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ABSTRACT

Device scaling trends dramatically increase the susaéptitf mi-
croprocessors to soft errors. Further, mounting demancrior
bedded microprocessors in a wide array of safety criticaliap
cations, ranging from automobiles to pacemakers, comtirel
importance of addressing the soft error problem. Histdlsicaoft
error tolerance techniques have been targeted mainly htdrid
server markets, leading to solutions such as coarse-graiosl-
ular redundancy and redundant multithreading. Howevearseh
techniques tend to be prohibitively expensive to implenierihe
embedded design space. To address this problem, we firgnpres
a thorough analysis of the effects of soft errors on a pradoct
grade, fully synthesized implementation of an ARM926EJi& e
bedded microprocessor. We then leverage this analysieideh
sign of two orthogonal low-cost soft error protection teicjues
that can be tuned to achieve variable levels of fault cove@ga
function of area and power constraints. The first technicges @
small cache of live register values in order to provide netwice
the fault coverage of a register file protected using tradéi er-
ror correcting codes at little or no additional area coste Fbc-
ond technique is a statistical method used to significamttiuce
the overhead of deploying time-delayed shadow latchesoiwr |
latency fault detection.

Categories and Subject Descriptors

B.5.3 [Reliability and Testing]: [Built-in tests]; C.3 Bpecial-
Purpose and Application-Based Systenjs [Real-time and Em-
bedded Systems]

General Terms
Reliability, Design, Experimentation

Keywords

Reliability, Soft Errors, Embedded Processors

1. INTRODUCTION

A soft error, or single event upset (SEU), is defined as a tran-
sient piece of incorrect machine state. A soft error in lagicurs
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when the result of a transient fault in logic propagates ttoeage
element and is latched. A soft error in a memory element acecur
when sufficient charge is generated to invert the value dtoréhe
memory element. Transient faults can be the result of étattr
noise, such as crosstalk, or high-energy patrticle strikeft errors
due to energetic particle strikes are typically caused byeeial-
pha particles, which can be emitted by radioactive contantsin
microprocessor packaging materials, or high-energy nastirom
cosmic radiation. While dealing with alpha particles igkly a
manufacturing issue, addressing neutron strikes posem#icant
problem because adequate shielding is prohibitively esipen

Current device scaling trends suggest that dramatic inegem
microprocessor soft error rates (SER) are inevitable. @escal-
ing results in lower operating voltages, which in turn reshithe
energy required to cause a voltage pulse at the output of@adate
or invert the value stored within a sequential element. Tluveer-
energy particle strikes that did not pose a threat in pasntdogy
generations could induce transient errors in future teldgyogen-
erations. Further, the rate of particle strikes increaspsreentially
as the energy level of the particles decrease [19]. Thexefuith
each new technology generation, the rate of particle strikat
may potentially affect the logical operation of the micropessor
increases significantly. These trends, coupled with anoskys
growth of embedded microprocessor distribution for a nundie
safety-critical applications suggests a strong need fderstand-
ing reliability as it applies to the embedded design space.

Traditionally, reliability research has focused largattbe high-
performance server market. High availability systemshagthe
IBM G5 server [17] and the HP NonStop architecture [4], raly o
large scale modular redundancy to provide fault tolerar@ther
research has focused on providing fault protection usidgndant
multithreading [13, 14]. In general, these techniques gpemsive
in terms of both the area and power required for redundanpoem
tation and are not generally appropriate for embedded dgsig

The design constraints of the embedded domain differ smbsta
tially from those in the high-performance arena. In the eirbe
ded design space, area and power are primary constrainth whi
are balanced with processor performance. This typicaligdeto
longer clock cycle times, larger logic depths between setiple
state elements, and a higher degree of signal fan-out in cahelde
designs. Further, high performance microprocessorsailpiem-
ploy a large amount of out-of-order execution hardware ged3-
lative state. These mechanisms can decrease the oveliatidn
of the chip, lowering the probability that a particle strikél af-
fect a sensitive piece of state within the design, and irsingathe
amount of fault masking. In general, high performance nucse
cessor cores tend to have much more area devoted to seduentia
state than to combinational logic. This invariably affettte be-



havior of soft errors on the design. Since the design canssréor
the embedded domain are considerably different from thosles
high-performance domain, it stands to reason that metroydadlt
tolerance will also vary dramatically.

In order to fully understand the way in which soft errors af-
fect embedded microprocessors, we conduct a thorough sssaly
of the behavior of faults on an ARM926EJ-S embedded core. In
these experiments, we measure the amount of fault maskangch
curs when faults are injected into both state elements amtbica-
tional logic and also analyze the propagation behavior @gttnors
throughout the design. We then use this study to motivatestfio
error mitigation techniques appropriate for the embeddesigth
space. First, we propose the register value cache, a snabdiffin
cient mechanism that protects the register file againstsfaaicur-
ring in both sequential state elements and combinatiomal/veite
logic within the register file. This design provides highault
coverage at a lower area overhead than traditional erroectimg
codes (ECC). Second, we propose a method for the strategic de
ployment of transient pulse detectors using time-delayeiew
latches, which provides a high degree of fault coveragehferést
of the design, while only requiring a small number of detexto

The contributions of this work are as follows:

e An empirical derivation of the logical and temporal softoerr
masking rates for a commercial embedded microprocessor.

e An analysis of the error fan-out and propagation behavior of
soft errors in a commercial embedded microprocessor.

e A lightweight architectural technique for protecting retgir
files from faults in both combinational and sequential logic

e A statistical technique for deploying time-delayed shadow
latches for tolerating soft errors occurring in arbitrangic
elements.

2. FAULT ANALYSIS OF THE ARM926EJ-S

PROCESSOR CORE

Though the effects of transient faults on high-performamie
croarchitectures have been studied in the past [11] [18&tively
little published data exists regarding their effects on edued de-
signs. Previous work that does involve embedded-styleapior
cessors typically focuses on the effects of transient daaitthe
macrocell and software levels [8] [15]. In order to motivatehi-
tectural and microarchitectural solutions to the soft eproblem,
the goal of the following analysis is to understand how tiemts
faults affect an embedded microprocessor at the circudl lamd
how these faults propagate throughout system state. Isehifon,
we provide a brief overview of the ARM926EJ-S microprocesso
describe our fault analysis framework, and present detaésults
describing fault masking and propagation throughout treopio-
cessor core.

2.1 Fault Analysis Framework

The soft error analysis conducted in this work uses a Verilog
model of an ARM926EJ-S microprocessor [1]. The ARM926EJ-S
is a 32-bit embedded architecture with a standard five stpgéime
consisting of fetch, decode, execute, memory and writé-bages.
The datapath of the core is depicted in Figure 1. The impléaen
tion used in this work has 37 architecturally defined regsst81
32-bit general purpose and six status registers), 4 KB ¢fiingon
cache, and 4 KB of data cache. The Verilog model was synthe-
sized using Synopsys Physical Compiler with scan-chaierfitn

Instruction Fetch

Instruction Decode

Data Interface

l I

Instruction
Address
Logic

Instruction
Cache

Mux
Register

Bank Array

o

Data
Address
Logic

‘ Shift

Write buffer/
Bus Interface|

MMU

W

ARM926EJ-S

Bus Interface

1: A block diagram of the ARM926EJ-S five-stage pipeline

testbench
reference test
design design

F

error checking
and logging

fault injection
scheduler

||

fault injection / error analysis framework

report generation

2: Overview of the soft error injection and analysis framework

and design-for-test methodologies using an Artisan libciiarac-
terized for a 130 nm process. The synthesized netlist anah@ ha
designed floorplan were processed in Avanti Astro for cloele t
synthesis and physical placement. Once fully synthesizédadl
design rule constraints satisfied, timing information wetsaeted

in Standard Delay Format so that it could be annotated or@o th
netlist and simulated using Synopsys VCS.

The testbench used for simulation instantiates a pair ofyine
thesized netlists: a reference design and the unit underBeth
netlists are annotated with the timing information gatddrem the
synthesis and layout tools. The testbench also includebavimeal
memory model that is used to load benchmarks for the sinouigti
An overview of the soft error test harness is shown in Figure 2

The soft error injection and analysis framework used in our e
periments is composed of a set of Verilog Programming laterf
(VPI) libraries that are invoked at the start of each simafatUpon
invocation, the framework probes the design to derive thefsall
sequential state elements and combinational logic gatibsnwhe
unit under test. Depending on the simulation parametezdrdme-
work may schedule fault injection experiments at arbitaojnts
in time for arbitrary durations, selecting a random desigment
(register or logic gate) as a fault injection target and iitiag the
value at the node’s output.

Experiments are conducted targeting both sequential state
ments and combinational logic gates. Workload-specifidyaisa
is carried out by running benchmark code for an image praogss
algorithm which maps an input image from the RGB to the YUV
color space. Upon initialization, the framework will sdlecran-
dom point in time between 2,500 and 5,000 cycles after thet sta
of simulation to conduct its first fault injection. If the flais to be
injected into a combinational logic element, the fault atien time



is randomly selected in picoseconds, and the fault durasioan-
domly selected on the intervil.25 « CLK, CLK], whereCLK

is the cycle time of 5 ns. If the experiment is for a sequerstiate
element, the fault injection time is scheduled at a randomréu
rising edge of the clock signal and will be held for the dwatof

one cycle.

At fault injection time, depending on the type of injectiotper-
iment being simulated (faults in combinational logic or sectial
state), a random design element is selected for fault injeétom
the unit under test. If the fault is to be injected into a logiement,
a random logic gate in the design is selected and the valsempre
on it's output is inverted, simulating a transient fault sed by a
particle strike. Similarly, when faults in registers arénigesimu-
lated, a random register is selected and its output is ieslekVhen
a fault is injected into the design, the framework logs thétfsite,
the time of injection, and the pulse duration.

After a fault has been injected into the systexery microarchi-
tectural register in the unit under test is compared agésgual in
the reference design at each subsequent rising clock edgieF,
all top-level output ports on the design (I/O buses, copsaein-
terface, test equipment) and inputs into the caches ar&ketigo
ensure that no corrupt values have escaped from the congadlata
If, during the first cycle after fault injection, no registeache, or
top-level port mismatches occur, the injected fault did aiféct

the system, and so a new random time in the future is selected f

another fault injection experiment. If any register, caobeport
mismatches does occur, the fault analysis framework logsetla-
tive cycle and site of the error for later analysis.

The fault analysis framework continues to track the progds

errors throughout the system for a given number of cyclesr aft

the fault injection. If during this period, no errors are ggnt, and
no errors have propagated out to the caches or top-leved, ghe
system is clean, and the fault was successfully maskedyialjo
a new time for fault injection to be scheduled. If top-levettpor
cache errors did occur, or a latent error still lingers indbsign that
has not yet affected architectural state, then simulataltshand
error logs are written for post-processing to analyze pgyapan
and architectural state effects. Though latent errors endsign
may not have caused errors in software-visible state, ttiépese

a threat and may potentially cause data corruption given & mo

diverse workload.

2.2 Fault Analysis Results

In this section, we provide an empirical derivation of thdt so
error masking rate for the ARM926EJ-S processor core, asasel
a detailed examination of the soft error propagation beiravihe
soft error rate is directly related to a set of derating fectinat
mask faults from being latched at the output of a circuit. Tivee
circuit-level derating factors that affect the SER are digvs:

e Logical masking: Logical masking occurs when a transient

pulse is effectively gated from all possible target segaént

state elements; for example, a transient pulse at the ootput

a circuit that is ANDed with 0 will be logically masked.

e Temporal masking: Temporal masking (or latching-window

masking) occurs when a transient pulse propagates to a stat
element, but does not arrive within the capture window of the

state element.

e Electrical masking: Electrical masking occurs when a tran-

()

Error Location Logical Masking Rate
Microarchitectural statg 6.47%
Architectural state 88.35%
Top-level port 89.32%

1: Average logical masking rate for soft errors occurring iguential
state elements.

both logical and temporal masking on the overall soft ereter
but leave electrical masking for future work.

2.2.1 Logical and Temporal Masking

In this set of experiments, we derive the rates at which tapc
faults are masked from affecting different classes of pssoestate:
microarchitectural state, architectural state, and thdewel output
ports of the design (I/O buses, coprocessor interface,etpsip-
ment) while the image processing benchmark, rgb2yuv, isidre
on the processor model. We define the architectural statkeas t
set of 37 software-visible physical registers defined in AlfM
instruction set architecture [16] and the microarchitesltstate as
the set of all state elements within the design, excludirgat
chitectural registers. In the first experiment, we resiiat fault
injections to only sequential state elements and observeatie at
which the different classes of errors appear over a peri@dofcy-
cles subsequent to fault injection. The results of this erpent is
presented in Table 1. These results demonstrate the avetage!
masking rate for faults occurring in sequential state eteme

Table 1 shows that when a fault occurs within a state elenitent,
is very common for microarchitectural state to remain coted
in the cycles subsequent to fault injection, with only ab6&t
of faults being masked from affecting the microarchiteatstate.
Though the microarchitectural state masking rate is qoite(hnd
thus the error rate is quite high), these faults rarely pgapainto
the architectural register file or to the top-level portstaf tesign
where they have the potential to corrupt software state.s€cend
row in Table 1 shows that only about 11% of the injected faautts
tually affect the ARM926EJ-S architectural registers, trathird
row shows that even fewer faults are propagated outsideeafdte
from toplevel ports within the 200 cycle experiment window.

Since combinational logic nodes consume nearly 58% of tte ce

area of the ARM926EJ-S design, we expand upon the previous

study and next examine the effects of faults injected attrayi
combinational logic nodes. Here we introduce two sets o,dat
the first presents the masking rates for the different tygesr-o
rors, based on a pulse being injected at clock cycle boueslarid
lasting for the duration of an entire clock cycle. This expent
yields the average logical masking rate for faults occaraharbi-
trary logic nodes. Then, in the second experiment, we umiffpr
select a random point in time at which to inject a fault, ipestive
of clock cycle boundaries. We hold this fault for a randomadian
on the interval0.25« C LK, C LK]. This experiment results in the
average combined temporal and logical masking rate of tizeomi
processor core. The results of these two experiments avensino
columns two and three respectively of Table 2.

The results presented in Table 2 demonstrate that the microa
chitectural masking rate for faults in combinational logscsub-
stantially higher than the microarchitectural masking i@served
for faults occurring in sequential state. Neverthelesgoitild be
a mistake to take this to mean that faults in combinationgiclo
are less significant than faults in sequential state. Thahgte is

sient pulse is attenuated by subsequent logic gates such tha@ large disparity between these microarchitectural maskates,

the pulse does not affect the output of the circuit.

the difference is not nearly so pronounced at the softwaesface.
Table 2 shows that the architectural masking rate for faadtsur-

The experiments presented in this work examine the effdcts o ring in logic is only about 8% greater than for faults occugrin



Error Location Logical Masking Rate | Logical + Timing Masking Rate
Microarchitectural state 78.44% 83.76%
Architectural state 94.74% 96.59%
Top-level port 95.12% 96.33%

2: Average logical and logical and temporal masking ratesdéresrors occurring in combinational logic.
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3: Relative frequency for which incorrect state is observetthiwithe pro-
cessor as a function of transient pulse duration

sequential state. Further, even though the architectuasking
rate for faults occurring in combinational logic tends todtightly
higher, we will demonstrate in Section 2.2.2 that faultsambina-
tional logic tend to be much more insidious.

In order to illustrate the effects of latching-window maskiand
pulse duration on the overall soft error rate, we provide réhr
analysis of faults occurring at worst-case nodes in thegdesin
this experiment, we restrict fault injection to the outpfisequen-
tial state elements and vary the pulse duration randomlysadhe
clock cycle time, thus ensuring the worst case delay for gagp-
agation path between the fault injection site and the tastge
elements. Histogram data representing the frequency witbhhaa
given fault duration causes an error is shown in Figure 3.

Figure 3 shows that there is a definite correlation between th

fault duration and the likelihood that errors are expressethe
microprocessor. However, this figure demonstrates that esla-
tively small pulses may be responsible for a significant @etage
of the total soft error rate. In addition, it is important tate that the
results presented in Figure 3 are conservative, sincecfzastirikes
are likely to be random throughout the depth of the circuitrtirer,
as technology scales, the latching window will become a raimre
nificant portion of the clock cycle time, further marginatig the
effects of latching window masking.

2.2.2 <oft Error Propagation Behavior

In this section, we analyze how soft errors propagate throuy
the microprocessor core over time. The effects of trandarlts
on both architectural and microarchitectural state as aglthe
toplevel ports of the design are analyzed in the cycles sufese
to faultinjection. In these experiments, only fault injectdata for
those faults that have caused at least a single bit errorsait and

the number and type of errors present in the core over thesycl

following fault injection are analyzed. Figure 4 demont&sathe
average number of state bit errors for each class of errousted
in the previous section. In Figure 4, each data point reptssbe
average number of bit errors that are present in the designgdar-
ticular error class, given that at least a single error of ¢thess was
expressed over the course of the experiment.
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4: Average number of incorrect bits for various error types dlre span of
twenty cycles following the fault injection. Faults arednjed in sequential
state and combinational logic elements

Figure 4 demonstrates a large disparity between how faalts o
curring in sequential state affect the processor core agsmgpto
faults in combinational logic. In the first cycle after fainjection,
faults occurring in combinational logic typically cause raahan
27 bits of incorrect microarchitectural state and can cairs®its
of corrupt architectural state on average, whereas faukedguen-
tial state typically only cause only single bit errors of asigss.
From Figure 4, it is clear that faults occurring in combipatl
logic cannot be accurately modeled as single bit state ®rréir
is important to note that although Section 2.2.1 shows thskma
ing rate for faults in combinational logic is about 8% highaore
than 58% of the design is consumed by combinational logiame
ing that more faults are likely to occur in the combinatiolgic
than in the sequential state elements, potentially offggthe de-
scripency in masking. Further, these faults are likely torgat
significantly more system state. It is also interesting tterfoom
Figure 4, on average, when faults in logic cause an erroicinitac-
tural state, they often cause multi-bit errors within thgiseer file,
whereas faults in state elements rarely demonstrate stexttef

In order to better understand the propagation of errorsimvitte
system and how they may potentially affect software stagenext
experiment is focussed solely on the propagation behavisofb
errors into architectural state. Figures 5(a) and 5(b) destnate the
relative frequency of architectural state bit errors mestiéd during
the ten cycles after fault injection.

Figure 5(a) shows that multi-bit architectural state esr@nd
to occur very rarely when faults are injected into sequéitigic.
This corroborates the position that simply applying erramect-
ing codes (ECC) to the words stored within the register fike p®-
tentially valuable tool in protecting against the effectsransient
faults occurring in state elements. However, Figure 5(bjnon-
strates that when transient faults occur in combinatioogikl and
they manifest as errors in architectural state, multitvitres of four

bits or more account for more than 45% of the occurrences: Fur

ther, as shown by the spike at the tail end of Figure 5(b), rtiae
15% of the faults occurring in combinational logic cause etbian
90% of the architectural state bits (1000 state elements) to hold
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incorrect values. This is typically the result of faults oming in
extremely sensitive design for test logic, such as scablemmdes.

To highlight the nuances of the architectural effects praskin
Figure 5(b), we also study the number of incorrect bits pehigec-
tural register that are corrupted over time. Figure 6(antlagority
of faults injected into state elements cause only singlerbirs in
architectural state.In contrast to this, Figure 6(b) destrates that
multi-bit errors, where the entire 32 hits of the architeatwegister
are corrupted, tend to be the norm for faults occurring in oo
tional logic. Very often, this is the result of faults ocdarg in the
read/write logic of the register file, causing an incorregfister to
be read or written. In the case of an incorrect write addréss,
result is actually a pair of incorrect 32-bit architecturedjisters,
one for the incorrectly written register and one for the stayi that
should have been written, neither of which could have beeowre
ered using ECC.

2.2.3 <oft Error Analysis Discussion

The experiments conducted in Section 2.2.2 lead to two impor
tant insights about how to efficiently provide soft errortetion.
First, the majority of the faults (both in combinational asetjuen-
tial logic) that affect the architectural state of the pssm actu-
ally occur within the register file. The standard practicepply-
ing ECC can only handle faults occurring directly in the stgi
state array and does not provide coverage for faults oguimithe
read/write logic. Since the majority of the cell area witttie reg-
ister file is consumed by combinational logic, it is cleattB&€C is
unlikely to supply adequate protection. Therefore, a l@sttech-
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nigue that defends the register file against faults in bothstiate
array and the combinational logic is necessary to provide signifi-
cant protection for the microprocessor core.

The second insight is derived from the observation thattgaul
occurring in arbitrary combinational logic exhibit a highgtee of
fanout, causing errors in a large number of sequential stiate
ments. This property can be exploited to minimize the nunatber
fault detection sites necessary to provide adequate agweBy us-
ing the set of most vulnerable state elements (nodes withdtigr
fan-in) to guide the placement of fault detection units péssible
to achieve high fault coverage with minimal overhead.

In the following sections, we present two techniques whésiet-
age these insights to provide significant soft error covenagh
little area and power overhead.

3. FAULT MITIGATION TECHNIQUES

In this section, we leverage the data presented in Sectbto?2.
motivate two complementary techniques for addressingesofirs
within an embedded microprocessor. The purpose of the iggobs
presented in this section is to provide scalable mecharfisnai-
dressing a statistically significant portion of faults witiinimal
area and power overhead. We show that by targeting onlyyhighl
vulnerable portions of the design, we can achieve substdatilt
coverage with little expense.

Our analyses demonstrate that the majority of faults affgd¢he
operation of software occur within the architectural regidile.
The first technique that we present addresses these fauits ais



mechanism referred to as thegister value cache (RVC) in Sec-
tion 3.1. The RVC relies on locality of reference, maintaghdu-
plicate copies of only the most recently used register datar-
der to provide high fault coverage. Unlike traditional maaisms,
such as ECC, the RVC protects against faults occurring in that
combinational logic and the state array, yielding more ttvaine
the fault coverage. Further, the coverage provided by thé Ridy
be increased by simply adding more cache entries, thusdatan
constraints for area and power against fault tolerance.

To address faults occurring outside of the register file, avert
age the significant amount of observed fault fan-out withendore,
demonstrated in Section 2.2, to strategically deploy teamulse
detectors at high fan-in state elements. We then use thésetales
to proactively flush processor state and correct transieatseoc-
curring in microarchitectural state. The process of deiteing the
most effective location for these pulse detectors and timggthem
into the design is fully automatable and the subject of omgoe-
search. We demonstrate how this technique can be used $tetiean
available area and power into fault coverage in Section 3.2.

3.1 Register Value Cache

The register file in the ARM926EJ-S microprocessor consumes
only 8.7% of the total core area, yet 57.4% of the faults thatilt
in errors at the software interface (architectural regsstmemory,
instruction cache, or data cache) occur within the regfgeerThis
implies that any efficient strategy for tolerating soft esrmust im-
plement a mechanism for handling faults occurring withie tbg-
ister file.

The traditional technique for dealing with faults occugrim
large state arrays is to employ error correcting codes (EGG)-
ever, ECC in the context of the register file is problematicsiev-
eral reasons, especially for processors implementing R An-
struction set. First, the ARM instruction set allows for oythree
register read operations and up to two write operations peec
This significantly complicates the logic within the regisfite and
requires that an ECC protected register file include thre€ EG-
code units and two ECC decode and correct units, each of vidiich
expensive to implement, both in power and area. In addi&@C
is limited in terms of the amount of fault coverage it can [ev
for the register file, since ECC can only protect against$auhich
occur directly in the register state array.

Sequential state consumes only 44.1% of the ARM926EJ-S reg-
ister file cell area. If particle strikes are assumed to béoumily
distributed over the area of the processor core, then mates fare
likely to occur in the read/write logic of the register fileathin the
state array. This has serious implications for the efficcdz@C
as a soft error tolerance mechanism. Since ECC is only capabl
of correcting single bit errors occurring in the actual statray,
more than 55% of the faults occurring in the register file \gil
potentially undetected.

In order to address the shortcomings of ECC in protecting the
register file, we propose a new mechanism calleddbister value
cache (RVC). The RVC is capable of detecting and correcting faults
occurring in both the combinational and sequential logithefreg-
ister file. It maintains duplicate copies of the most regeatt-
cessed values within the register file, allowing for a higlyrde
of fault coverage without duplicating the entire registée. fiAlso,
since the inputs to the register file are split off and fed atiyeto
the RVC, the read/write control logic for the register fileeissen-
tially duplicated. A detailed schematic of the RVC implernaion
is shown in Figure 7.

The RVC is implemented as a separate module alongside the reg
ister file, and all read/write address and enable inputsetodgister

file are duplicated and fed to the RVC. On a read operatiomeif t
RVC contains the requested read value, it provides the chitpli
data and asserts the appropriate valid signal. The reattsésum
the RVC and the register file are then compared and the refsult o
the comparison is ANDed with the valid signal to determinarif
error is present. If an error is present, the processor staial is
asserted and the processor pipeline must stall for one oytule
the RVC determines whether the value it supplied was corfiéts

is done by conducting a cyclic redundancy check (CRC) ondgbe r
ister value contained in the cache. If the CRC check faik tihe
value contained in the register file was correct, while if @RC
check passes, then the value in the RVC was correct. It israesbu
here that the probability of multiple particle strikes widoth the
RVC and the register file are corrupteahd the corrupted values
correspond to the same register value is negligible.

There are two main reasons for using CRC in the RVC rather
than ECC. First, the former is much cheaper to implementringe
of both area and power. Second, since there are already i®sco
of the register read data, it is only necessary to determfiehof
the two values is correct, not to actually find and correcteter,
removing the need for expensive error correction logic.

The RVC employs two CRC units for the purpose of encoding
and decoding read/write values for the cache. The CRC usés u
a five bit CRC polynomial for encoding up to two write values pe
cycle. Since the CRC value is only checked when the output fro
the register file does not match the output of the RVC, at which
point the processor pipeline is already stalled, one of RE@nits
may be reused for checking the CRC on a mismatched read value.
The operation of the RVC on read and write requests is destrib
as follows:

Write request: When the write enable signal is asserted, the RVC
checks to see if the register to be written already has ag entr
assigned to it in the value array. This is done by checking the
index array value corresponding to the register numbehnelf t
index array value is valid, it is used as the write address for
the value array. In the case that the index array value is not
valid, the least recently used value is evicted from the each
While the write value address calculation is taking place, a
five-bit CRC value is computed and forwarded to the value
array.

Read request: On a register read request, the index array entry
corresponding to the register read number is checked for a
valid entry. If the entry is valid, the associated outpuid/al
signal is asserted and the address from the index array entry
is forwarded to the value array. The value array sets the read
output data to the value stored in the cache, and forwards
the read value as well as its CRC value to phevious value
buffer. The read value and the CRC must be copied to this
temporary buffer in order to handle the case where a read
value mismatch has occurred for a register that was both read
from and written to in the previous cycle. If the index array
entry is not valid, the appropriate valid line is deassested
the output data value is set{82' bx}.

The output from the register file and RVC are compared, and
if the comparison fails AND the valid line for the read ad-
dress is asserted, the two read results are temporarilgriedff
and the pipeline is stalled for one cycle. During this cycle,
the RVC conducts a CRC check on the previously read RVC
value. If the CRC check fails, then the error signal is as-
serted and the buffered value from the register file is identi
fied as the correct value, otherwise the buffered value from
the cache is assumed to be the correct value.
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3.2 Time-delayed Shadow Latches

In order to provide fault tolerance for faults occurringside of
the register file, we first determine which of these faultsraost
critical. Our results demonstrate that less than 30% of dloéts
injected into sequential logic which are observable at disvare
interface occur outside of the register file, as opposed te rtian
50% for faults injected into combinational logic. In orderichieve
a high degree of fault coverage while still maintaining loven
head, we specifically target faults occurring in combinzdidogic
using transient pulse detectors. Though these pulse detesmte
ideal for detecting faults in combinational logic, theyajsovide
fault detection for faults occurring in sequential statengnts as
well.

To maintain low power and area overhead, we exploit the fault

fanout observed in Section 2.2 to strategically place teamipulse
detection units at high fan-in sequential state elementenv€&
niently, these high fan-in elements, also tend to be the soee
sponsible for generating errors at the software interfaoenfaults
are injected into sequential state, and so these detetsonsravide
fault coverage for faults occurring in state elements. &Sithese
detectors are being used specifically to protect againstesairs
occurring in the microarchitectural state outside of thggter file,
once an error is detected, it can be corrected by simply fhgsthie
processor pipeline.

To help motivate the strategic placement of detectors at anl
small subset of state elements within the design, we demstast
the frequency of multi-bit errors that are observed in theley

Relative Frequency

Number of Microarchitectural Errors

8: Frequencies for the given number of microarchitecturaestarors for
faults that are injected into combinational logic.

directly after a fault has been injected into combinatiologiic.
These results are shown in Figure 8.

Figure 8 shows that more than 30% of faults in combinational

logic, that actually result in errors, result in multi-birers. Fur-

ther, more than 20% of these errors are of ten bits or mores It i

also interesting to note the outlying data which shows thabst
5% of the faults result in more than 8,000 incorrect bits afest
This sort of occurrence is especially problematic and sipiche
result of faults occurring at nodes used in design for tegth s
scan chains, and other general test logic.
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In Figure 9, we demonstrate the design for the transitioraet
tion circuit used in this work, which is presented in the Rg2%
dynamic voltage scaling system. This figure depicts a stalrftip-
flop, which is augmented with a time-delayed shadow latch. Fo
this detector, the input signal to the latch is split off andhjscted
to a delay proportional to the width of the pulses that arectald>-
tected. The delayed input is then passed to a shadow latchrand
error signal is generated if the output of the shadow latahthe
flip-flop do not match. This particular detection mechanisma-
pable of detecting faults occurring both in the logic conediag
the flip-flop, and the flip-flop itself. There are a number ergin
ing difficulties involved in implementing such a system, eihiare
beyond the scope of this paper, that are discussed in [5].

Since an automated tool for placing these detectors angratte
ing them into the microprocessor core is the subject of argoe-
search and future work, we present a manual technique foingla
fault detectors in order to determine the achievable faulerage
as a function of the number of detection units used in thegdesi
To determine the most valuable detection points, we firstiaon
statistical analysis using Monte Carlo fault injection slations
on the ARM926EJ-S core. We then rank order the set of flip-flops
which should be protected based on the number of uniquesfidest
that would be covered by protecting the flip-flop. Once thitkra
order has been generated, the amount of fault coveragesf@hth
can be incrementally improved by replacing traditional-flgps
with the enhanced flip-flops within the design. This allowgpdate-
signers to systematically tweak fault coverage as a funaifahe
area and power budgets available for fault tolerance. Iti@e4.2,
we explore the cost versus fault coverage achieved by augigen
the ARM926EJ-S with these transition detection circuits.

4. EVALUATION

In this section, we conduct a number of experiments to demon-
strate the efficacy of the two proposed soft error proteatigth-
anisms. We evaluate the fault coverage provided when eabh te
nique is applied in isolation as well as when they are empuloye
cooperatively. For each experiment, we detail the amourféaudf
coverage gained with respect to its cost, in terms of both arnel
power.

4.1 Register Value Cache Analysis

To evaluate the RVC, we first derive a bound for the maximum
fault coverage achievable. This bound is calculated byyairay
the hit rate of RVCs of various sizes and multiplying the laiter
by the percentage of faults that occur within the register tfilat
lead to errors at the software interface. We determine theate
by simulating the RVC operating on a set of traces from theiMed
aBench benchmarks [9]. These benchmarks were compiled usin
the arm-linux-gcc cross compiler version 2.95 and were kitad
on the SimpleScalar ARM926EJ simulator [3]. The hit rates fo
various size RVCs are shown in Figure 10.

As shown in Figure 10, an RVC with 6 entries demonstrates an

Hit Rate

cjpeg —+—
djpeg ---x---
epic %

unepic @
g721decode —-—m—
g72lencode --6--
pegwitdecode - -e-- -
pegwitencode —-4-—
rawcaudio -—-&---
rawdaudio —s—
average sseesss

14

0.75 L L L
6 8 10 12

Number of Entries

10: Register value cache hit rates as a function of the numbentdée in
the cache

hit rates of 99% with a cache of only six entries, but on averag
a 99% hit rate required at least a 12 entry cache. Hit ratekisf t
magnitude demonstrate that high fault coverage can bedaiitk
relatively few cache entries, allowing for small and effiti®vVC
designs.

In order to evaluate the cost of implementing various RVC de-
signs in comparison to traditional fault tolerance techei we
augmented the ARM926EJ-S register file with ECC protectitva.
implemented ECC protection circuits using minimum oddghéi
column SEC-DED codes as described in [7]. The ECC protected
register file required two ECC encode units, one for eachepth
tential write operations, and three ECC decode and erroection
units, one for each of the potential read operations. Weialpte-
mented the RVC with a variety of sizes ranging from 6 to 16ieatr
atintervals of two. Area results for the baseline ARM92GEHCC
protected register file and each of the RVC designs were gtter
by the Synopsys Physical Compiler, and power numbers were ge
erated by the Synopsys Power Compiler. The area resultaébr e
of the configurations are shown in Figure 11(a) and the poerer r
sults are shown in Figure 11(b).

The data presented in Figure 11 demonstrates the percent are
and power overhead for the ARM926EJ-S core for each fawdt-tol
ant register file configuration. These results indicateaha@®VC of
eight entries or less will consume both less on-chip aregpaner
than a register file augmented with ECC. In general, the area r
quirements for the RVC tend to scale regularly, while the gow
requirements tended to be more erratic. This was largelytaue
synthesis optimizations which could utilize more efficitagic for
cache sizes which were a power of two.

The fault coverage provided by protecting the register §ile i
bounded by the fact that only 57.4% of the faults that weribhas
at the software interface occurred within the register fileis cov-
erage bound is further reduced for ECC implementationsuseca
ECC can only detect and correct faults occurring in the acag
ister state array. Only 44.1% of the register file is seqaéstate,
and so we can conservatively estimate the fault coveragbaeof t
ECC protection to be (57.4% * 44.1%) = 25.31%. This estimate
is conservative because a modest fraction of the sequestsitd
elements within the register file is microarchitecturatestather
than architected registers. They would not be protected ®¢ E
and could further degrade the fault coverage provided by ECC

Since the RVC is capable of protecting against both faults oc
curring in combinational logic and sequential state elemsethe
fault coverage for the RVC design is bounded only by the cache

average hit rate of more than 90%, and an RVC with 8 entries has hit rate multiplied by the coverage gained by protectingreggs-

an average hit rate of better than 95%. Some benchmarksitchib

ter file. We assume here that the probability of multiple eorent
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11: Area and power analysis of register value cache implementat

particle strikes is negligible. Figure 12 presents theagtle fault
coverage for various fault tolerant register file configiarad.

Figure 12 demonstrates that an RVC, with as few as eighesntri
is capable of delivering more than twice the fault coverafjaro
ECC protected register file. Even more importantly, the R&@ c
be scaled to 14 entries, increasing the fault coverage to&3%e
faults affecting the register file, while increasing thesemad power
overhead by only about 1% over the cost of implementing ECC.

4.2 Time-delayed Shadow Latch Analysis

In this section, we analyze the area and power requirememgts n
essary for adding sufficient detectors to achieve a giveruataf
fault coverage. A large number of Monte Carlo fault simaas
were conducted to identify state elements for potentiainaarg
tation with time-delayed shadow latches. In these experime
counter is maintained for each state element within thegdegihe
counter is incremented every time the state element is jptadu
within the first cycle following a fault injection. As a resuthe
counter associated with each state element reflects thearushb
distinct faults that would be detected by augmenting tretestle-
ment with a pulse detection unit. The set of state elemeriteis
rank-ordered using these counter values. Two experiments,
vided with this prioritized list of candidate state elen®rre per-
formed to determine the amount of attainable fault coverage

The first experiment presents a limit study that demonstrate
upper bound on the number of faults covered as each statemiem
is protected with a shadow latch. In the second experimieafault
injection data is divided into training data and test datae frain-
ing set is used to generate the candidate list describedopsty
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12: Fault coverage for a variety of register file configurations

and the test set is used to evaluate the fault coverage achigven
deploying the detectors accordingly. For the second exyeari we
present the average achieved coverage over several thibuigEds
We refer to the results from these two experiments as theragee
limit study and the observed coverage respectively.

In Figure 13, we present a study of the amount of area and power
overhead incurred by augmenting flip-flops with the timeaglet
shadow latches described in Section 3.2. As mentioned in Sec
tion 3.2, an automated technique for inserting these dmteatto
a microprocessor core is the subject of future work, and here
present only a manual technique. The overhead for insethiege
detectors is presented in terms of the additional logic oedr-
head alone, however, preliminary experiments show thatdoh-
nect costs will not significantly impact the results presdnt

Figure 13 demonstrates two sets of data, one for the coverage
limit study and one for the observed coverage as describe¢eab
The limit study demonstrates that in the best case, less30%mn
of the registers in the design would need to be augmentediar or
to achieve 99.9% fault coverage for faults occurring ogtsitithe
register file. For the observed coverage metric in Figureol,
results show that on average, 90% fault coverage could l&\ach
by augmenting approximately 25% of the state elements mvitie
design.

4.3 Combined Approach Analysis

The techniques proposed in this paper work together in a-coop
erative fashion to address disjoint sets of faults. Herepresent
an analysis of the combined fault coverage that can be amtiey
employing both techniques together to tolerate soft erfoine area
and power numbers shown here represent the combined cost of i
plementing the two techniques, in terms of the logic cellrbead
alone.

Figure 14(a) demonstrates the combined cell area overhehd a
Figure 14(b) demonstrates the combined total power ovdrfera
each technique discussed in this paper. Each line in Figutes
and 14(b) represents a different register file configurasind its
effectiveness when used in conjunction with the amount eaar
and power budgeted for the time-delayed shadow latchesidedc
in 3.2. For each graph, fault coverage increases with theeper
overhead as more transient pulse detectors are added tedigmd

Several observations can be made from this data. Firsgleds
that ECC is far less effective than the RVC in protecting thg-r
ister file from corruption. Second, the increase in areamemxl
for different configurations of RVC is almost negligible, iehthe
power overhead increase is slightly more dramatic. Howeter
majority of the power overhead comes from the addition ofenor



Number of detectors

500 1000 1500 2000 2500 3000

40

35

30

25

20

15

Percent Fault Coverage

10

v a

Percent Coverage: Limit ——
Percgm Coveragp: Observeg ———————

0 . . . . .
0 05 1 15 2 25 3 35 4 45
Percent Area Overhead

(a) Percent area overhead for transient fault detectiots.uni
The secondary x axis shows the number of detectors (i.e. the
number of flip-flops augmented with detection units)

Number of detectors
1500 2000

500 1000 2500

/

3000
40

35

30

25

20

15

Percent Fault Coverage

10

s L

Percent Coverage: Limit
Percgm Coverage: Ob§erved ———————

0 L L L
0 1 2 3 4 5 6

Percent Power Overhead

(b) Percent power overhead for transient fault detectiatsun
The secondary x axis shows the number of detectors (i.e. the
number of flip-flops augmented with detection units)

13: Area and power analysis for transient fault detection units

time-delayed shadow latches, which tend to yield dimimighie-

turns. Lastly, more than 80% fault coverage can be achieved a
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14: Area and power analysis for the combined technique. SL septs
the time delayed redundant latch technique, ECC represents tbeor cor-
recting codes technique for register file protection and CacheX repressent
theregister value cache technique with X number of cache entries.

a cost of less than 14% power overhead and less than 6% in area

overhead.

5. RELATED WORK

Kim and Somani [8] conducted software-simulated faulténje
tion campaigns on an RTL model of the PicoJava-Il micropsece
sor to determine thsoft error sensitivity of logic blocks within the
design. The soft error sensitivity (SES) metric used in thisk
is defined as the probability that a soft error within a givegid
block will cause the processor to enter an incorrect archital
state. The fault model used in this work is similar to our own,
though the authors of this paper conduct error analysistlgtrét
the architectural level.

In [11], Mukherjee et al. define the teranchitectural vulnera-
bility factor (AVF) to be the probability that a fault in a microar-
chitectural structure will cause an error in program outplihe
authors use a performance simulator of the Itanium |l miarioia
tecture to determine the AVFs for structures within theinsiated
microarchitecture. Our work presents similar results atatchi-
tectural level for faults injected into sequential stateit focuses
on the microarchitectural effects of soft errors on a leggegpive
processor core.

Wang, et al. [18] characterize the effects of soft errorsronu-
of-order, superscalar Alpha-like processor core. Thet fianadel

used in this work simulates single bit flips in sequentialestde-
ments within the design, and an analysis of the failure megkib-
ited in simulation is described. In their work, the authaxplere
the effects of soft errors on a substantially different méechitec-
tural model and propose techniques for detecting soft elvased
on symptoms observed at the software interface.

Saggese, et al. [15] present a similar analysis of the sffefct
soft errors occurring in both sequential state elementzambina-
tional logic on a DLX microprocessor model. The error mastife
tion rates demonstrated in their work are corroborated lpyooun,
however, in our work we have chosen to focus on the error propa
gation behavior exhibited at the microarchitectural |eagther than
a sensitivity analysis of different blocks within the desig

In [10], the authors present a technique for protectingstegi
files in high-performance architectures from faults thatyroa-
cur when the clock frequency is aggressively scaled. Thieoasit
specifically target systems with large physical registasfitypi-
cally found in superscalar pipelines and store redundeatrégis-
ter values in unused physical registers. Though the idepogen
here is similar in nature to our own, it only feasible for gyst
with large, underutilized register files, and provides nwerage
when the register file is fully utilized.

In this work, we leverage a large body of research [5] [6] [12]



focused on circuits for detecting delay faults caused bygtetal
noise, particle strikes and inadequate voltage levels.s Wark
provides the basis for the proposed strategic placemenamgient
fault detectors. We exploit the circuit-level charactiées of em-
bedded microprocessors in order to efficiently utilize teishnol-
ogy.

6. CONCLUSION

This work presents a thorough analysis of soft errors on an
ARMO926EJ-S core. This analysis was done in order to motivate
low-overhead soft error tolerance mechanisms appropigatthe
embedded design space. We demonstrate how soft errors in
binational logic affect the behavior of soft errors at therarchi-
tectural level, and why this is important in the embedded aiom

For mitigating soft errors, we present two low-overhead pigm
mentary techniques that provide scalable fault coveragefasc-
tion of the available area and power budgets. In the firstiecte,
we introduce the register value cache, an architecturahargésm,
that provides twice the fault coverage of ECC when applietth¢o
register file and costs less to implement in terms of both aneh
power. The second technique that we present makes use of time
delayed shadow latches for fault detection. It identifighHan-in
nodes in the microprocessor core for placing these deteeiad
achieves up to 40% fault coverage. In conjunction, the twe pr
posed fault tolerance techniques can provide approxim&4do
fault coverage while incurring less than 5.5% area overtaatl
about 14% power overhead.
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