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ABSTRACT
Device scaling trends dramatically increase the susceptibility of mi-
croprocessors to soft errors. Further, mounting demand forem-
bedded microprocessors in a wide array of safety critical appli-
cations, ranging from automobiles to pacemakers, compounds the
importance of addressing the soft error problem. Historically, soft
error tolerance techniques have been targeted mainly at high-end
server markets, leading to solutions such as coarse-grained mod-
ular redundancy and redundant multithreading. However, these
techniques tend to be prohibitively expensive to implementin the
embedded design space. To address this problem, we first present
a thorough analysis of the effects of soft errors on a production-
grade, fully synthesized implementation of an ARM926EJ-S em-
bedded microprocessor. We then leverage this analysis in the de-
sign of two orthogonal low-cost soft error protection techniques
that can be tuned to achieve variable levels of fault coverage as a
function of area and power constraints. The first technique uses a
small cache of live register values in order to provide nearly twice
the fault coverage of a register file protected using traditional er-
ror correcting codes at little or no additional area cost. The sec-
ond technique is a statistical method used to significantly reduce
the overhead of deploying time-delayed shadow latches for low-
latency fault detection.

Categories and Subject Descriptors
B.5.3 [Reliability and Testing]: [Built-in tests]; C.3 [Special-
Purpose and Application-Based Systems]: [Real-time and Em-
bedded Systems]

General Terms
Reliability, Design, Experimentation

Keywords
Reliability, Soft Errors, Embedded Processors

1. INTRODUCTION
A soft error, or single event upset (SEU), is defined as a tran-

sient piece of incorrect machine state. A soft error in logicoccurs
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when the result of a transient fault in logic propagates to a storage
element and is latched. A soft error in a memory element occurs
when sufficient charge is generated to invert the value stored in the
memory element. Transient faults can be the result of electrical
noise, such as crosstalk, or high-energy particle strikes.Soft errors
due to energetic particle strikes are typically caused by either al-
pha particles, which can be emitted by radioactive contaminants in
microprocessor packaging materials, or high-energy neutrons from
cosmic radiation. While dealing with alpha particles is largely a
manufacturing issue, addressing neutron strikes poses a significant
problem because adequate shielding is prohibitively expensive.

Current device scaling trends suggest that dramatic increases in
microprocessor soft error rates (SER) are inevitable. Device scal-
ing results in lower operating voltages, which in turn reduces the
energy required to cause a voltage pulse at the output of a logic gate
or invert the value stored within a sequential element. Thus, lower-
energy particle strikes that did not pose a threat in past technology
generations could induce transient errors in future technology gen-
erations. Further, the rate of particle strikes increases exponentially
as the energy level of the particles decrease [19]. Therefore, with
each new technology generation, the rate of particle strikes that
may potentially affect the logical operation of the microprocessor
increases significantly. These trends, coupled with an explosive
growth of embedded microprocessor distribution for a number of
safety-critical applications suggests a strong need for understand-
ing reliability as it applies to the embedded design space.

Traditionally, reliability research has focused largely on the high-
performance server market. High availability systems, such as the
IBM G5 server [17] and the HP NonStop architecture [4], rely on
large scale modular redundancy to provide fault tolerance.Other
research has focused on providing fault protection using redundant
multithreading [13, 14]. In general, these techniques are expensive
in terms of both the area and power required for redundant compu-
tation and are not generally appropriate for embedded designs.

The design constraints of the embedded domain differ substan-
tially from those in the high-performance arena. In the embed-
ded design space, area and power are primary constraints which
are balanced with processor performance. This typically leads to
longer clock cycle times, larger logic depths between sequential
state elements, and a higher degree of signal fan-out in embedded
designs. Further, high performance microprocessors typically em-
ploy a large amount of out-of-order execution hardware and specu-
lative state. These mechanisms can decrease the overall utilization
of the chip, lowering the probability that a particle strikewill af-
fect a sensitive piece of state within the design, and increasing the
amount of fault masking. In general, high performance micropro-
cessor cores tend to have much more area devoted to sequential
state than to combinational logic. This invariably affectsthe be-



havior of soft errors on the design. Since the design constraints for
the embedded domain are considerably different from those in the
high-performance domain, it stands to reason that methods for fault
tolerance will also vary dramatically.

In order to fully understand the way in which soft errors af-
fect embedded microprocessors, we conduct a thorough analysis
of the behavior of faults on an ARM926EJ-S embedded core. In
these experiments, we measure the amount of fault masking that oc-
curs when faults are injected into both state elements and combina-
tional logic and also analyze the propagation behavior of the errors
throughout the design. We then use this study to motivate twosoft
error mitigation techniques appropriate for the embedded design
space. First, we propose the register value cache, a small and effi-
cient mechanism that protects the register file against faults occur-
ring in both sequential state elements and combinational read/write
logic within the register file. This design provides higher fault
coverage at a lower area overhead than traditional error correcting
codes (ECC). Second, we propose a method for the strategic de-
ployment of transient pulse detectors using time-delayed shadow
latches, which provides a high degree of fault coverage for the rest
of the design, while only requiring a small number of detectors.

The contributions of this work are as follows:

• An empirical derivation of the logical and temporal soft error
masking rates for a commercial embedded microprocessor.

• An analysis of the error fan-out and propagation behavior of
soft errors in a commercial embedded microprocessor.

• A lightweight architectural technique for protecting register
files from faults in both combinational and sequential logic.

• A statistical technique for deploying time-delayed shadow
latches for tolerating soft errors occurring in arbitrary logic
elements.

2. FAULT ANALYSIS OF THE ARM926EJ-S
PROCESSOR CORE

Though the effects of transient faults on high-performancemi-
croarchitectures have been studied in the past [11] [18], relatively
little published data exists regarding their effects on embedded de-
signs. Previous work that does involve embedded-style micropro-
cessors typically focuses on the effects of transient faults at the
macrocell and software levels [8] [15]. In order to motivatearchi-
tectural and microarchitectural solutions to the soft error problem,
the goal of the following analysis is to understand how transient
faults affect an embedded microprocessor at the circuit level and
how these faults propagate throughout system state. In thissection,
we provide a brief overview of the ARM926EJ-S microprocessor,
describe our fault analysis framework, and present detailed results
describing fault masking and propagation throughout the micropro-
cessor core.

2.1 Fault Analysis Framework
The soft error analysis conducted in this work uses a Verilog

model of an ARM926EJ-S microprocessor [1]. The ARM926EJ-S
is a 32-bit embedded architecture with a standard five stage pipeline
consisting of fetch, decode, execute, memory and write-back stages.
The datapath of the core is depicted in Figure 1. The implementa-
tion used in this work has 37 architecturally defined registers (31
32-bit general purpose and six status registers), 4 KB of instruction
cache, and 4 KB of data cache. The Verilog model was synthe-
sized using Synopsys Physical Compiler with scan-chain insertion
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and design-for-test methodologies using an Artisan library charac-
terized for a 130 nm process. The synthesized netlist and a hand-
designed floorplan were processed in Avanti Astro for clock tree
synthesis and physical placement. Once fully synthesized with all
design rule constraints satisfied, timing information was extracted
in Standard Delay Format so that it could be annotated onto the
netlist and simulated using Synopsys VCS.

The testbench used for simulation instantiates a pair of thesyn-
thesized netlists: a reference design and the unit under test. Both
netlists are annotated with the timing information gathered from the
synthesis and layout tools. The testbench also includes a behavioral
memory model that is used to load benchmarks for the simulations.
An overview of the soft error test harness is shown in Figure 2.

The soft error injection and analysis framework used in our ex-
periments is composed of a set of Verilog Programming Interface
(VPI) libraries that are invoked at the start of each simulation. Upon
invocation, the framework probes the design to derive the set of all
sequential state elements and combinational logic gates within the
unit under test. Depending on the simulation parameters, the frame-
work may schedule fault injection experiments at arbitrarypoints
in time for arbitrary durations, selecting a random design element
(register or logic gate) as a fault injection target and inverting the
value at the node’s output.

Experiments are conducted targeting both sequential stateele-
ments and combinational logic gates. Workload-specific analysis
is carried out by running benchmark code for an image processing
algorithm which maps an input image from the RGB to the YUV
color space. Upon initialization, the framework will select a ran-
dom point in time between 2,500 and 5,000 cycles after the start
of simulation to conduct its first fault injection. If the fault is to be
injected into a combinational logic element, the fault injection time



is randomly selected in picoseconds, and the fault durationis ran-
domly selected on the interval[0.25 ∗ CLK, CLK], whereCLK

is the cycle time of 5 ns. If the experiment is for a sequentialstate
element, the fault injection time is scheduled at a random future
rising edge of the clock signal and will be held for the duration of
one cycle.

At fault injection time, depending on the type of injection exper-
iment being simulated (faults in combinational logic or sequential
state), a random design element is selected for fault injection from
the unit under test. If the fault is to be injected into a logicelement,
a random logic gate in the design is selected and the value present
on it’s output is inverted, simulating a transient fault caused by a
particle strike. Similarly, when faults in registers are being simu-
lated, a random register is selected and its output is inverted. When
a fault is injected into the design, the framework logs the fault site,
the time of injection, and the pulse duration.

After a fault has been injected into the system,every microarchi-
tectural register in the unit under test is compared againstits dual in
the reference design at each subsequent rising clock edge. Further,
all top-level output ports on the design (I/O buses, coprocessor in-
terface, test equipment) and inputs into the caches are checked to
ensure that no corrupt values have escaped from the core datapath.
If, during the first cycle after fault injection, no register, cache, or
top-level port mismatches occur, the injected fault did notaffect
the system, and so a new random time in the future is selected for
another fault injection experiment. If any register, cache, or port
mismatches does occur, the fault analysis framework logs the rela-
tive cycle and site of the error for later analysis.

The fault analysis framework continues to track the progress of
errors throughout the system for a given number of cycles after
the fault injection. If during this period, no errors are present, and
no errors have propagated out to the caches or top-level ports, the
system is clean, and the fault was successfully masked, allowing
a new time for fault injection to be scheduled. If top-level port or
cache errors did occur, or a latent error still lingers in thedesign that
has not yet affected architectural state, then simulation halts, and
error logs are written for post-processing to analyze propagation
and architectural state effects. Though latent errors in the design
may not have caused errors in software-visible state, they still pose
a threat and may potentially cause data corruption given a more
diverse workload.

2.2 Fault Analysis Results
In this section, we provide an empirical derivation of the soft

error masking rate for the ARM926EJ-S processor core, as well as
a detailed examination of the soft error propagation behavior. The
soft error rate is directly related to a set of derating factors that
mask faults from being latched at the output of a circuit. Thethree
circuit-level derating factors that affect the SER are as follows:

• Logical masking: Logical masking occurs when a transient
pulse is effectively gated from all possible target sequential
state elements; for example, a transient pulse at the outputof
a circuit that is ANDed with 0 will be logically masked.

• Temporal masking: Temporal masking (or latching-window
masking) occurs when a transient pulse propagates to a state
element, but does not arrive within the capture window of the
state element.

• Electrical masking: Electrical masking occurs when a tran-
sient pulse is attenuated by subsequent logic gates such that
the pulse does not affect the output of the circuit.

The experiments presented in this work examine the effects of

Error Location Logical Masking Rate
Microarchitectural state 6.47%
Architectural state 88.35%
Top-level port 89.32%

1: Average logical masking rate for soft errors occurring in sequential
state elements.

both logical and temporal masking on the overall soft error rate,
but leave electrical masking for future work.

2.2.1 Logical and Temporal Masking
In this set of experiments, we derive the rates at which injected

faults are masked from affecting different classes of processor state:
microarchitectural state, architectural state, and the top-level output
ports of the design (I/O buses, coprocessor interface, testequip-
ment) while the image processing benchmark, rgb2yuv, is executed
on the processor model. We define the architectural state as the
set of 37 software-visible physical registers defined in theARM
instruction set architecture [16] and the microarchitectural state as
the set of all state elements within the design, excluding the ar-
chitectural registers. In the first experiment, we restrictour fault
injections to only sequential state elements and observe the rate at
which the different classes of errors appear over a period of200 cy-
cles subsequent to fault injection. The results of this experiment is
presented in Table 1. These results demonstrate the averagelogical
masking rate for faults occurring in sequential state elements.

Table 1 shows that when a fault occurs within a state element,it
is very common for microarchitectural state to remain corrupted
in the cycles subsequent to fault injection, with only about6%
of faults being masked from affecting the microarchitectural state.
Though the microarchitectural state masking rate is quite low (and
thus the error rate is quite high), these faults rarely propagate into
the architectural register file or to the top-level ports of the design
where they have the potential to corrupt software state. Thesecond
row in Table 1 shows that only about 11% of the injected faultsac-
tually affect the ARM926EJ-S architectural registers, andthe third
row shows that even fewer faults are propagated outside of the core
from toplevel ports within the 200 cycle experiment window.

Since combinational logic nodes consume nearly 58% of the cell
area of the ARM926EJ-S design, we expand upon the previous
study and next examine the effects of faults injected at arbitrary
combinational logic nodes. Here we introduce two sets of data,
the first presents the masking rates for the different types of er-
rors, based on a pulse being injected at clock cycle boundaries and
lasting for the duration of an entire clock cycle. This experiment
yields the average logical masking rate for faults occurring at arbi-
trary logic nodes. Then, in the second experiment, we uniformly
select a random point in time at which to inject a fault, irrespective
of clock cycle boundaries. We hold this fault for a random duration
on the interval[0.25∗CLK, CLK]. This experiment results in the
average combined temporal and logical masking rate of the micro-
processor core. The results of these two experiments are shown in
columns two and three respectively of Table 2.

The results presented in Table 2 demonstrate that the microar-
chitectural masking rate for faults in combinational logicis sub-
stantially higher than the microarchitectural masking rate observed
for faults occurring in sequential state. Nevertheless, itwould be
a mistake to take this to mean that faults in combinational logic
are less significant than faults in sequential state. Thoughthere is
a large disparity between these microarchitectural masking rates,
the difference is not nearly so pronounced at the software interface.
Table 2 shows that the architectural masking rate for faultsoccur-
ring in logic is only about 8% greater than for faults occurring in



Error Location Logical Masking Rate Logical + Timing Masking Rate
Microarchitectural state 78.44% 83.76%
Architectural state 94.74% 96.59%
Top-level port 95.12% 96.33%

2: Average logical and logical and temporal masking rates for soft errors occurring in combinational logic.
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3: Relative frequency for which incorrect state is observed within the pro-
cessor as a function of transient pulse duration

sequential state. Further, even though the architectural masking
rate for faults occurring in combinational logic tends to beslightly
higher, we will demonstrate in Section 2.2.2 that faults in combina-
tional logic tend to be much more insidious.

In order to illustrate the effects of latching-window masking and
pulse duration on the overall soft error rate, we provide a further
analysis of faults occurring at worst-case nodes in the design. In
this experiment, we restrict fault injection to the output of sequen-
tial state elements and vary the pulse duration randomly across the
clock cycle time, thus ensuring the worst case delay for eachprop-
agation path between the fault injection site and the targetstate
elements. Histogram data representing the frequency with which a
given fault duration causes an error is shown in Figure 3.

Figure 3 shows that there is a definite correlation between the
fault duration and the likelihood that errors are expressedin the
microprocessor. However, this figure demonstrates that even rela-
tively small pulses may be responsible for a significant percentage
of the total soft error rate. In addition, it is important to note that the
results presented in Figure 3 are conservative, since particle strikes
are likely to be random throughout the depth of the circuit. Further,
as technology scales, the latching window will become a moresig-
nificant portion of the clock cycle time, further marginalizing the
effects of latching window masking.

2.2.2 Soft Error Propagation Behavior
In this section, we analyze how soft errors propagate throughout

the microprocessor core over time. The effects of transientfaults
on both architectural and microarchitectural state as wellas the
toplevel ports of the design are analyzed in the cycles subsequent
to fault injection. In these experiments, only fault injection data for
those faults that have caused at least a single bit error are used, and
the number and type of errors present in the core over the cycles
following fault injection are analyzed. Figure 4 demonstrates the
average number of state bit errors for each class of error discussed
in the previous section. In Figure 4, each data point represents the
average number of bit errors that are present in the design for a par-
ticular error class, given that at least a single error of that class was
expressed over the course of the experiment.

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r 

of
 E

rr
or

s

Elapsed Cycles

Seq. State: Microarchitectural State Errors
Seq. State: Architectural State Errors
Seq. State: Top-level Port Errors
Comb. Logic: Microarchitectural State Errors
Comb. Logic: Architectural State Errors
Comb. Logic: Top-level Port Errors

4: Average number of incorrect bits for various error types over the span of
twenty cycles following the fault injection. Faults are injected in sequential
state and combinational logic elements

Figure 4 demonstrates a large disparity between how faults oc-
curring in sequential state affect the processor core as opposed to
faults in combinational logic. In the first cycle after faultinjection,
faults occurring in combinational logic typically cause more than
27 bits of incorrect microarchitectural state and can causesix bits
of corrupt architectural state on average, whereas faults in sequen-
tial state typically only cause only single bit errors of anyclass.
From Figure 4, it is clear that faults occurring in combinational
logic cannot be accurately modeled as single bit state errors. It
is important to note that although Section 2.2.1 shows the mask-
ing rate for faults in combinational logic is about 8% higher, more
than 58% of the design is consumed by combinational logic, mean-
ing that more faults are likely to occur in the combinationallogic
than in the sequential state elements, potentially offsetting the de-
scripency in masking. Further, these faults are likely to corrupt
significantly more system state. It is also interesting to note from
Figure 4, on average, when faults in logic cause an error in architec-
tural state, they often cause multi-bit errors within the register file,
whereas faults in state elements rarely demonstrate such effects.

In order to better understand the propagation of errors within the
system and how they may potentially affect software state, the next
experiment is focussed solely on the propagation behavior of soft
errors into architectural state. Figures 5(a) and 5(b) demonstrate the
relative frequency of architectural state bit errors manifested during
the ten cycles after fault injection.

Figure 5(a) shows that multi-bit architectural state errors tend
to occur very rarely when faults are injected into sequential logic.
This corroborates the position that simply applying error correct-
ing codes (ECC) to the words stored within the register file isa po-
tentially valuable tool in protecting against the effects of transient
faults occurring in state elements. However, Figure 5(b), demon-
strates that when transient faults occur in combinational logic, and
they manifest as errors in architectural state, multi-bit errors of four
bits or more account for more than 45% of the occurrences. Fur-
ther, as shown by the spike at the tail end of Figure 5(b), morethan
15% of the faults occurring in combinational logic cause more than
90% of the architectural state bits (∼ 1000 state elements) to hold
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5: Architectural state errors

incorrect values. This is typically the result of faults occurring in
extremely sensitive design for test logic, such as scan-enable nodes.

To highlight the nuances of the architectural effects presented in
Figure 5(b), we also study the number of incorrect bits per architec-
tural register that are corrupted over time. Figure 6(a) themajority
of faults injected into state elements cause only single biterrors in
architectural state.In contrast to this, Figure 6(b) demonstrates that
multi-bit errors, where the entire 32 bits of the architectural register
are corrupted, tend to be the norm for faults occurring in combina-
tional logic. Very often, this is the result of faults occurring in the
read/write logic of the register file, causing an incorrect register to
be read or written. In the case of an incorrect write address,the
result is actually a pair of incorrect 32-bit architecturalregisters,
one for the incorrectly written register and one for the register that
should have been written, neither of which could have been recov-
ered using ECC.

2.2.3 Soft Error Analysis Discussion
The experiments conducted in Section 2.2.2 lead to two impor-

tant insights about how to efficiently provide soft error protection.
First, the majority of the faults (both in combinational andsequen-
tial logic) that affect the architectural state of the processor actu-
ally occur within the register file. The standard practice ofapply-
ing ECC can only handle faults occurring directly in the register
state array and does not provide coverage for faults ocurring in the
read/write logic. Since the majority of the cell area withinthe reg-
ister file is consumed by combinational logic, it is clear that ECC is
unlikely to supply adequate protection. Therefore, a low-cost tech-
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6: Number of bits that are corrupted per architectural register

nique that defends the register file against faults in both the state
arrayand the combinational logic is necessary to provide signifi-
cant protection for the microprocessor core.

The second insight is derived from the observation that faults
occurring in arbitrary combinational logic exhibit a high degree of
fanout, causing errors in a large number of sequential stateele-
ments. This property can be exploited to minimize the numberof
fault detection sites necessary to provide adequate coverage. By us-
ing the set of most vulnerable state elements (nodes with high error
fan-in) to guide the placement of fault detection units it ispossible
to achieve high fault coverage with minimal overhead.

In the following sections, we present two techniques which lever-
age these insights to provide significant soft error coverage with
little area and power overhead.

3. FAULT MITIGATION TECHNIQUES
In this section, we leverage the data presented in Section 2.2 to

motivate two complementary techniques for addressing softerrors
within an embedded microprocessor. The purpose of the techniques
presented in this section is to provide scalable mechanismsfor ad-
dressing a statistically significant portion of faults withminimal
area and power overhead. We show that by targeting only highly
vulnerable portions of the design, we can achieve substantial fault
coverage with little expense.

Our analyses demonstrate that the majority of faults affecting the
operation of software occur within the architectural register file.
The first technique that we present addresses these faults using a



mechanism referred to as theregister value cache (RVC) in Sec-
tion 3.1. The RVC relies on locality of reference, maintaining du-
plicate copies of only the most recently used register data in or-
der to provide high fault coverage. Unlike traditional mechanisms,
such as ECC, the RVC protects against faults occurring in both the
combinational logic and the state array, yielding more thantwice
the fault coverage. Further, the coverage provided by the RVC may
be increased by simply adding more cache entries, thus balancing
constraints for area and power against fault tolerance.

To address faults occurring outside of the register file, we lever-
age the significant amount of observed fault fan-out within the core,
demonstrated in Section 2.2, to strategically deploy transient pulse
detectors at high fan-in state elements. We then use these detectors
to proactively flush processor state and correct transient errors oc-
curring in microarchitectural state. The process of determining the
most effective location for these pulse detectors and inserting them
into the design is fully automatable and the subject of ongoing re-
search. We demonstrate how this technique can be used to translate
available area and power into fault coverage in Section 3.2.

3.1 Register Value Cache
The register file in the ARM926EJ-S microprocessor consumes

only 8.7% of the total core area, yet 57.4% of the faults that result
in errors at the software interface (architectural registers, memory,
instruction cache, or data cache) occur within the registerfile. This
implies that any efficient strategy for tolerating soft errors must im-
plement a mechanism for handling faults occurring within the reg-
ister file.

The traditional technique for dealing with faults occurring in
large state arrays is to employ error correcting codes (ECC). How-
ever, ECC in the context of the register file is problematic for sev-
eral reasons, especially for processors implementing the ARM in-
struction set. First, the ARM instruction set allows for up to three
register read operations and up to two write operations per cycle.
This significantly complicates the logic within the register file and
requires that an ECC protected register file include three ECC en-
code units and two ECC decode and correct units, each of whichis
expensive to implement, both in power and area. In addition,ECC
is limited in terms of the amount of fault coverage it can provide
for the register file, since ECC can only protect against faults which
occur directly in the register state array.

Sequential state consumes only 44.1% of the ARM926EJ-S reg-
ister file cell area. If particle strikes are assumed to be uniformly
distributed over the area of the processor core, then more faults are
likely to occur in the read/write logic of the register file than in the
state array. This has serious implications for the efficacy of ECC
as a soft error tolerance mechanism. Since ECC is only capable
of correcting single bit errors occurring in the actual state array,
more than 55% of the faults occurring in the register file willgo
potentially undetected.

In order to address the shortcomings of ECC in protecting the
register file, we propose a new mechanism called theregister value
cache (RVC). The RVC is capable of detecting and correcting faults
occurring in both the combinational and sequential logic ofthe reg-
ister file. It maintains duplicate copies of the most recently ac-
cessed values within the register file, allowing for a high degree
of fault coverage without duplicating the entire register file. Also,
since the inputs to the register file are split off and fed directly to
the RVC, the read/write control logic for the register file isessen-
tially duplicated. A detailed schematic of the RVC implementation
is shown in Figure 7.

The RVC is implemented as a separate module alongside the reg-
ister file, and all read/write address and enable inputs to the register

file are duplicated and fed to the RVC. On a read operation, if the
RVC contains the requested read value, it provides the duplicate
data and asserts the appropriate valid signal. The read results from
the RVC and the register file are then compared and the result of
the comparison is ANDed with the valid signal to determine ifan
error is present. If an error is present, the processor stallsignal is
asserted and the processor pipeline must stall for one cyclewhile
the RVC determines whether the value it supplied was correct. This
is done by conducting a cyclic redundancy check (CRC) on the reg-
ister value contained in the cache. If the CRC check fails, then the
value contained in the register file was correct, while if theCRC
check passes, then the value in the RVC was correct. It is assumed
here that the probability of multiple particle strikes where both the
RVC and the register file are corruptedand the corrupted values
correspond to the same register value is negligible.

There are two main reasons for using CRC in the RVC rather
than ECC. First, the former is much cheaper to implement in terms
of both area and power. Second, since there are already two copies
of the register read data, it is only necessary to determine which of
the two values is correct, not to actually find and correct theerror,
removing the need for expensive error correction logic.

The RVC employs two CRC units for the purpose of encoding
and decoding read/write values for the cache. The CRC units use
a five bit CRC polynomial for encoding up to two write values per
cycle. Since the CRC value is only checked when the output from
the register file does not match the output of the RVC, at which
point the processor pipeline is already stalled, one of the CRC units
may be reused for checking the CRC on a mismatched read value.
The operation of the RVC on read and write requests is described
as follows:

Write request: When the write enable signal is asserted, the RVC
checks to see if the register to be written already has an entry
assigned to it in the value array. This is done by checking the
index array value corresponding to the register number. If the
index array value is valid, it is used as the write address for
the value array. In the case that the index array value is not
valid, the least recently used value is evicted from the cache.
While the write value address calculation is taking place, a
five-bit CRC value is computed and forwarded to the value
array.

Read request: On a register read request, the index array entry
corresponding to the register read number is checked for a
valid entry. If the entry is valid, the associated output valid
signal is asserted and the address from the index array entry
is forwarded to the value array. The value array sets the read
output data to the value stored in the cache, and forwards
the read value as well as its CRC value to theprevious value
buffer. The read value and the CRC must be copied to this
temporary buffer in order to handle the case where a read
value mismatch has occurred for a register that was both read
from and written to in the previous cycle. If the index array
entry is not valid, the appropriate valid line is deassertedand
the output data value is set to{32’bx}.

The output from the register file and RVC are compared, and
if the comparison fails AND the valid line for the read ad-
dress is asserted, the two read results are temporarily buffered
and the pipeline is stalled for one cycle. During this cycle,
the RVC conducts a CRC check on the previously read RVC
value. If the CRC check fails, then the error signal is as-
serted and the buffered value from the register file is identi-
fied as the correct value, otherwise the buffered value from
the cache is assumed to be the correct value.
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3.2 Time-delayed Shadow Latches
In order to provide fault tolerance for faults occurring outside of

the register file, we first determine which of these faults aremost
critical. Our results demonstrate that less than 30% of the faults
injected into sequential logic which are observable at the software
interface occur outside of the register file, as opposed to more than
50% for faults injected into combinational logic. In order to achieve
a high degree of fault coverage while still maintaining low over-
head, we specifically target faults occurring in combinational logic
using transient pulse detectors. Though these pulse detectors are
ideal for detecting faults in combinational logic, they also provide
fault detection for faults occurring in sequential state elements as
well.

To maintain low power and area overhead, we exploit the fault
fanout observed in Section 2.2 to strategically place transient pulse
detection units at high fan-in sequential state elements. Conve-
niently, these high fan-in elements, also tend to be the nodes re-
sponsible for generating errors at the software interface when faults
are injected into sequential state, and so these detectors also provide
fault coverage for faults occurring in state elements. Since these
detectors are being used specifically to protect against soft errors
occurring in the microarchitectural state outside of the register file,
once an error is detected, it can be corrected by simply flushing the
processor pipeline.

To help motivate the strategic placement of detectors at only a
small subset of state elements within the design, we demonstrate
the frequency of multi-bit errors that are observed in the cycle
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faults that are injected into combinational logic.

directly after a fault has been injected into combinationallogic.
These results are shown in Figure 8.

Figure 8 shows that more than 30% of faults in combinational
logic, that actually result in errors, result in multi-bit errors. Fur-
ther, more than 20% of these errors are of ten bits or more. It is
also interesting to note the outlying data which shows that almost
5% of the faults result in more than 8,000 incorrect bits of state.
This sort of occurrence is especially problematic and typically the
result of faults occurring at nodes used in design for test, such as
scan chains, and other general test logic.
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In Figure 9, we demonstrate the design for the transition detec-
tion circuit used in this work, which is presented in the Razor [2]
dynamic voltage scaling system. This figure depicts a standard flip-
flop, which is augmented with a time-delayed shadow latch. For
this detector, the input signal to the latch is split off and subjected
to a delay proportional to the width of the pulses that are to be de-
tected. The delayed input is then passed to a shadow latch andan
error signal is generated if the output of the shadow latch and the
flip-flop do not match. This particular detection mechanism is ca-
pable of detecting faults occurring both in the logic cone feeding
the flip-flop, and the flip-flop itself. There are a number engineer-
ing difficulties involved in implementing such a system, which are
beyond the scope of this paper, that are discussed in [5].

Since an automated tool for placing these detectors and integrat-
ing them into the microprocessor core is the subject of ongoing re-
search and future work, we present a manual technique for placing
fault detectors in order to determine the achievable fault coverage
as a function of the number of detection units used in the design.
To determine the most valuable detection points, we first conduct
statistical analysis using Monte Carlo fault injection simulations
on the ARM926EJ-S core. We then rank order the set of flip-flops
which should be protected based on the number of unique faultsites
that would be covered by protecting the flip-flop. Once this rank-
order has been generated, the amount of fault coverage for the chip
can be incrementally improved by replacing traditional flip-flops
with the enhanced flip-flops within the design. This allows chip de-
signers to systematically tweak fault coverage as a function of the
area and power budgets available for fault tolerance. In Section 4.2,
we explore the cost versus fault coverage achieved by augmenting
the ARM926EJ-S with these transition detection circuits.

4. EVALUATION
In this section, we conduct a number of experiments to demon-

strate the efficacy of the two proposed soft error protectionmech-
anisms. We evaluate the fault coverage provided when each tech-
nique is applied in isolation as well as when they are employed
cooperatively. For each experiment, we detail the amount offault
coverage gained with respect to its cost, in terms of both area and
power.

4.1 Register Value Cache Analysis
To evaluate the RVC, we first derive a bound for the maximum

fault coverage achievable. This bound is calculated by analyzing
the hit rate of RVCs of various sizes and multiplying the hit rate
by the percentage of faults that occur within the register file that
lead to errors at the software interface. We determine the hit rate
by simulating the RVC operating on a set of traces from the Medi-
aBench benchmarks [9]. These benchmarks were compiled using
the arm-linux-gcc cross compiler version 2.95 and were simulated
on the SimpleScalar ARM926EJ simulator [3]. The hit rates for
various size RVCs are shown in Figure 10.

As shown in Figure 10, an RVC with 6 entries demonstrates an
average hit rate of more than 90%, and an RVC with 8 entries has
an average hit rate of better than 95%. Some benchmarks exhibited
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10: Register value cache hit rates as a function of the number of entries in
the cache

hit rates of 99% with a cache of only six entries, but on average,
a 99% hit rate required at least a 12 entry cache. Hit rates of this
magnitude demonstrate that high fault coverage can be gained with
relatively few cache entries, allowing for small and efficient RVC
designs.

In order to evaluate the cost of implementing various RVC de-
signs in comparison to traditional fault tolerance techniques, we
augmented the ARM926EJ-S register file with ECC protection.We
implemented ECC protection circuits using minimum odd-weight-
column SEC-DED codes as described in [7]. The ECC protected
register file required two ECC encode units, one for each of the po-
tential write operations, and three ECC decode and error correction
units, one for each of the potential read operations. We alsoimple-
mented the RVC with a variety of sizes ranging from 6 to 16 entries
at intervals of two. Area results for the baseline ARM926EJ-S ECC
protected register file and each of the RVC designs were generated
by the Synopsys Physical Compiler, and power numbers were gen-
erated by the Synopsys Power Compiler. The area results for each
of the configurations are shown in Figure 11(a) and the power re-
sults are shown in Figure 11(b).

The data presented in Figure 11 demonstrates the percent area
and power overhead for the ARM926EJ-S core for each fault toler-
ant register file configuration. These results indicate thatan RVC of
eight entries or less will consume both less on-chip area andpower
than a register file augmented with ECC. In general, the area re-
quirements for the RVC tend to scale regularly, while the power
requirements tended to be more erratic. This was largely dueto
synthesis optimizations which could utilize more efficientlogic for
cache sizes which were a power of two.

The fault coverage provided by protecting the register file is
bounded by the fact that only 57.4% of the faults that were visible
at the software interface occurred within the register file.This cov-
erage bound is further reduced for ECC implementations because
ECC can only detect and correct faults occurring in the actual reg-
ister state array. Only 44.1% of the register file is sequential state,
and so we can conservatively estimate the fault coverage of the
ECC protection to be (57.4% * 44.1%) = 25.31%. This estimate
is conservative because a modest fraction of the sequentialstate
elements within the register file is microarchitectural state rather
than architected registers. They would not be protected by ECC
and could further degrade the fault coverage provided by ECC.

Since the RVC is capable of protecting against both faults oc-
curring in combinational logic and sequential state elements, the
fault coverage for the RVC design is bounded only by the cache
hit rate multiplied by the coverage gained by protecting theregis-
ter file. We assume here that the probability of multiple concurrent
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11: Area and power analysis of register value cache implementations

particle strikes is negligible. Figure 12 presents the achievable fault
coverage for various fault tolerant register file configurations.

Figure 12 demonstrates that an RVC, with as few as eight entries,
is capable of delivering more than twice the fault coverage of an
ECC protected register file. Even more importantly, the RVC can
be scaled to 14 entries, increasing the fault coverage to 99%of the
faults affecting the register file, while increasing the area and power
overhead by only about 1% over the cost of implementing ECC.

4.2 Time-delayed Shadow Latch Analysis
In this section, we analyze the area and power requirements nec-

essary for adding sufficient detectors to achieve a given amount of
fault coverage. A large number of Monte Carlo fault simulations
were conducted to identify state elements for potential augmen-
tation with time-delayed shadow latches. In these experiments, a
counter is maintained for each state element within the design. The
counter is incremented every time the state element is corrupted
within the first cycle following a fault injection. As a result, the
counter associated with each state element reflects the number of
distinct faults that would be detected by augmenting that state ele-
ment with a pulse detection unit. The set of state elements isthen
rank-ordered using these counter values. Two experiments,pro-
vided with this prioritized list of candidate state elements, are per-
formed to determine the amount of attainable fault coverage.

The first experiment presents a limit study that demonstrates an
upper bound on the number of faults covered as each state element
is protected with a shadow latch. In the second experiment, the fault
injection data is divided into training data and test data. The train-
ing set is used to generate the candidate list described previously
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12: Fault coverage for a variety of register file configurations

and the test set is used to evaluate the fault coverage achieved when
deploying the detectors accordingly. For the second experiment we
present the average achieved coverage over several thousand trials.
We refer to the results from these two experiments as the coverage
limit study and the observed coverage respectively.

In Figure 13, we present a study of the amount of area and power
overhead incurred by augmenting flip-flops with the time-delayed
shadow latches described in Section 3.2. As mentioned in Sec-
tion 3.2, an automated technique for inserting these detectors into
a microprocessor core is the subject of future work, and herewe
present only a manual technique. The overhead for insertingthese
detectors is presented in terms of the additional logic cellover-
head alone, however, preliminary experiments show that intercon-
nect costs will not significantly impact the results presented.

Figure 13 demonstrates two sets of data, one for the coverage
limit study and one for the observed coverage as described above.
The limit study demonstrates that in the best case, less than30%
of the registers in the design would need to be augmented in order
to achieve 99.9% fault coverage for faults occurring outside of the
register file. For the observed coverage metric in Figure 13,our
results show that on average, 90% fault coverage could be acheived
by augmenting approximately 25% of the state elements within the
design.

4.3 Combined Approach Analysis
The techniques proposed in this paper work together in a coop-

erative fashion to address disjoint sets of faults. Here, wepresent
an analysis of the combined fault coverage that can be achieved by
employing both techniques together to tolerate soft errors. The area
and power numbers shown here represent the combined cost of im-
plementing the two techniques, in terms of the logic cell overhead
alone.

Figure 14(a) demonstrates the combined cell area overhead and
Figure 14(b) demonstrates the combined total power overhead for
each technique discussed in this paper. Each line in Figures14(a)
and 14(b) represents a different register file configurationand its
effectiveness when used in conjunction with the amount of area
and power budgeted for the time-delayed shadow latches described
in 3.2. For each graph, fault coverage increases with the percent
overhead as more transient pulse detectors are added to the design.

Several observations can be made from this data. First, it isclear
that ECC is far less effective than the RVC in protecting the reg-
ister file from corruption. Second, the increase in area overhead
for different configurations of RVC is almost negligible, while the
power overhead increase is slightly more dramatic. However, the
majority of the power overhead comes from the addition of more
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13: Area and power analysis for transient fault detection units

time-delayed shadow latches, which tend to yield diminishing re-
turns. Lastly, more than 80% fault coverage can be achieved at
a cost of less than 14% power overhead and less than 6% in area
overhead.

5. RELATED WORK
Kim and Somani [8] conducted software-simulated fault injec-

tion campaigns on an RTL model of the PicoJava-II microproces-
sor to determine thesoft error sensitivity of logic blocks within the
design. The soft error sensitivity (SES) metric used in thiswork
is defined as the probability that a soft error within a given logic
block will cause the processor to enter an incorrect architectural
state. The fault model used in this work is similar to our own,
though the authors of this paper conduct error analysis strictly at
the architectural level.

In [11], Mukherjee et al. define the termarchitectural vulnera-
bility factor (AVF) to be the probability that a fault in a microar-
chitectural structure will cause an error in program output. The
authors use a performance simulator of the Itanium II microarchi-
tecture to determine the AVFs for structures within their simulated
microarchitecture. Our work presents similar results at the archi-
tectural level for faults injected into sequential state , but focuses
on the microarchitectural effects of soft errors on a less aggressive
processor core.

Wang, et al. [18] characterize the effects of soft errors on an out-
of-order, superscalar Alpha-like processor core. The fault model
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14: Area and power analysis for the combined technique. SL represents
the time delayed redundant latch technique, ECC represents theerror cor-
recting codes technique for register file protection and CacheX represents
theregister value cache technique with X number of cache entries.

used in this work simulates single bit flips in sequential state ele-
ments within the design, and an analysis of the failure modesexhib-
ited in simulation is described. In their work, the authors explore
the effects of soft errors on a substantially different microarchitec-
tural model and propose techniques for detecting soft errors based
on symptoms observed at the software interface.

Saggese, et al. [15] present a similar analysis of the effects of
soft errors occurring in both sequential state elements andcombina-
tional logic on a DLX microprocessor model. The error manifesta-
tion rates demonstrated in their work are corroborated by our own,
however, in our work we have chosen to focus on the error propa-
gation behavior exhibited at the microarchitectural levelrather than
a sensitivity analysis of different blocks within the design.

In [10], the authors present a technique for protecting register
files in high-performance architectures from faults that may oc-
cur when the clock frequency is aggressively scaled. The authors
specifically target systems with large physical register files typi-
cally found in superscalar pipelines and store redundant live regis-
ter values in unused physical registers. Though the idea proposed
here is similar in nature to our own, it only feasible for systems
with large, underutilized register files, and provides no coverage
when the register file is fully utilized.

In this work, we leverage a large body of research [5] [6] [12]



focused on circuits for detecting delay faults caused by electrical
noise, particle strikes and inadequate voltage levels. This work
provides the basis for the proposed strategic placement of transient
fault detectors. We exploit the circuit-level characteristics of em-
bedded microprocessors in order to efficiently utilize thistechnol-
ogy.

6. CONCLUSION
This work presents a thorough analysis of soft errors on an

ARM926EJ-S core. This analysis was done in order to motivate
low-overhead soft error tolerance mechanisms appropriatefor the
embedded design space. We demonstrate how soft errors in com-
binational logic affect the behavior of soft errors at the microarchi-
tectural level, and why this is important in the embedded domain.

For mitigating soft errors, we present two low-overhead comple-
mentary techniques that provide scalable fault coverage asa func-
tion of the available area and power budgets. In the first technique,
we introduce the register value cache, an architectural mechanism,
that provides twice the fault coverage of ECC when applied tothe
register file and costs less to implement in terms of both areaand
power. The second technique that we present makes use of time-
delayed shadow latches for fault detection. It identifies high fan-in
nodes in the microprocessor core for placing these detectors and
achieves up to 40% fault coverage. In conjunction, the two pro-
posed fault tolerance techniques can provide approximately 84%
fault coverage while incurring less than 5.5% area overheadand
about 14% power overhead.
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