
Self-calibrating Online Wearout Detection

Jason Blome Shuguang Feng Shantanu Gupta Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, MI 48109

{jblome, shoe, shangupt, mahlke}@umich.edu

ABSTRACT
Technology scaling, characterized by decreasing feature size, thin-
ning gate oxide, and non-ideal voltage scaling, will become a major
hindrance to microprocessor reliability in future technology gener-
ations. Physical analysis of device failure mechanisms has shown
that most wearout mechanisms projected to plague future technol-
ogy generations are progressive, meaning that the circuit-level ef-
fects of wearout develop and intensify with age over the lifetime
of the chip. This work leverages the progression of wearout over
time in order to present a low-cost hardware structure that identi-
fies increasing propagation delay, which is symptomatic of many
forms of wearout, to accurately forecast the failure of microarchi-
tectural structures. To motivate the use of this predictive technique,
an HSPICE analysis of the effects of one particular failure mecha-
nism, gate oxide breakdown, on gates from a standard cell library
characterized for a 90 nm process is presented. This gate-level anal-
ysis is then used to demonstrate the aggregate change in output de-
lay of high-level structures within a synthesized Verilog model of
an embedded microprocessor core. Leveraging this analysis, a self-
calibrating hardware structure for conducting statistical analysis of
output delay is presented and its efficacy in predicting the failure of
a variety of structures within the microprocessor core is evaluated.

1. INTRODUCTION
Traditionally, microprocessors have been designed with worst

case operating conditions in mind. To this end, manufacturers have
employed burn in, guard bands, and speed binning to ensure that
processors will meet a predefined lifetime qualification, or mean
time to failure (MTTF). However, projections of current technol-
ogy trends indicate that these techniques are unlikely to satisfy re-
liability requirements in future technology generations [14]. As
CMOS feature sizes scale to smaller dimensions, the inability of
operating voltage to scale accordingly results in dramatic increases
in power and current density. Areas of high power density increase
local temperatures leading to hot spots on the chip [29]. Since most
wearout mechanisms, such as gate oxide breakdown (OBD), neg-
ative bias temperature instability (NBTI), electromigration (EM),
and hot carrier injection (HCI), are highly dependent on tempera-
ture, power, and current density, the occurrence of wearout-induced
failures will become increasingly common in future technology
generations [2].

Though the reliability of individual devices is projected to de-
crease, consumer expectations regarding system reliability are only
likely to increase. For example, some business customers have re-
ported downtime costs of more than $1 million per hour [6]. Fur-
ther, a recent poll conducted by Gartner Research demonstrated that
more than 84% of organizations rely on systems that are over five
years old, and more than 50% use machines that are over ten years

old [1]. Given the requisite long life expectancies of systems in
the field and the high costs of in-field replacement, any technique
for mitigating the amount of downtime experienced due to failed
systems will prove invaluable to businesses.

In order to maintain availability in the presence of potentially un-
reliable components, architects and circuit designers have histori-
cally employed either error detection or failure prediction mech-
anisms. Error detection is used to identify failed or failing com-
ponents by locating (potentially transient) pieces of incorrect state
within the system. Once an error is detected, the problem is diag-
nosed and corrective actions may be taken. The second approach,
failure prediction, supplies the system with a failure forecast allow-
ing it to take preventative measures to avoid, or at least minimize,
the impact of expected device failures.

Historically, high-end server systems have relied on error detec-
tion to provide a high degree of system reliability. Error detection is
typically implemented through coarse grain replication. This repli-
cation can be conducted either in space through the use of repli-
cated hardware [32, 12], or in time by way of redundant computa-
tion [27, 24, 22, 37, 30, 18, 25, 23]. The use of redundant hardware
is costly in terms of both power and area and does not significantly
increase the lifetime of the processor without additional cold-spare
devices. Detection through redundancy in time is potentially less
expensive but is generally limited to transient error detection unless
redundant hardware is readily available.

Failure prediction techniques are typically less costly to imple-
ment, but they also face a number of challenges. One traditional
approach to failure prediction is the use of canary circuits [4], de-
signed to fail in advance of the circuits they are charged with pro-
tecting, providing an early indication that important processor struc-
tures are nearing their end of life. Canary circuits are an efficient
and generic means to predict failure. However, there are a number
of sensitive issues that must be addressed to deploy them effec-
tively. For instance, the placement of these circuits is extremely
important for accurate prediction, because the canary must be sub-
jected to the same operating conditions as the circuit it is designed
to monitor.

Another technique for failure prediction is the use of timing sen-
sors that detect when circuit latency is increasing over time or has
surpassed some predefined threshold [17, 13, 5]. The work pre-
sented here extends upon [13] which presented the idea of failure
prediction using timing analysis and identifying degrading perfor-
mance as a symptom of wearout in semiconductor devices.

Recent work by Srinivasan [34] proposes a predictive technique
that monitors the dynamic activity and temperature of structures
within a microprocessor in order to calculate their predicted time
to failure based on analytical models. This system can then be used
to swap in cold-spare structures based on these predictions. This

work pioneered the idea of dynamically trading performance for
reliability in order to meet a predefined lifetime qualification. Al-
though this technique may be used to identify structures that are
likely to fail in the near future, it relies on accurate analytical de-
vice wearout models and a narrow probability density function for
effective predictions.

Research into the physical effects of wearout on circuits has
shown that many wearout mechanisms for silicon devices are pro-
gressive over time. Further, many of these wearout mechanisms,
such as EM, OBD, HCI, and NBTI, have been shown to have a
negative impact on device performance [7, 20, 41, 16]. For exam-
ple, a device subject to hot carrier injection (HCI) will experience
drive current degradation, which leads to a decrease in switching
frequency [7]. The recognition of progressive performance degra-
dation as a precursor to wearout-induced failures creates a unique
opportunity for predictive measures, which can forecast failures by
dynamically analyzing the timing of logic in situ.

The work presented here proposes an online technique that de-
tects the performance degradation caused by wearout over time in
order to anticipate failures. Rather than aggressively deploying du-
plicate fault-checking structures or relying on analytical wearout
models, an early warning system is presented that identifies the
performance degradation symptomatic of wearout. As a case study,
and to derive an accurate performance degradation model for subse-
quent simulations, detailed HSPICE simulations were performed to
determine the impact of one particular wearout mechanism, OBD,
on logic gates within a microprocessor core. Research of other pro-
gressive wearout mechanisms such as HCI and EM, indicates that
similar effects are likely to be observed as a result of these phe-
nomenon.

The results of this analysis are used to motivate the design of
an online latency sampling unit, dubbed the wearout detection unit
(WDU). The WDU is capable of measuring the signal propaga-
tion latencies for signals within microprocessor logic. This infor-
mation is then sampled and filtered by a statistical analysis mech-
anism that accounts for anomalies in the sample stream (caused
by phenomenon such as clock jitter, and power and temperature
fluctuations). In this way, the WDU is able to identify significant
changes in the latency profile for a given structure and predict a
device failure. Online statistical analysis allows the WDU to be
self-calibrating, adapting to each structure that it monitors, making
it generic enough to be reused for a variety of microarchitectural
components.

Traditional studies of wearout mechanisms have focused primar-
ily on their effects on transistor and circuit level performance, with-
out analyzing the microarchitectural impact. To the best of the au-
thors’ knowledge, the experiments presented in this work are the
first such attempt in this direction. The contributions of this paper
include:

• An HSPICE-based characterization of OBD-induced wearout

• A microarchitectural analysis of the performance impact of
OBD on microprocessor logic

• A detailed simulation infrastructure for modeling the impact
of wearout on an embedded processor core

• A self-calibrating WDU capable of monitoring path latencies

• A demonstration of how the WDU can be deployed to extend
processor lifetime

2. DEVICE-LEVEL WEAROUT ANALYSIS
Though many wearout mechanisms have been shown to progres-

sively degrade performance as transistors age [7, 41, 16], as a case

study, this work focuses on the effects of one particular mechanism,
gate oxide breakdown (OBD), to demonstrate how performance
degradation at the device level can affect processor performance at
the microarchitectural level. Due to the lack of microarchitectural
models for the progressive effects of wearout, it was necessary to
first model the effects at the circuit level in order to abstract them
up to the microarchitecture. The results of the modeling and ab-
straction are presented within this section. While this section is
useful in understanding the nature of progressive wearout, readers
unfamiliar with device physics may want to simply note the high-
level abstraction of OBD effects presented in Figure 1 and move on
to section 3.

The remainder of this section describes the transistor degrada-
tion model for OBD, based on empirical data from researchers at
IBM. This section also presents an HSPICE characterization of the
effects of OBD on gates in a 90 nm standard cell library from a
major technology vendor.

2.1 Gate Oxide Breakdown
OBD, also known as time dependent dielectric breakdown (TDDB),

is caused by the formation of a conductive path through the gate
oxide of a CMOS transistor. The progression of OBD causes an
increasing leakage current through the gate oxide of devices that
eventually leads to oxide failure, rendering the device unrespon-
sive to input stimuli [36, 21, 20]. Sune and Wu showed that there is
a significant amount of time required for the OBD leakage current
to reach a level capable of affecting circuit performance [36]. This
suggests that there is a window of opportunity to detect the onset
of OBD before oxide leakage levels compromise the operation of
devices and cause timing failures.

The modeling of OBD conducted in this work is based upon the
experimental results of Rodriguez et al. [26]. The change in gate
oxide current resulting from OBD is modeled by the power-law
expression in Equation 1:

∆Igate = K(Vgd)
p (1)

The change in gate-to-drain (gate-to-source) current is repre-
sented as a function of a linear scaling factor K, the gate-to-drain
(gate-to-source) voltage Vgd (Vgs), and a power-law exponent, p.
Both fitting parameters K and p vary depending on the amount of
degradation experienced by the transistor in question. However, for
much of the empirical data collected in [26], selecting a p = 5.0,
while still allowing K to track the degree of degradation, resulted
in a consistent fit. This is the model for device degradation used in
this work.

2.2 HSPICE Analysis
To facilitate modeling the effects of OBD-induced degradation in

HSPICE, the BSIM4 gate leakage model [11] for gate-to-drain and
gate-to-source oxide leakage is modified to accommodate the scal-
ing factor from Equation 1. Using this leakage model, an HSPICE
testbench was created to simulate the effects of OBD on propaga-
tion delay within logic circuits. The testbench consists of an ideal
voltage source driving an undegraded copy of the gate under test,
which drives the gate under test, which drives another undegraded
copy of the gate under test. This testbench allows the simulations
to capture both the loading effects a degraded device presents to
nodes on the upstream path, as well as the ability of downstream
nodes to regenerate a degraded signal.

For each type of logic gate within the cell library, one transistor
at a time is selected from the gate and its leakage model is replaced
with the modified BSIM4 model. For each transistor that is being
degraded, all input to output transistions are simulated so that for

-20

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

D
el

ta
 P

ro
pa

ga
tio

n
D

el
ay

 (
%

)

Oxide Leakage (A)

PMOS (rise)
PMOS (fall)
NMOS (rise)
NMOS (fall)

(a) Inverter delay profile.

-100

 0

 100

 200

 300

 400

 500

 1e-11 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 1e-04 0.001

D
el

ta
 P

ro
pa

ga
tio

n
D

el
ay

 (
%

)

Oxide Leakage (A)
(b) Net effect (rise+fall transitions) on propagation delay for 90
nm standard cells.

Figure 1: Impact of OBD-induced oxide leakage current on stan-
dard cell propagation delays.

every gate characterized, propagation delays corresponding to all
possible combinations of degraded transistor, input to output path,
and initial input states are captured. For each simulation run, the
amount of degradation experienced by the degraded transistor (as
modeled by the oxide leakage) is slowly increased until the gate
ceases to function (outputs no longer switch).

The results of the timing characterization are shown in Figure 1.
Figure 1a shows the changes in propagation delay for an average
size inverter. The plot highlights the different effects that OBD has
on propagation delay depending on the transition direction and lo-
cation/type of the degraded transistor. Note that for the case when
the PMOS (the analogous story is true for the NMOS) is degraded,
rising transitions expressed increases in delay while falling transi-
tions showed decreases in delay. A detailed discussion of this phe-
nomenon follows in the next paragraph. Although there are com-
plex dependence relationships affecting the performance impact on
rise and fall propagation delays, as a simplifying assumption, the
net effect is used in this work. Figure 1b presents the net effect
(rising transition + falling transition) of OBD on gates within the
cell library. For a given gate a separate curve is shown for each
of its transistors. Note that the “net” change in propagation delay
is categorically increasing near the end of life for gates within this
cell library, irrespective of which internal transistor is degraded.

An examination of Figure 1a reveals that in the case where the
PMOS experiences OBD, the rising transition expresses more than

Increasing

Degradation

(a) Input to inverter cell (tcell).

Increasing

Degradation

(b) Output of inverter cell (tcell).

Increasing

Degradation

(c) Restored “circuit” output (tcircuit).

Figure 2: HSPICE simulation traces for inverter with degraded
PMOS (slowdown).

a doubling of its nominal delay before the inverter fails to transition.
The primary source of this increase in delay is the interaction with
the previous stage, a non-degraded inverter, which is subjected to
driving the leaky PMOS oxide. Figures 2 and 3 show the voltages
at the nodes of interest during the rising and falling transitions of
the degraded inverter. The bold traces show the voltage transitions
under nominal conditions while the lighter curves are the result of
increasing amounts of wearout.

When the input to the inverter under test begins to fall (Fig-
ure 2a), the gate-to-source oxide leakage, Igs, through the PMOS
device provides additional current to the input node, prolonging
the discharge time of the gate through the NMOS of the preceding
stage. The gate-to-drain oxide leakage, Igd, initially aids the rising
transition, helping to charge up the inverter output. However, as the
transition continues and the output begins to rise, this Igd leakage
also provides an additional current to the gate node. As with the Igs

current, this too increases the time required to drain the remaining
charge on the gate. Note also that with large amounts of degrada-
tion the input voltage range compresses due to Igs and Igd oxide

Increasing

Degradation

(a) Input to inverter cell (tcell).

Increasing

Degradation

(b) Output of inverter cell (tcell).

Increasing

Degradation

(c) Restored “circuit” output (tcircuit).

Figure 3: HSPICE simulation traces for inverter with degraded
PMOS (speedup).

leakage. Unable to switch from rail-to-rail, the on-currents sus-
tainable by the PMOS and NMOS are significantly reduced, which
ultimately contributes to the increase in overall propagation delay
(Figure 2c).

Perhaps more surprising is the behavior of the propagation delay
during a falling transition of the inverter output (Figure 3). With
increasing oxide degradation, the delay of the inverter actually de-
creases until just prior to functional failure. This behavior is caused
by the Igs and Igd leakage currents that help in charging their own
gate node, resulting in an earlier rising transition on the input. As
a result, despite the degraded on currents due to the compressed
gate voltage swing, because the inverter actually “sees” the input
transitioning sooner, the net effect is a decrease in the overall prop-
agation delay of the inverter itself (tcell) and ultimately the circuit
(tcircuit).

In summary, at moderate values of oxide degradation, the in-
put voltage on the gate node swings roughly rail-to-rail, allowing
normal operation of the inverter. However, during the final stages
of oxide OBD, the input voltage range compresses due to Igs and

Igd leakage (Figures 3a and 2a), and the current conducted by the
PMOS and NMOS devices in the inverter are significantly altered.
The significantly reduced output range eventually results in func-
tional failure when the device is no longer capable of driving sub-
sequent stages. Note however, that prior to circuit failure, the stage
immediately following the inverter under test is able to completely
restore the signal to a full rail swing (Figures 2c and 3c), irrespec-
tive of the switching direction.

3. MICROARCHITECTURE-LEVEL
WEAROUT ANALYSIS

This section describes how the transistor-level models from the
previous section are used to simulate the effects of OBD over time
on an embedded microprocessor core. The section begins by de-
scribing the processor core studied in this work along with the syn-
thesis flow used in its implementation and thermal analysis. This
is followed by a discussion of MTTF calculations and a description
of the approach used to conduct Monte Carlo simulations of the ef-
fects of OBD. A discussion of OBD’s impact on propagation delay
at the microarchitectural level concludes the section.

3.1 Microprocessor Implementation
The testbed used to conduct wearout experiments was a Ver-

ilog model of the OpenRISC 1200 (OR1200) CPU core [3]. The
OR1200 is an open-source, embedded-style, 32-bit, Harvard ar-
chitecture that implements the ORBIS32 instruction set. The mi-
croprocessor contains a single-issue, 5-stage pipeline, with direct
mapped 8KB instruction and data caches, and virtual memory sup-
port. This microprocessor core has been used in a number of com-
mercial products and is capable of running the µClinux operating
system.

The OR1200 core was synthesized using Synopsys Design Com-
piler, with a cell library characterized for a 90 nm process and a
clock period of 2.5 ns (400 MHz). Cadence First Encounter was
used to conduct floorplanning, cell placement, clock tree synthesis,
and routing. This design flow provided accurate timing informa-
tion (cell and interconnect delays) and circuit parasitics (resistance
and capacitance values) for the entire OR1200 core. The floorplan
along with details of the implementation is shown in Figure 4. Note
that although the OR1200 microprocessor core shown in Figure 4
is a relatively small design, it’s area and power requirements are
comparable to that of an ARM9 microprocessor. The final synthe-
sis of the OR1200 appropriates a timing guard band of 250 ps (10%
of the clock cycle time) to mimic a commodity processor and to en-
sure that the wearout simulations do not prematurely cause timing
violations.

3.2 Power, Temperature, and MTTF Calcula-
tions

The MTTF due to OBD is dependent on many factors, the most
significant being oxide thickness, operating voltage, and tempera-
ture. To quantify the MTTF of devices undergoing OBD, this work
uses the empirical model described in [33], which is based on ex-
perimental data collected at IBM [39]. This model is presented in
Equation 2.

MTTFOBD ∝ (
1

V
)(a−bT)e

(X+ Y

T
+ZT)

kT (2)

where,

• V = operating voltage
• T = temperature

OR1200 Core
Area 1.0 mm2

Power 123.9 mW
Clock Frequency 400 MHz
Data Cache Size 8 KB
Instruction Cache Size 8 KB
Logic Cells 24,000
Technology Node 90 nm
Operating Voltage 1.0 V

(a) Implementation details for the
OR1200 microprocessor.

(b) Overlay of the OR1200 floorplan on top of the
placed and routed implementation of the CPU core.

Figure 4: OpenRisc1200 embedded microprocessor.

• k = Boltzmann’s constant
• a, b, X, Y, and Z are all fitting parameters based on [33]

In order to calculate the MTTF for devices within the OR1200
core, gate-level activity data was generated by simulating the ex-
ecution of a set of benchmarks1 running on a synthesized netlist
using Synopsys VCS. This activity information, along with the
parasitic data generated during placement and routing, was then
used by Synopsys PrimePower to generate a per-benchmark power
trace. The power trace and floorplan were in turn processed by
HotSpot [29], a block level temperature analysis tool, to produce a
dynamic temperature trace and a steady state temperature for each
structure within the design.

Once the activity and temperature data were derived, the MTTF
for each logic gate in the design was calculated using Equation 2
with the temperature and activity data for each benchmark. A per-
module MTTF is calculated by identifying the minimum MTTF
across all logic gates within each top-level module of the OR1200
core. These per-module MTTF values are later used to parametrize
the statistical distribution of failures used in Monte Carlo simula-
tions of OBD effects. Figure 5 presents the steady state tempera-
tures and MTTF values of different structures within the CPU core
1Five benchmarks were studied to represent a range of computa-
tional behavior for embedded systems: dhrystone - a synthetic inte-
ger benchmark; g721encode and rawcaudio from the MediaBench
suite; rc4 - an encryption algorithm; and sobel - an image edge
detection algorithm.

 334

 335

 336

 337

 338

 339

 340

 341

 342

 343

W
B

SPRS

Register File

Operand M
uxes

M
ult/M

AC

LSU
Fetch

Next PC

Except

Decode

ALU

T
em

pe
ra

tu
re

 (
o K

)

dhrystone
g721 encode

rawcaudio
rc4

sobel

 10

 15

 20

 25

 30

 35

 40

 45

ALU
Decode

Except

Next PC

Fetch
LSU

M
ult/M

AC

Operand M
uxes

Register File

SPRS

W
B

M
ea

n
T

im
e

to
 F

ai
lu

re
 (

ye
ar

s)

dhrystone
g721 encode

rawcaudio
rc4

sobel

Figure 5: Derived workload-dependent steady state temperature
and MTTF for the OR1200 CPU core. An ambient temperature
of 333K was used for Hotspot.

for the five benchmarks.
Figure 5 highlights the correlation between MTTF and temper-

ature. Structures with the highest temperatures tended to have the
smallest MTTFs, meaning that they were most likely to wearout
first. For example, the decode unit, with a maximum temperature
about 3◦K higher than any other structure on the chip, would likely
be the first structure to fail. Somewhat surprisingly, the ALU had a
relatively low temperature, resulting in a long MTTF. Upon further
investigation, it was found that across most benchmark executions,
less than 50% of dynamic instructions exercised the ALU, and fur-
thermore, about 20% of the instructions that actually required the
ALU were simple logic operations and not computationally inten-
sive additions or subtractions. These circumstances led to a rela-
tively low utilization and ultimately lower temperatures. It is im-
portant to note that although this work focuses on a simplified CPU
model, the proposed wearout detection technique is not coupled to
a particular microprocessor design or implementation, but rather re-
lies upon the general circuit-level trends suggested by the HSPICE
simulations. In fact, a more aggressive, high performance micro-
processor is likely to have more dramatic hotspots, which would
only serve to exaggerate the trends that motivate the WDU design
presented in this work.

3.3 Wearout Simulation
As demonstrated in Section 2, progressive wearout phenomena

-2

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

 S
lo

w
do

w
n

Time (years)

result[0]
result[6]
result[7]
result[11]
result[12]
result[26]
result[27]
result[28]
result[29]
result[31]

Figure 6: The observed slowdown of signals from the ALU result
bus as a result of OBD effects over the lifetime of one instance of
an OR1200 processor core.

(OBD in particular) have a significant impact on circuit-level tim-
ing. Work done by Linder and Stathis [20] has shown that OBD-
induced gate leakage obeys an exponential growth rate with age:

∆IOBD(t) = IOBD0 · et/γ (3)

where,

• IOBD(t): the amount of leakage current at time t

• IOBD0 : the initial amount of leakage current at time 0

• γ: varied to model a “fast” or “slow” exponential growth

Monte Carlo simulations of the OBD effects on a distribution of
microprocessors in the field are conducted by coupling the leakage
model, shown in Equation 3, with the model for MTTF from Equa-
tion 2. For every logic gate within each microprocessor simulated,
the time when the first initial breakdown path is formed in the ox-
ide, τBD, is calculated using a Weibull distribution with α equal to
the gate’s MTTF and β = 1.0, consistent with [20]. The growth
rate γ is then taken from a uniform distribution of +/ − 10% of
τBD , consistent with a slow growth rate, as in [20].

By integrating the model for OBD failure times and this leakage
growth model, a statistically accurate picture of the effects of OBD-
induced leakage for every gate within the OR1200 core (across a
population of chips) is derived. This new model is then used to
generate age-dependent performance data for each gate within the
population of processors in the Monte Carlo simulations. The per-
formance information is then annotated onto the synthesized netlist
and custom signal monitoring handlers are used to measure the
signal propagation delays at the output of various modules within
the design. The process of annotation and monitoring is repeated
for every processor in the population at regular time intervals over
the simulated lifetime of each processor.

To demonstrate how OBD can affect the timing of microarchi-
tectural structures, Figure 6 shows the results of one sample of an
OR1200 core from the Monte Carlo simulations. This figure shows
the amount of performance degradation observed at the output of
the ALU for a subset of signals from the result bus. This figure il-
lustrates the general trend of slowdown across output signals from
microarchitectural structures. The following section discusses how
this trend is leveraged to conduct wearout detection and failure pre-
diction.

4. WEAROUT DETECTION
In this section, the delay trends for microarchitectural structures

observed in Section 3 are leveraged to propose a novel technique
for predicting wearout-induced failures. The technique consists of
two logical steps: online delay monitoring and statistical analysis
of delay data. In the following subsection, a circuit for conduct-
ing online delay sampling is presented. Next, the algorithm used
for statistical analysis, TRIX, is presented, and its applicability to
wearout detection is discussed. Finally, two potential implementa-
tions for the statistical analysis of delay profiles are proposed, one
in hardware and the other in software.

4.1 Online Delay Profiling
In this section, a self-calibrating circuit for online delay profiling

is presented. A schematic diagram of the online delay profiling unit
(DPU) is shown in Figure 7. The DPU is used to measure the time
that elapses after a circuit’s output signal stabilizes until the next
positive clock edge (slack time). It is important to note that even
for critical paths within the design, some slack time exists because
of guard bands provisioned into the design for worst-case environ-
mental variation and signal degradation due to wearout. The DPU
design consists of three distinct stages. The first stage of the DPU is
an arbiter that determines which one of the (potentially many) input
signals to the DPU will be profiled. The second stage of the DPU
generates an approximation of the available slack time. The final
stage of the DPU is an accumulator that totals a sample of 4096
signal transition latency measurements, and uses this measurement
as a point estimate for the amount of available slack in the circuit
for the given input signal.

The first stage fulfills the simple purpose of enabling the DPU to
monitor delay information for multiple output signals from a given
structure. This stage is a simple arbiter that determines which sig-
nal will be monitored. The area of this structure scales linearly
(though very slowly) with the number of output signals being mon-
itored. The effects of scaling on area and power are discussed later
in Section 5.

The purpose of the second stage of the DPU is to obtain a coarse-
grained profile of the amount of slack at the end of a given clock
period. The signal being monitored by the DPU is connected to a
series of delay buffers. Each delay buffer in this series feeds one bit
in a vector of registers (labeled ’A’ in Figure 7) such that the signal
arrival time at each register in this vector is monotonically increas-
ing. At the positive edge of the clock, some of these registers will
capture the correct value of the module output, while others will
store an incorrect value (the previous signal value). This situation
arises because the propagation delay imposed by the sequence of
delay buffers causes the output signal to arrive after the latching
window for a subset of these registers. The value stored at each
of the registers is then compared with a copy of the correct out-
put value, which is stored in the register labeled ’B’. The XOR of
each delayed register value with the correct value produces a bit
vector that represents the propagation delay of the path exercised
for that particular cycle. In addition, the output signal value from
the previous cycle is stored in the register labeled ’C’, and is used
to identify cycles during which the module output actually experi-
ences a transition. This ensures that cycles during which the output
is idle do not bias the latency sample. As a module’s performance
degrades due to wearout, the signal latency seen at its outputs in-
creases, fewer comparisons will succeed, and the value reported at
the output of the vector of XOR gates will increase.

In the third stage of the DPU, a point estimate of the mean prop-
agation latency for a given output signal is calculated by accumu-
lating 4096 signal arrival times. The accumulation of 4096 arrival

+

clk

5

0

delay delay delay delay delay

clk

Latency Sampler

B

C
1

...

0

Signal Latency Detection

Stage 2 Stage 3
Sampling

Arbitration
Stage 1

observation

under

module

A

+

Figure 7: Online delay profiling unit.

times is used to smooth out the variation in path delays that are
caused by variation in the module input, and the sample size 4096
is used because it is a power of two and allows for efficient division
by shifting.

There are multiple ways in which this sampled mean propagation
latency may be utilized by a system for failure prediction. In the
next subsection, an algorithm is presented for this purpose that may
be implemented either in specialized hardware or software.

4.2 Failure Prediction Algorithm
In order to capitalize on the trend of divergence between the sig-

nal propagation latency observed during the early stages of the
microprocessor’s lifetime and those observed at the end of life,
TRIX (triple-smoothed exponential moving average) [35] analysis
is used. TRIX, is a trend analysis technique used to measure mo-
mentum in financial markets and relies on the composition of three
calculations of an exponential moving average (EMA) [10]. The
EMA is calculated by combining the current sample value with a
fraction of the previous EMA, causing the weight of older sample
values to decay exponentially over time. The calculation of EMA
is given as:

EMA = α × sample + (1 − α)EMAprev (4)

The use of TRIX, rather than the EMA, provides two significant
benefits. First, TRIX provides an excellent filter of noise within
the data stream because the composed applications of the EMA
smooth out aberrant data points that may be caused by dynamic
variation, such as temperature or power fluctuations (discussed in
Section 5.2). Second, the TRIX value tends to provide a better
leading indicator of sample trends. The equations for computing
the TRIX value are:

EMA1 = α(sample − EMA1prev) + EMA1prev

EMA2 = α(EMA1 − EMA2prev) + EMA2prev

TRIX = α(EMA2 − TRIXprev) + TRIXprev (5)

TRIX calculation is recursive and parametrized by the weight,
α, which dictates the amount of emphasis placed on older sample
values. Figure 8a demonstrates the impact of different α values
on the amount of weight given to historical samples. This figure

demonstrates that small α values tend to favor older samples, while
larger α values reflect local trends. The wearout detection algo-
rithm presented in this work relies on the calculation of two TRIX
values using different α’s to identify when the local trends in the
observed signal latency begin to diverge from the historical trends
(biased toward early-life timing). Figure 8b shows the effect of dif-
ferent α values on the TRIX analysis of ALU result bit 0. Figure 8b
presents the TRIX calculations for six different α values as well
as the long-term running average and local point average of signal
over the lifetime of the microprocessor. This data demonstrates that
TRIX calculation using α = 1/210 provides an accurate estimate
of the running average (of latencies for a signal) over the lifetime of
the chip, and does so without the overhead of maintaining a large
history. Further, this figure shows that a TRIX calculation with
α = 0.8 provides a good indicator of the local sample latency at a
given point in the microprocessor’s lifetime.

The next subsection describes two potential implementations that
bring together the DPU and this statistical analysis technique in or-
der to predict the failure of structures within a processor core.

4.3 Implementation Details
In order to accurately detect the progression of wearout and pre-

dict when structures are likely to fail, this work proposes the use of
the DPU in conjunction with TRIX analysis. In the following sub-
sections, two techniques for building systems with wearout predic-
tion mechanisms are proposed. The first technique is a hardware-
only approach, where both online delay profiling and TRIX analy-
sis are conducted together in a specialized hardware unit called the
wearout detection unit (WDU). The second technique is a hybrid
approach requiring fewer resources where delay profiling is con-
ducted in hardware, but TRIX analysis is conducted in software,
either in the operating system or in firmware. In Section 5, we
discuss the hardware costs in terms of area and power for each of
these implementations, as well how the WDU scales as it is used to
monitor an increasing number of signals.

4.3.1 Hardware-only Implementation
The design of the WDU is presented in Figure 9 and consists

of three distinct stages. The first stage is comprised of the de-
lay profiling unit described in Section 4.1, while the second stage
is responsible for conducting the TRIX analysis discussed in Sec-

+

���
�

�������������������������������
�

	�		�	

�������
� �

�
�������������������������������
�

�������
�

�������
� ���

�
������������������������������

!�!!�!"
"

#�##�#$
$

%�%%�%
%�%%�%
%�%%�%
%�%%�%

&&
&&
&&
&&

''(
(

)�))�)*�**�*+�++�+,�,,�,-�--�-.
.

/�//�/0
0

1�11�12
2 334

4
5�55�56�66�67�77�78�88�89�99�9:
:

;�;;�;<
<

=�==�=>
> ??@

@
A�AA�AB�BB�BC�CC�CD�DD�DE�EE�EF
F

G�GG�GH
H

I�II�IJ
J

K�KK�K
K�KK�K
K�KK�K
K�KK�K

LL
LL
LL
LL

MMN
N

O�OO�OP�PP�PQ�QQ�QR�RR�RS�SS�ST
T

U�UU�UV
V

W�WW�WX
X YYZ

Z
[�[[�[\�\\�\]�]]�]^�^^�^_�__�_`
`

a�aa�ab
b

c�cc�cd
d eef

f
g�gg�gh�hh�hi�ii�ij�jj�jk�kk�kl
l

m�mm�mn
n

o�oo�op
p

q�qq�q
q�qq�q
q�qq�q
q�qq�q

rr
rr
rr
rr

sst
t
uuv
v
wwx
x

y�yy�yz�zz�z{�{{�{|�||�|}�}}�}~
~ ���

�
���
�
���
�

�������������������������������
� ���

�
���
�
���
�

�������������������������������
�

������
������
������
������

������
������
������
������

���
�
���
�
���
�

������ � � ¡�¡¡�¡¢�¢¢�¢£�££�£¤
¤ ¥¥¦

¦
§§¨
¨
©©ª
ª

«�««�«¬�¬¬�¬��®�®®�®¯�¯¯�¯°
° ±±²

²
³³´
´
µµ¶
¶

·�··�·¸�¸¸�¸¹�¹¹�¹º�ºº�º»�»»�»¼
¼

½�½½�½
½�½½�½
½�½½�½
½�½½�½

¾�¾¾�¾
¾�¾¾�¾
¾�¾¾�¾
¾�¾¾�¾

¿¿À
À
ÁÁÂ
Â
ÃÃÄ
Ä

Å�ÅÅ�ÅÆ�ÆÆ�ÆÇ�ÇÇ�ÇÈ�ÈÈ�ÈÉ�ÉÉ�ÉÊ
Ê ËËÌ

Ì
ÍÍÎ
Î
ÏÏÐ
Ð

Ñ�ÑÑ�ÑÒ�ÒÒ�ÒÓ�ÓÓ�ÓÔ�ÔÔ�ÔÕ�ÕÕ�ÕÖ
Ö ××Ø

Ø
ÙÙÚ
Ú
ÛÛÜ
Ü

Ý�ÝÝ�ÝÞ�ÞÞ�Þß�ßß�ßà�àà�àá�áá�áâ
â

ã�ãã�ã
ã�ãã�ã
ã�ãã�ã
ã�ãã�ã

ä�ää�ä
ä�ää�ä
ä�ää�ä
ä�ää�ä

åå
åå

ææ
ææ

ç�ç�çç�ç�çç�ç�çç�ç�çç�ç�çç�ç�çç�ç�çç�ç�çç�ç�çç�ç�çç�ç�çç�ç�ç

è�è�èè�è�èè�è�èè�è�èè�è�èè�è�èè�è�èè�è�èè�è�èè�è�èè�è�èè�è�è

ééê
ê
ëëì
ì
ííî
î
ïïð
ð

ññ
ññ
ññ
ñ

òò
òò
òò
ò

Stage 1
Delay Profiling Unit (DPU)

Stage 2
TRIX Calculation

Stage 3
Prediction

clk

5

0

delay delay delay delay delay

input signal

1

0

Observed

...

Latency Sampler

+

Module

PredictionThreshold

Calculation

EMA’

TRIX

EMA

TRIX Calculation
alpha = 1/2 10

EMA’

TRIX

EMA

TRIX Calculation
alpha = 0.8

Figure 9: Design and organization of the wearout detection unit.

tion 4.2, and the third stage conducts threshold analysis to identify
significant divergences in latency trends. The shaded structures in
this diagram represent those components that would scale with the
number of signals being monitored. The remainder of this section
discusses the implementation details of stage two and three of this
design, and the required resources for their implementation.

In stage two of the WDU, two TRIX values are computed: a
locally-biased value, TRIXl, and a historically-biased value, TRIXg.
These are calculated using α values of 0.8 and 1/210 , respectively.
It is important to note that the value of α is dependent on the
sample rate and sample period. In this work, we assume a sam-
ple rate of three to five samples per day over an expected 10 year
lifetime. Also, the long incubation periods for many of the com-
mon wearout mechanisms require the computed TRIX values to
routinely be saved into a small area of nonvolatile storage, such as
flash memory.

Since the TRIX consists of three identical EMA calculations,
the impact of Stage 2 on both area and power can be minimized
by spanning the calculation of the TRIX values over multiple cy-
cles and only synthesizing a single instance of the EMA calculation
hardware. Section 5 describes the area and power overhead for the
WDU in more detail.

The third stage of the WDU receives TRIXl and TRIXg val-
ues from the previous stage and is responsible for predicting a
failure if the difference between these two values exceeds a given
threshold. The simulations conducted in this work indicate that a
5% difference between TRIXl and TRIXg is almost universally
indicative of a structure nearing failure. It is envisioned that this
prediction would be used to enable a cold spare device, or notify
a higher-level configuration manager of a potentially failing struc-
ture within the core. An analysis of the accuracy of this threshold
prediction is presented in Section 5.

4.3.2 Hardware/Software Hybrid Implementation
In order to alleviate some of the scaling problems and resource

requirements of a hardware only technique, a hardware/software
hybrid technique can be used. In this system, the DPU is still im-
plemented in hardware, while the TRIX analysis is performed in

software by the operating system or system firmware. In this con-
figuration, a set of dedicated registers for maintaining the latency
samples for different modules within the design are used. These
dedicated registers are similar to the performance counters used in
modern day processors. The system software then regularly sam-
ples these counters and can store the calculated TRIX values to disk
or other non-volatile storage.

This hardware/software hybrid design has multiple benefits over
the hardware-only approach. In the hardware-only approach, the
TRIX calculation, as well as the α parametrization values are hard-
wired into the design, meaning that across different technology
generations with different wearout progression rates, different WDU
implementations will be necessary. However, in the hybrid ap-
proach, the TRIX parametrization is easily modified for use in a
variety of systems. Another benefit is that the hybrid implemen-
tation consumes less power and has a smaller area footprint with
better scaling properties than the hardware-only design.

5. EXPERIMENTAL ANALYSIS
This section provides a detailed analysis of the proposed WDU

for both the hardware-only and hybrid implementations, the area
and power overhead for implementation, and its efficacy in predict-
ing failure.

5.1 Overhead and Accuracy
Figure 10 demonstrates the area and power requirements for a

WDU and a DPU (for the hybrid approach) implemented in Ver-
ilog and synthesized using a 90 nm standard cell library, designed
to monitor multiple output signals for a structure. The x-axis rep-
resents the number of signals being monitored and the y-axis rep-
resents the overhead in terms of area or power. Figure 10a demon-
strates that the WDU scales poorly in terms of area, and Figure 10b
shows analagous results for power. This behavior is largely because
the amount of storage within the WDU increases linearly with the
number of signals being monitored. In contrast, the DPU scales
well in both area and power with an increasing number of signals
being monitored because only the logic for the arbiter scales with
an increasing number of signals, and this increase in logic is for

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

W
ei

gh
tin

g

Sample Time

α = 0.80
α = 0.67
α = 0.50
α = 0.40
α = 0.33

(a) Impact of α value on the weighting of old sample values.

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 0 20 40 60 80 100

M
ea

n
S

ig
na

l L
at

en
cy

 (
ns

)

Time (years)

TRIX (α = 1/210)
TRIX (α = 1/29)
TRIX (α = 1/28)
TRIX (α = 1/27)
TRIX (α = 1/26)
TRIX (α = 0.8)
Local Average
Running Average

(b) Impact of α value on the tracking of a signal undergoing
OBD degradation effects.

Figure 8: Sensitivity analysis of TRIX parametrization.

the most part negligible. This implies that the hybrid prediction
technique can be implemented at a much lower design cost.

In order to evaluate the efficacy of TRIX analysis in predicting
failure, a large number of Monte Carlo wearout simulations were
conducted using the Weibull distribution and failure model pre-
sented in Section 3.2. Figure 11a demonstrates the relative time
at which failure was predicted for a variety of structures within the
processor core for the population of microprocessors used in this
Monte Carlo simulation. The error bars in this figure represent the
standard deviation of these values. Across all simulations, failure
was predicted within 20% of the time of failure for the device. This
typically amounted to slightly less than two years of remaining life
before the device ultimately failed. Two extreme cases were the
Next PC module and the LSU, where the failure prediction was
often almost too optimistic, with many of the failure predictions
being made with only about 1% or about 4 days of the structure’s
life remaining. On the opposite end of the spectrum, failure of the
register file was often predicted with more than 15% of the life-
time remaining, meaning that some usable life would be wasted in
a cold-sparing situation.

Figure 11b demonstrates the percentage of signals that caused
predictions to be raised for each module before the module failed.
In general, the percentage of outputs flagged at the time of failure
varied widely. This can be attributed to a number of factors. First,
the Weibull distribution used to model the time of first breakdown
for each gate within the design has a moderate amount of variance,

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 2 4 6 8 10 12 14 16

A
re

a
in

 m
m

2

Number of signals monitored

DPU
WDU

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10 12 14 16

P
ow

er
 in

 m
W

Number of signals monitored

DPU
WDU

Figure 10: Scaling of the WDU and DPU area and power as the
number of signals monitored scales.

as does the uniform distribution used to model the growth rate of
leakage from the time of first breakdown. Also, because some gates
experience speedup in the early stages of wearout before they ul-
timately begin to slow down, there are competing effects between
gates at different stages of wearout early in the breakdown period.

5.2 Dynamic Variations
Dynamic environmental variations, such as temperature spikes,

power surges, and clock jitter, can each have an impact on circuit-
level timing, potentially affecting the operation of the WDU. Here,
we briefly discuss some of the sources of dynamic variation and
their impact on the WDU’s efficacy.

Temperature is a well known factor in calculating device delay,
where higher temperatures typically increase the response time for
logic cells. Figure 12 demonstrates the increase in response time
for a selection of logic gates2 over a wide range of temperatures.
This figure shows that over an interval of 50oC, the increase in
response time amounts to approximately 3.4%.

Another source of variation is clock jitter. In general, there are
three types of jitter: absolute jitter, period jitter, and cycle-to-cycle
jitter. Of these, cycle-to-cycle jitter is the only form of jitter that
may potentially affect the WDU. Cycle-to-cycle jitter is defined as
the difference in length between any two adjacent clock periods and
may be both positive (cycle 2 longer than cycle 1) or negative (cycle
2 shorter than cycle 1). Statistically, jitter measurements exhibit a
random distribution with a mean value approaching zero [40].

2The gate models were taken from the 90 nm library and simulated
using HSPICE.

 75

 80

 85

 90

 95

 100

 105

ALU
Register File

LSU
Next PC

P
er

ce
nt

ag
e

of
 M

od
ul

e
Li

fe
tim

e

(a) Average percentage of the lifetime at which failure
predictions are made with error bars representing the
standard deviation of the population.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

ALU
Register File

LSU
Next PC

P
er

ce
nt

ag
e

of
 O

ut
pu

t S
ig

na
ls

 F
la

gg
ed

(b) Percentage of the output signals that were flagged
at the time of failure for each module with error bars
representing the standard deviation of the population.

Figure 11: Analysis of TRIX analysis efficacy in predicting failure.

In general, the sampling techniques employed for failure predic-
tion are sufficient to smooth out the effects of dynamic variation
described. For example, a conservative, linear scaling of tempera-
ture effects on the single inverter delay to a 3.4% increase in module
output delay does not present a sufficient magnitude of variance to
overcome the 5% threshold required for the WDU to predict fail-
ure. Also, because the expected variation due to both clock jitter
and temperature will exhibit a mean value of zero (i.e., temperature
is expected to fluctuate both above and below the mean value), sta-
tistical sampling of latency values should minimize the impact of
these variations. To further this point, since the TRIX calculation
acts as a three-phase low-pass filter, the worst case dynamic vari-
ations would need to cause latency samples to exceed the stored
TRIXg value by greater than 5% over the course of more than
12 successive sample periods, corresponding to over four days of
operation.

6. RELATED WORK
Issues in technology scaling and process variation have raised

concerns for reliability in future microprocessor generations. Re-
cent research work has attempted to diagnose and, in some cases,
reconfigure the processing core to increase operational lifetime. In
this section, we briefly discuss this related work and how it has
influenced the direction of this paper.

As mentioned in Section 1, much of the research into failure de-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 60 70 80 90 100

P
er

ce
nt

 D
el

ay
 In

cr
ea

se

Temperature (OC)

INV
AND

OR

Figure 12: Impact of temperature on logic gate delay.

tection relies upon redundancy, either in time or space. One such
example of hardware redundancy is DIVA [8], which targets soft
error detection and online correction. It strives to provide a low
cost alternative to the full scale replication employed by traditional
techniques like triple-modular redundancy. The system utilizes a
simple in-order core to monitor the execution from a large high per-
formance superscalar processor. The smaller checker core recom-
putes instructions before they commit and initiates a pipeline flush
within the main processor whenever it detects an incorrect compu-
tation. Although this technique proves useful in certain contexts,
the second microprocessor requires significant design/verification
effort to build and incurs additional area overhead.

Bower et al. [15] extends the DIVA work by presenting a method
for detecting and diagnosing hard failures using a DIVA checker.
The proposed technique relies on maintaining counters for major
architectural structures in the main microprocessor and associating
every instance of incorrect execution detected by the DIVA checker
to a particular structure. When the number of faults attributed to a
particular unit exceeds a predefined threshold, it is deemed faulty
and decommissioned. The system is then reconfigured, and in the
presence of cold spares, can extend the useful life of the processor.
Related work by Shivakumar et al. [28] argues that even without
additional spares the existing redundancy within modern proces-
sors can be exploited to tolerate defects and increase yield through
reconfiguration.

Research by Vijaykumar [18, 37] and Falsafi [22, 30] attempt
to exploit the redundant, and often idle, resources of a superscalar
processor to enhance reliability by utilizing these extra units to ver-
ify computations during periods of low resource demand. This
technique represents an example of the time redundant computa-
tion alluded to in Section 1. It leverages work by the Slipstream
group [27, 23] on simultaneous redundant multithreading as well
as earlier work on instruction reuse [31]. ReStore [38] is another
variation on this theme which couples time redundancy with symp-
tom detection to manage the adverse effects of redundant computa-
tion by triggering replication only when the probability of an error
is high.

Srinivasan et al. have also been very active in promoting the need
for robust designs that can withstand the wide variety of reliability
challenges on the horizon [34]. Their work attempts to accurately
model the MTTF of a device over its operating lifetime, facilitat-
ing the intelligent application of techniques like dynamic voltage
and/or frequency scaling to meet reliability goals. Although some
physical models are shared in common, the focus of our paper is

not to guarantee that designs can achieve any particular reliabil-
ity goal, but rather to enable a design to recognize behavior that
is symptomatic of wearout induced breakdown allowing it to react
accordingly.

Analyzing circuit timing in order to self-tune processor clock
frequencies and voltages is also a well studied area. Kehl [19]
discusses a technique for re-timing circuits based on the amount
of cycle-to-cycle slack existing on worst-case latency paths. The
technique presented requires offline testing involving a set of stored
test vectors in order to tune the clock frequency. Although the pro-
posed circuit design is similar in nature to the WDU, it only exam-
ines the small period of time preceding a clock edge and is only
concerned with worst case timing estimation, whereas the WDU
employs sampling over a larger time span in order to conduct av-
erage case timing analysis. Similarly, Razor [9] is a technique for
detecting timing violations using time-delayed redundant latches
to determine if operating voltages can be safely lowered. Again,
this work studies only worst-case latencies for signals arriving very
close to the clock edge.

7. CONCLUSION
In this paper, the device-level effects of oxide breakdown (OBD)

on circuit performance are characterized. It is demonstrated that
progressive OBD has a non-uniform impact on circuit performance.
The results of the circuit-level modeling are then applied to a syn-
thesized implementation of the OR-1200 microprocessor to analyze
the effects of OBD at the microarchitectural level. Circuit timing is
identified as a common phenomenon that can be tracked to predict
the progression of OBD. A self-calibrating circuit for analyzing cir-
cuit path delay along with an algorithm for predicting failure using
this data is proposed. Results show that our failure prediction algo-
rithm is successful in identifying wearout and flagging outputs that
suffer a trend of increasing delay over time.

8. ACKNOWLEDGMENTS
We thank the anonymous referees for their comments and sug-

gestions. We would also like to thank David Blaauw and Eric Karl
for their insightful discussions and feedback. This research was
supported by ARM Limited, the National Science Foundation ITR
grant CCR-0325898, and the Gigascale Systems Research Center,
one of five research centers funded under the Focus Center Re-
search Program, a Semiconductor Research Corporation program.

9. REFERENCES

[1] Gartner data systems conference, Dec. 2005.
[2] International technology roadmap for semiconductors, 2005.
[3] Openrisc 1200, 2006.

http://www.opencores.org/projects.cgi/web/or1k/openrisc 1200.
[4] Ridgetop group, 2006. http://www.ridgetop-group.com/.
[5] M. Agarwal, B. Paul, and S. Mitra. Circuit failure prediction

and its application to transistor aging. In Proc. of the 2007
IEEE VLSI Test Symposium, page To appear, Apr. 2007.

[6] E. R. Alliance. Online survey results: 2001 cost of
downtime, 2001.

[7] J. S. S. T. Association. Failure mechanisms and models for
semiconductor devices. Technical Report JEP122C, JEDEC
Solid State Technology Association, Mar. 2006.

[8] T. Austin. Diva: a reliable substrate for deep submicron
microarchitecture design. In Proc. of the 32nd Annual
International Symposium on Microarchitecture, pages
196–207, 1999.

[9] T. Austin, D. Blaauw, T. Mudge, and K. Flautner. Making
typical silicon matter with razor. IEEE Computer,
37(3):57–65, Mar. 2004.

[10] M. Batty. Monitoring an exponential smoothing forecasting
system. Operational Research Quaterly, 20(3):319–325,
1969.

[11] B. G. U. Berkeley. Bsim4 mosfet model, 2007.
[12] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine,

J. Klecka, and J. Smullen. Nonstop Advanced Architecture.
In International Conference on Dependable Systems and
Networks, pages 12–21, June 2005.

[13] J. A. Blome, S. Feng, S. Gupta, and S. Mahlke. Online timing
analysis for wearout detection. In Proc. of the 2nd Workshop
on Architectural Reliability (WAR), pages 51–60, 2006.

[14] S. Borkar. Designing reliable systems from unreliable
components: The challenges of transistor variability and
degradation. IEEE Micro, 25(6):10–16, 2005.

[15] F. A. Bower, D. J. Sorin, and S. Ozev. A mechanism for
online diagnosis of hard faults in microprocessors. In Proc.
of the 38th Annual International Symposium on
Microarchitecture, pages 197–208, 2005.

[16] J. Carter, S. Ozev, and D. Sorin. Circuit-level modeling for
concurrent testing of operational defects due to gate oxide
breadkown. In Proc. of the 2005 Design, Automation and
Test in Europe, pages 300–305, June 2005.

[17] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao,
C. Ziesler, D. Blaauw, T. Austin, and T. Mudge. Razor: A
low-power pipeline based on circuit-level timing speculation.
In Proc. of the 36th Annual International Symposium on
Microarchitecture, pages 7–18, 2003.

[18] M. Gomaa and T. Vijaykumar. Opportunistic transient-fault
detection. In Proc. of the 32nd Annual International
Symposium on Computer Architecture, pages 172–183, June
2005.

[19] T. Kehl. Hardware self-tuning and circuit performance
monitoring. In Proc. of the 1993 International Conference on
Computer Design, pages 188–192, Oct. 1993.

[20] B. P. Linder and J. H. Stathis. Statistics of progressive
breakdown in ultra-thin oxides. Microelectronic
Engineering, 72(1-4):24–28, 2004.

[21] F. Monsieur, E. Vincent, D. Roy, S. Bruyere, J. C. Vildeuil,
G. Pananakakis, and G. Ghibaudo. A thorough investigation
of progressive breakdown in ultra-thin oxides. physical
understanding and application for industrial reliability
assessment. In Proc. of the 2002 International Reliability
Physics Symposium, pages 45–54, Apr. 2002.

[22] J. Ray, J. Hoe, and B. Falsafi. Dual use of superscalar
datapath for transient-fault detection and recovery. In Proc.
of the 34th Annual International Symposium on
Microarchitecture, pages 214–224, Dec. 2001.

[23] V. Reddy, S. Parthasarathy, and E. Rotenberg. Understanding
prediction-based partial redundant threading for
low-overhead, high-coverage fault tolerance. In 14th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
83–94, Oct. 2006.

[24] S. K. Reinhardt and S. S. Mukherjee. Transient fault
detection via simulataneous multithreading. In Proc. of the
27th Annual International Symposium on Computer
Architecture, pages 25–36, June 2000.

[25] G. Reis, J. Chang, N. Vachharajani, R. Rangan, , and D. I.

August. SWIFT: Software implemented fault tolerance. In
Proc. of the 2005 International Symposium on Code
Generation and Optimization, pages 243–254, 2005.

[26] R. Rodriguez, J. H. Stathis, and B. P. Linder. Modeling and
experimental verification of the effect of gate oxide
breakdown on cmos inverters. In International Reliability
Physics Symposium, pages 11–16, Apr. 2003.

[27] E. Rotenberg. AR-SMT: A microarchitectural approach to
fault tolerance in microprocessors. In International
Symposium on Fault Tolerant Computing, pages 84–91,
1999.

[28] P. Shivakumar, S. Keckler, C. Moore, and D. Burger.
Exploiting microarchitectural redundancy for defect
tolerance. In Proc. of the 2003 International Conference on
Computer Design, page 481, Oct. 2003.

[29] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan. Temperature-aware
microarchitecture: Modeling and implementation. ACM
Transactions on Architecture and Code Optimization,
1(1):94–125, 2004.

[30] J. Smolens, J. Kim, J. Hoe, and B. Falsafi. Efficient resource
sharing in concurrent error detecting superscalar
microarchitectures. In Proc. of the 37th Annual International
Symposium on Microarchitecture, pages 256–268, Dec.
2004.

[31] A. Sodani and G. Sohi. Dynamic instruction reuse. In Proc.
of the 25th Annual International Symposium on Computer
Architecture, pages 194–205, June 1998.

[32] L. Spainhower and T. Gregg. IBM S/390 Parallel Enterprise
Server G5 Fault Tolerance: A Historical Perspective. IBM
Journal of Research and Development, 43(6):863–873, 1999.

[33] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The case
for lifetime reliability-aware microprocessors. In Proc. of the
31st Annual International Symposium on Computer
Architecture, pages 276–287, June 2004.

[34] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers.
Exploiting structural duplication for lifetime reliability
enhancement. In Proc. of the 32nd Annual International
Symposium on Computer Architecture, pages 520–531, June
2005.

[35] StockCharts.com. TRIX, Oct. 2006.
http://stockcharts.com/education/IndicatorAnalysis/indic trix.htm.

[36] J. Sune and E. Wu. From oxide breakdown to device failure:
an overview of post-breakdown phenomena in ultrathin gate
oxides. In International Conference on Integrated Circuit
Design and Technology, pages 1–6, May 2006.

[37] T. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-fault
recovery via simultaneous multithreading. In Proc. of the
29th Annual International Symposium on Computer
Architecture, pages 87–98, May 2002.

[38] N. Wang and S. Patel. Restore: Symptom based soft error
detection in microprocessors. In International Conference on
Dependable Systems and Networks, pages 30–39, June 2005.

[39] E. Wu et al. Interplay of voltage and temperature
acceleration of oxide breakdown for ultra-thin gate oxides.
Solid-State Electronics, 46:1787–1798, 2002.

[40] T. J. Yamaguchi, M. Soma, D. Halter, J. Nissen, R. Raina,
M. Ishida, and T. Watanabe. Jitter measurements of a
powerpc microprocessor using an analytic signal method. In
Proc. of the 2000 International Test Conference, pages
955–964, 2000.

[41] X. Yang, E. Weglarz, and K. Saluja. On nbti degradation
process in digital logic circuits. In Proc. of the 2007
International Conference on VLSI Design, pages 723–730,
Jan. 2007.

