checkpoint. The results presented
in Section 5 assume that in modern/future processors a mechanism
for recovering to a checkpointed state of 10-100 instructions in
the past will already be required for aggressive performance spec-
ulation. Consistent with Wang and Patel [37], Shoestring assumes
that any fault that manifests as a symptom within a window of
100 committed instructions (micro-ops, not x86 instructions) can
be safely detected and recovered. The proper selection of the Slat

parameter described in Section 3.3 is closely tied to the size of this
checkpointing window. Only those consumers that can be expected
to generate a symptom within this window are considered when
identifying safe instructions. Similarly, faults that are detected by
instruction duplication would also trigger rollback and recovery.

The results presented in Section 5 assume a checkpointing in-
terval, and consequently an Slat value, of 100. Although this small
window may seem modest in comparison to checkpointing inter-
vals assumed by other work, most notably Li et al. [11], it is the
most appropriate given Shoestring’s goals of providing minimally
invasive, low cost protection. Increasing the size of this window
would unfairly inflate the coverage provided by Shoestring since
accommodating large checkpointing intervals requires substantial
hardware/software overhead. However, if large checkpointing in-
tervals eventually find their way into mainstream processors, the
heuristics used by Shoestring can be easily tuned to exploit this
additional support and provide even greater coverage.

The compilation component of Shoestring is implemented in
the LLVM compiler [10]. The reliability-aware code generation
passes described in Section 3.1 are integrated as part of the code
generation backend. Six applications from the SPEC2K integer
benchmark suite (gzip, mcf, crafty, bzip2, gap, and vortex) are used
as representative workloads in our experiments and are compiled
with standard -O3 optimizations. To minimize initial engineering
effort, we only evaluated benchmarks from the SPEC2K suite that
both 1) compiled on standard LLVM (without modifications for
Shoestring) and 2) simulated correctly on PTLSim “out-of-the-
box”. They were not handpicked because they exhibited desirable
behavior. Similarly, to minimize engineering effort we do not apply
Shoestring to library calls. The common practice in the literature
is to assume that dynamically linked library calls are protected
by some other means, i.e., outside the SoR (see Section 3) [25].
The results presented in Section 5 adheres to the same practice and
avoids injections into library calls.

Lastly, due to limitations of our evaluation framework we do
not study Shoestring in the context of multithreaded/multicore
environments. Given that we treat the cache as outside our SoR
the majority of challenges posed by the shared memory in mul-
tithreaded/multicore systems would not impact the efficacy of
Shoestring. However, the larger memory footprints of multi-
threaded applications could potentially attenuate the coverage due
to a reduction in the performance of memory access symptoms. The
greater resource/register utilization in simultaneous multithreaded
systems could also reduce the amount of masking we see from

(a) Symptom-based fault coverage

(b) Latency distribution of symptom-based detection.

Figure 7: Results of preliminary fault injection experiments. (a) shows
the percentage of faults that are intrinsically masked (Masked), covered by
symptoms (Symptom), covered by long-latency symptoms (Symptom-L ), or
result in user-visible failures (User-visible Corruption).

faults that strike dead/free registers. Lastly, identifying the exact
core which triggered the symptom, as well as orchestrating the
checkpoint rollback and recovery, is more challenging when mul-
tiple threads running on different cores are interacting and sharing
data. However, these challenges are beyond the scope of the current
paper and are left as interesting directions for future work.

5. Evaluation and Analysis
This section begins with results from an initial fault injection
campaign to quantify the amount of opportunity available for
Shoestring to exploit. We then proceed to examine the compilation
heuristics described in Section 3. Finally, we present and analyze
the fault coverage and runtime overheads for Shoestring. All ex-
perimental results included in this section are derived from >10k
Monte Carlo trials.

5.1 Preliminary Fault Injection

Figure 7 presents the results of initial fault injection trials. The pur-
pose of this preliminary experiment was to identify the amount
of faults that are inherently masked throughout the entire system
stack. The accumulation of all these sources of masking, from the
microarchitecture up through the application layer, is essentially
the amount of “coverage” that is available for free. This is shown as
the Masked segment on the stacked bars and corresponds to roughly
91.9% on average across the benchmarks. Symptoms account for
another 4.9% and actual user-visible failures account for the re-
maining 3.2%.

As mentioned in Section 3 symptom-based coverage is only
useful if symptoms are triggered within a small window of cycles,



Figure 8: Percentage of static instructions classified as high-value (IHV ).

Slat, following a fault. If the symptom latency exceeds Slat then
the likelihood that state corruption can occur before a symptom is
manifested increases. Note now the portions of the chart labeled
as Symptom-L. These segments are the fraction of trials that lead
to symptoms but did so only after the 100 instruction Slat win-
dow expired. Without more expensive check-pointing to accom-
modate longer latencies, the Symptom-L cases must also be con-
sidered failures. Figure 7b examines these symptom-generating tri-
als from a different perspective, as a distribution based on detection
latency. Although the majority of symptoms do manifest within the
100 instruction threshold, roughly 14.7% would require a much
more aggressive checkpointing scheme (1000 instructions) than
what is needed for performance speculation alone. Furthermore,
the remaining 2.6%, with latencies of more than 10,000 instruc-
tions could not be exploited without being accompanied by heavy-
weight, software-based checkpointing (and its attendant costs). The
remainder of the paper assesses Shoestring’s ability to minimize
user-visible corruptions by integrating symptom-based coverage
with intelligent software-based code duplication.

5.2 Program Analysis

5.2.1 High-value Instructions

To gain insight into how selective instruction duplication is actu-
ally applied by Shoestring, we examine the heuristics described in
Section 3 in the context of our SPEC2K workloads. Figure 8 shows
the percentage of instructions identified as high-value within each
benchmark. As discussed in Section 3.2.2, only instructions that
can potentially modify global memory or produce values for func-
tion calls are considered high-value. On average roughly 24.3% of
all static instructions meet this criteria and become the focus of
Shoestring’s code duplication efforts.

5.2.2 Safe Instructions

Figure 9 presents the percentage of instructions classified as safe,
as a function of the heuristic parameter St (Section 3.3). A value of
n for St indicates that for an instruction to be considered safe (i.e.,
covered by symptom-generating consumers) it must possess at least
n consumers within a distance of Slat instructions along any poten-
tial path of execution. Note that on average, even with St relaxed to
allow for any non-zero threshold (>0) only 10.1% of static instruc-
tions are classified as safe. This is mainly due to our conservative
decision to only consider potential ISA-excepting instructions as
candidates for symptom-generating consumers. A more aggressive
heuristic could potentially identify more safe instructions if the set
of symptoms that it monitored was more inclusive. However, this
would come at the cost of performance-degrading false positives.

For this, and all subsequent, experiments the value of Slat was
fixed at 100 instructions as explained in Section 4.3. A value of

Figure 9: Percentage of static instructions classified as safe as St is varied
(IS).

Figure 10: Percentage of static code duplication performed by Shoestring
as St is varied (ID).

0.9 for Siscale (Section 3.3.2) was also empirically determined to
produce the best heuristic behavior, and is fixed for all experiments.

5.2.3 Duplicated Instructions

Figure 10 shows the percentage of (static) instructions that are
duplicated by Shoestring as St is swept from >0 to ∞. Note
the direct relationship between St and the number of duplicated
instructions. This is attributable to the fact that code duplication
begins at high-value instructions and terminates at the first safe
instruction encountered (see Section 3.4). Therefore, the fewer
instructions that are classified as safe, the less likely a duplication
chain will terminate early. In the extreme case when St = ∞ no
instructions are classified as safe. This results in fully duplicating
producer chains for every high-value instruction.

5.3 Overheads and Fault Coverage

Next we examine the runtime overhead of the binaries that have
been protected by Shoestring’s selective code duplication. Fig-
ure 11a shows that as St is varied from >0 to ∞ the performance
overhead of Shoestring ranges from 15.8% to 30.4% (obtained
from native simulation on an Intel Core 2 processor). The execution
overheads for a full software duplication scheme, SWIFT [25], are
also included for the sake of comparison5(bars labeled Full). Since
Shoestring is positioned as a reliability “on the cheap” solution,
maintaining low runtime overhead is of paramount importance. To
evaluate the amount of coverage that can be obtained by Shoestring

5 The overheads we cite from SWIFT [25] are conservative considering
they targeted a wide VLIW machine and would incur substantially more
overhead given a less overprovisioned processor.



(a) Runtime performance overhead.

(b) Fault coverage.

Figure 11: Fault coverage and runtime performance overheads for
Shoestring as a function of St.

Figure 12: Detailed coverage breakdown for Shoestring configured with St

fixed at >0.

with the least amount of performance overhead, for the remainder
of this section the value of St is fixed at >0.

Figure 11b presents the coverage results for this Shoestring con-
figuration. Also included are coverage numbers for no instruction
duplication, No Duplication, and St = ∞ to illustrate where the
proposed solution sits with respect to the upper and lower bounds.
Coverage numbers for other values of St were not included because
of the requisite simulation effort. Although investigating more so-
phisticated heuristics for instruction classification and vulnerability
analysis has the potential to garner even more coverage, note that
Shoestring is already able to recover from 80.4% of the failures that
would have otherwise gone unmasked and caused user-visible data
corruptions.

Lastly, Figure 12 takes a closer look at the fault coverage
achieved by Shoestring. The stacked bars highlight the individual

components contributing to Shoestring’s total fault coverage. Note
that on average, selective duplication covers an additional 33.9%
of the unmasked faults that would have slipped by a symptom-
only based scheme. Notice also the segment labeled Software. This
category, only significant for gzip and bzip2, is the result of asser-
tions placed in the source code that actually detect the erroneous
behavior of the program following a fault injection. This observa-
tion suggests that perhaps only a modest investment is required to
enhance conventional assertion checks with information that could
improve Shoestring’s program analysis.

6. Related Work

This section examines Shoestring in the context of previous
work. Table 2 presents a quick overview of where Shoestring sits
within the soft error solution space. The ability to achieve high
levels of fault coverage with very low performance overhead, all
without any specialized hardware, sets it apart from previously pro-
posed schemes. Each category of alternative solutions is addressed
in detail below.

n-Modular Redundancy (nMR): Spatial or temporal redun-
dant execution has long been a cornerstone for detecting soft errors,
with hardware DMR (dual-modular redundancy) and TMR (triple-
modular redundancy) being the solutions of choice for mission-
critical systems. However, the cost of such techniques has relegated
them to the high-budget server and mainframe domains (e.g., HP
NonStop series [3] and IBM zSeries [2] machines). DIVA [1] is
a less expensive alternative to full hardware duplication, utilizing
a small checker core to monitor the computations performed by a
larger microprocessor.

Rather than employing full hardware replication, recent work
has also been interested in using smaller, lightweight hardware
structures to target individual components of the processor. Ar-
gus [15] relies on a series of hardware checker units to perform
online invariant checking to ensure correct application execution.
In [22] Reddy and Rotenberg propose simple checkers that verify
the functionality of decode and fetch units by comparing dynami-
cally generated signatures, for small traces of identical instructions.
They extend this idea in [23] by introducing additional checkers for
other microarchitectural structures.

Although the area overhead of solutions like DIVA and Argus
are significantly lower than full DMR, they still remain an ex-
pensive choice for commodity systems. Nevertheless, these nMR
(and partial nMR) solutions provide greater fault coverage than
Shoestring and can provide bounds on detection latency.

Redundant Multithreading (RMT): The introduction of si-
multaneous multithreading (SMT) capabilities in modern proces-
sors gave researchers another tool for redundant execution. Roten-
berg’s paper on AR-SMT [27] was the first to introduce the concept
of RMT on SMT cores. The basic idea was to use the processor’s
extra SMT contexts to run two copies of the same thread, a leading
thread and a trailing thread. The leading thread places its results
in a buffer, and the trailing thread verifies these results and com-
mits the executed instructions. Subsequent works improved upon
this scheme by optimizing the amount of duplicated computation
introduced by the redundant thread [7, 21, 24]. RMT has also been
attempted at the software level by Cheng et al. [34]. This elimi-
nates the need for architectural modifications to support RMT, and
relies on the compiler to generate redundant threads that can run
on general-purpose chip multiprocessors. With the advent of mul-
ticore, RMT solutions have evolved into using two or more dis-
crete cores within a CMP to mimic nMR behavior. Reunion [31]
and Mixed-mode reliability [40] are two recent proposals that al-
low idle cores within a CMP to be leveraged for redundant thread
execution. The chief attraction of RMT approaches is the high cov-



Table 2: Shoestring compared to existing solutions for soft errors.
Solution Hardware support Software support Perf. overhead Area overhead Coverage
n-Modular redundancy YES NO LOW VERY HIGH VERY HIGH
Redundant Multi-threading YES MAYBE HIGH HIGH VERY HIGH
Software instruction duplication NO YES HIGH NONE HIGH
Symptom-based detection NO NO LOW NONE MODERATE
Register file protection YES NO LOW MODERATE MODERATE
Shoestring NO YES LOW NONE HIGH

erage they can provide. The drawbacks of RMT include significant
throughput degradation (loss of an SMT context or an entire core),
hardware complexity/overhead, and potentially double the power
consumption of non-RMT execution.

Software instruction duplication: Redundant execution can
also be achieved in software without creating independent threads
as shown by Reis et al. [25]. They proposed SWIFT, a fully com-
piler based software approach for fault tolerance. SWIFT exploits
wide, underutilized processors by scheduling both original and du-
plicated instructions in the same execution thread. Validation code
sequences are also inserted by the compiler to compare the results
between the original instructions and their corresponding dupli-
cates. CRAFT [26] and PROFIT [26] improve upon the SWIFT
solution by leveraging additional hardware structures and architec-
tural vulnerability factor (AVF) analysis [18], respectively. As in
the case of RMT, compiler-based instruction duplication also de-
livers nearly complete fault coverage, with the added benefit of re-
quiring little to no hardware cost. However, in order to achieve this
degree of fault coverage, solutions like SWIFT can more than dou-
ble the number of dynamic instructions for a program, incurring
significant performance and power penalties.

Symptom-based detection: As mentioned in previous sections,
Wang et al. was the first to exploit anomalous microarchitectural
behavior to detect the presence of a fault. Their light-weight ap-
proach for detecting soft errors, ReStore [35, 37], leveraged symp-
toms including memory exceptions, branch mispredicts, and cache
misses. The concept of anomaly detection has been further explored
by Racunas et al. [20] who proposed verifying data value ranges
and data bit invariants. Lastly, Li et al. [11] extended symptom-
based fault coverage and applied it to detecting and diagnosing
permanent hardware faults. The strength of symptom-based detec-
tion lies in its low-cost and ease of application. Unfortunately, the
achievable fault coverage is limited and not appropriate for high
error-rate scenarios.

Register file protection schemes: The register file holds a sig-
nificant portion of program state. Consequently, error-free execu-
tion of a program cannot be accomplished without protecting it
against faults. Just as main memory can be augmented with ECC,
register file contents can also be protected by applying ECC. This
process can be further optimized by protecting only live program
variables, which usually occupy only a fraction of the register file.
Solutions like the one presented by Montesinos et al. [16] builds
upon this insight and only maintains ECC for those registers most
likely to contain live values. Similarly Blome et al. [4] proposes
a register value cache that holds duplicates of live register values.
It is important to note that these schemes in general can only de-
tect faults that occur after valid data has been written back to the
register file. In contrast, Shoestring can also detect faults in other
parts of the datapath that corrupt instruction output before it is writ-
ten back to the register file or correction codes have been properly
generated.

7. Conclusion
If technology scaling continues to exacerbate the challenges posed
by transient faults, the research community cannot remain focused
only on ultra-high reliability systems. We must devote efforts also
to developing new innovative solutions for mainstream commod-
ity processors. This paper introduces Shoestring, a transparent,
software-based reliability solution that leverages both symptom-
based detection as well as selective instruction duplication to mini-
mize user-visible failures induced by soft errors. For a total perfor-
mance penalty of 15.8%, Shoestring can cover an additional 33.9%
of faults undetected by a conventional symptom-based scheme. Al-
lowing just 1.6% of faults to manifest as user-visible data corrup-
tion, Shoestring is a cost-effective means of providing acceptable
soft error resilience at a cost that the average commodity system
can afford.
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