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ABSTRACT

Aggressive technology scaling to 45nm and below introduces seri-
ous reliability challenges to the design of microprocessors. Large
SRAM structures used for caches are particularly sensitive to pro-
cess variation due to their high density and organization. Designers
typically over-provision caches with additional resources to over-
come the hard-faults. However, static allocation and binding of
redundant resources results in low utilization of the extra resources
and ultimately limits the number of defects that can be tolerated.
This work re-examines the design of process variation tolerant on-
chip caches with the focus on flexibility and dynamic reconfigura-
bility to allow a large number defects to be tolerated with modest
hardware overhead. Our approach, ZerehCache, combines redun-
dant data array elements with a permutation network for providing
a higher degree of freedom on replacement. A graph coloring algo-
rithm is used to configure the network and find the proper mapping
of replacement elements. We perform an extensive design space
exploration of both L1/L2 caches to identify several Pareto optimal
ZerehCaches. For the yield analysis, a population of 1000 chips
was studied at the 45nm technology node; L1 designs with 16%
and an L2 designs with 8% area overheads achieve yields of 99%
and 96%, respectively.

Categories and Subject Descriptors

B.3.4 [Memory Structures]: Reliability, Testing, and Fault-
Tolerance

General Terms

Design, Reliability, Algorithms

Keywords

Process variation, Fault-tolerant cache, Manufacturing yield

1. INTRODUCTION
Technological trends into the nanometer regime have lead to an

increasing vulnerability of manufactured parts to process variation.
A host of factors such as sub-wavelength lithography, line edge
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roughness, and random dopant fluctuation result in a wide distri-
bution of transistor characteristics which directly translates into
lower parametric yield [7]. This significant divergence of process
parameters from their nominal specification limits the achievable
frequency and also significantly hurts the leakage power of modern
high performance processors [32]. Efficiency of CMOS technology
is questionable in the face of such challenges. Current projections
indicate that future microprocessors will be composed of billions of
transistors, many of which will be unusable at manufacture time,
and many more which will degrade in performance (or even fail)
over the expected lifetime of the processor [9]. To address these re-
liability concerns, designers must “armor” their designs to tolerate
and operate properly in the presence of faults.
On-chip memory arrays in high performance processors are crit-

ical for chip reliability as more than 70% of the transistors can be
devoted to caches. These SRAM structures, however, are partic-
ularly vulnerable to the process variation due to their minimum-
geometry transistors, sensitive differential circuit, and area efficient
semi-custom layout. The yield of an unprotected cache in the 45nm
technology can be as low as 33%, implying the necessity of proper
protection [3, 4]. Under process variation, a single SRAM cell can
fail because of the following reasons that are sorted based on the
frequency of occurrence [3]: access time failure, write stability fail-
ure, read stability failure, and hold failure.
To illustrate the reliability implications on L1/L2 caches, Fig-

ure 1 presents the probabilities of having at least one faulty SRAM
cell considering different granularities of storage. This trend is
shown for a wide range of single cell failure probabilities (PF ),
assuming a uniform failure distribution. As the failure probabil-
ity increases in these graphs, the granularity of fault manifestation
decreases in size. For instance, the L2 cache configuration demon-
strates a modest number of block-level failures at PF ∼ 10−5.
Thus, a block-level redundancy solution would be satisfactory for
fault tolerance in this case. However, at PF ∼ 10−3, the L2 cache
is certain to contain at least one faulty cell in each cache word-line
with a very high chance of fault in each cache block. This makes
the use of word-line/block level redundancy impractical. Hence,
with the increasing failure probability, a smaller granularity of re-
dundancy will be necessary to guarantee robustness. The same
trends can be seen for the L1 cache, but it is favorably shifted to-
wards the right due to the smaller block and word-line sizes of the
L1 cache in comparison to the L2 cache. The primary challenge
in this scenario is to design a cache architecture that can maintain
and optimally utilize the smaller levels of redundancy for defect
tolerance. At a 45nm technology node, an SRAM cell is expected
to have a 30mV standard deviation in the threshold voltage (Vth)
resulting in a PF as high as 10

−3 [4]. Thus, there is a real need to
devise solutions for this reliability challenge. A significant amount
of literature targets the on-chip cache reliability concerns (e.g. tran-
sient faults, manufacturing defects, process variation, wearout, and



(a) A 1-bank 64KB L1 cache with 32B block size and 64b
word size

(b) A 2-bank 2MB L2 cache with 128B block size and 256b
word size

Figure 1: Probability of having at least one faulty SRAM cell at different granularities while varying the failure probability of each
SRAM cell, PF

near/sub-threshold operation) and the proposed solutions can be di-
vided into three major categories:
Coding Solutions: Simple error detection codes (EDC) and par-

ity can be applied for the detection of the faults in caches [27]. Sin-
gle error correction double error detection (SECDED) is a widely
used technique for protecting the memory structures. However, in
a high-failure rate situation, these solutions are not practical be-
cause of the strict bound on the number of tolerable faults in each
protected data chunk (Section 5). A 2D error correction coding
scheme is presented in [15] that uses two sets of EDCs on the rows
and columns of the data array. As the results show, this scheme
is also not appropriate for high-failure rate situations, like the one
addressed in this work. Further, the overhead of updating all the
column codes for each cache write is high. Multiple bit error cor-
recting codes (ECCs) like Hamming codes are capable of tolerating
high failure rates, but are inefficient in terms of the coding delay,
area, and power overheads for on-chip caches [15]. In summary, the
coding solutions are best applied to memory structures under low
failure-rate scenarios or where transient faults are the main concern.
Circuit-Level and VLSI Solutions: Many solutions have been

proposed that employ dynamic voltage/frequency scaling to im-
prove the cache reliability [26]. These methods try to identify
the most vulnerable SRAM cell in each line and scale the access
time/voltage to a level that guarantees proper operation for all the
cells in that word-line. There are two major drawbacks of this
scheme, 1) a mechanism is needed to dynamically determine the
weakest cell in each row, and 2) the working conditions of the
cache must be adjusted to the weakest cell, resulting in a consid-
erable performance penalty (access latency). A 3T1D DRAM cell
can be substituted for the conventional 6T SRAM cell to improve
the reliability [21]. However, the 3TD1 cell cannot retain the value
for a long period and each word-line must be refreshed periodi-
cally. Moreover, since on-chip DRAM is not normally used in cur-
rent technologies, it adds to the process/manufacturing complexity
and effort. Another alternative is to size up the SRAM cells or
use a different structure for them (e.g. 8T, 10T, or ST) [18]. Un-
fortunately, these methods incur a large area overhead (Section 5)
and they are mostly employed for power reduction by allowing the
near/sub-threshold operation.
Architectural Solutions: Dual modular redundancy schemes

are used in many designs for providing memory structure reliabil-
ity, but they are highly inefficient in terms of the overhead [29].
A popular architectural solution is to use redundant rows and/or
columns [20]. As seen in Figure 1(b), the probability of having at

least one failure in a row is close to 1.0 for PF > 10−3. This
implies that most word-lines can be expected to be faulty from
the start, resulting in a poor utilization of the provisioned redun-
dancy. Moreover, since the redundant row replacement is based
on a decoder modification and using hard-wired fuses, it is gener-
ally not applicable for more than 10 extra rows [13]. A similar set
of methods are based on the cache block/row/way disabling that
are also suitable for the low-failure rate situations [26]. Wilkerson
et. al. have suggested several layers of shifters for merging multi-
ple defective word-lines to form a single functional word-line [36].
To achieve operation in the presence of faults, their Word-Disable
method sacrifices half of the cache area and their Bit-Fix method
adds three cycles of latency to the cache access time. Both of which
result in considerable performance drop-off. There are other works
that use a re-mapping table to map a faulty block onto another
one [14]. These methods impose a high pressure on the L1-L2 com-
munication bus by increasing the L1 miss rate substantially. Fur-
thermore, these are properly applicable only to the direct-mapped
caches [3].
To efficiently scale to higher defect densities, a more flexible and

configurable solution is necessary. To this end, we introduce the
ZerehCache (ZC, Zereh in Farsi means body armor), a high-failure
rate tolerant solution for both L1 and L2 on-chip caches. ZC is an
adaptive, dynamically reconfigurable solution for tackling the high
defect rates of future technologies. It also provides a wide range of
cache design options based on the primary design concerns such as
delay, power, and area overhead. In this work, the ZC architecture
is leveraged to tolerate process variation in 45nm technology. ZC
takes advantage of its intelligent interlaced usage of redundancies
in multiple ways to substantially cut the overheads of protecting on-
chip caches. To our knowledge, ZC has the capability of achieving
the highest degree of the fault tolerance, among the previously pro-
posed approaches, for a given area budget. Current microproces-
sors have already been equipped with ECC and row-redundancy
to protect the caches [27]. ZC can substitute these conventional
protection mechanisms, while providing the same level of robust-
ness, for a considerably lower overhead (Section 5). We believe
our scheme provides a solid foundation for the cache designers to
take advantage of the higher clock frequency and transistor density
in the deeper technology nodes while preserving the correct func-
tionality and timing constraints of their design with less overhead.
The primary contributions of this paper are: 1) A flexible, dy-

namically reconfigurable architecture that can be leveraged to pro-
tect regular SRAM structures against high defect density nanome-



Figure 2: Two simple scenarios in which the line swapping can

preserve the correct functionality of the cache by resolving the
occurred collision. A black box shows a faulty chunk of data.

ter technology nodes; 2) Minimizing the amount of redundancy re-
quired for protecting the cache by modeling the collision pattern in
the main/spare cache with a well studied graph coloring problem
and taking advantage of the existing rich approximation methods;
3) A design space exploration in 45nm to show the actual process
of fixing the architecture parameters; and 4) Derivation and model-
ing of the manufacturing yield and evaluating the proposed method
under process variation conditions.

2. ZEREHCACHE
In this section, the ZC architecture is first described that adap-

tively reconfigures itself to absorb failing SRAM cells. Next, an
effective graph-coloring algorithm to configure the underlying ar-
chitecture is presented.

2.1 ZC Architecture
The key idea behind the ZC architecture is to use redundant

units in multiple ways to increase their potential utilization. ZC
partitions the complete cache array into sets of equally sized logi-
cal groups, where each logical group is allocated one spare cache
word-line. Here onwards, we use the term line when referring to
a word-line. The logical groups are formed by carefully shuffling
together physical cache lines in order to optimize the utilization of
a single spare cache line. Each cache/spare line is divided up to
equally sized data chunks to allow smaller granularities of spare
substitution. For instance, the fourth data chunk of the second
spare line can be used to substitute the fourth data chunk of the
third/fourth cache line in the case of failure. Flexibility for this line
shuffling is provided by adding a network into the cache that allows
swapping of cache lines to eliminate conflicting failures. Conflict-
ing failures occur when two lines that share a spare line have a fail-
ure in the same chunk, or when a cache line and its corresponding
spare have failures in the same chunk. While there may be suf-
ficient redundancy, conflicting failures arise and render the cache
non-operational.
To illustrate this issue, Figure 2 shows two simple scenarios

where ZC can preserve the correct functionality of the underlying
cache while it is not possible for conventional redundancy methods
to do so. In this figure, each line contains five units of data and
every two consecutive lines in the main cache form a logical group.
Each logical group is assigned one line in the spare cache. The

Figure 3: The high-level architecture of the ZC is shown in

this figure and the extra modules that are added to the base-
line cache are highlighted. Note that the slices of the base ad-

dress are shown using numbers 1, 2 and 3 (Address Format).
The fault map array and spare cache have their own shared

decoder to avoid getting their word-line activation signals from

the main cache’s decoder. For simplicity, the separate sense
amps for the fault map and spare cache are not shown. Built-

in-self-test (BIST) module is commonly used for fault diagnosis
in the embedded memory structures.

first line in the main cache has a failure in the same place as the
first line of the spare cache. Swapping the first and fifth lines in the
main cache can resolve this collision (collision1). After swapping,
the second and fifth rows will form the first logical group which uti-
lizes the first row of the spare cache. The second conflict situation,
collision2, is between two lines in the same logical group. Swap-
ping the fourth and the sixth lines is one possible way to resolve this
conflict. Swapping eliminates collisions and increases the chance
of having a functional cache for a given area overhead budget.
A high-level architecture of a set-associative ZC is shown in Fig-

ure 3. The cache data array is divided into equal sized groups.
Lines within each of these groups share a single spare line in the
spare cache (static multiplexing of spares). For each access to the
cache array, in a high speed design, the spare cache and the fault
map arrays are also accessed in parallel. The result of the fault map
access determines whether the spare data chunk should be routed
to the output instead of the main cache content. In order to tolerate
many defects, logical groups are formed by carefully shuffling to-
gether cache lines using an interconnection network. As Figure 2
demonstrates, the functionality of the interconnection network is to
swap the lines in a manner that resolves the existing collisions. The
configuration for this network is computed once and saved in the
non-volatile network configuration storage. By using static multi-
plexing and the interconnection network for overcoming the limita-
tions of static binding, ZC can maximize the utilization of the spare
units. The remainder of this section provides a detailed description
for each of the architectural modules.
Spare Cache: Each row in the spare cache corresponds to a log-

ical group of lines in the main cache. A single row of the spare
cache is further broken up into smaller redundancy units of fixed
size. Each of these redundancy units in the spare cache keeps the
valid content of the corresponding corrupted element in the main
cache (if any exists). In order to avoid high fan-in ORs required
when using the main cache row decoder, the spare cache and fault
map arrays use a separate shared decoder. This decoder uses the top



Figure 4: A Benes network is shown which connects the second

rows of the four consecutive logical group of rows in the main
cache. As an example, a single route from the decoder to the

word-lines is also shown.

nmost significant bits from the set segment of the memory address,
where n is based on the number of rows in the spare cache.
Interconnection Network: In order to shuffle around the cache

lines and form logical groups, we use an interconnection network.
This network is placed between row decoder of the main cache and
the cache word-lines. A unidirectional Benes network (BN) [25] is
used to provide a non-blocking routing and full permutation map-
ping between the inputs and outputs. As Figure 4 shows, a BN
consists of two back-to-back connected butterfly networks. The
main reasons for selecting a BN for this work are: 1) Full permu-
tation and non-blocking properties allow routing any permutation
from inputs to outputs in a conflict-free fashion. 2) Logarithmic
depth of the net can minimize the imposed delay overhead of the
interconnection network. For connecting 2n nodes to each other,
2n − 1 stages are required. We call this a BN with n swapping
levels. 3) The BN delay/power/area scaling characteristics are su-
perior in comparison to most other interconnection networks like
full-crossbar or omega network.
The network consists of multiple local BNs. Each local BN is

used to connect the word-lines with the same relative positions in
different groups. For instance in Figure 4, all of the four groups
have their 2nd lines connected by a local BN. There have to be as
many interleaved local BNs as there are lines in a single group. The
set of groups connected by a single local BN is called the swapping
set, and the size of this swapping set (2num. of swapping levels =
22 in the example shown) is determined by the depth of the net-
work. Given the full permutation and non-blocking properties of
the chosen interconnection network, lines in the same relative po-
sition can be swapped between the different logical groups. In-
creasing the depth of the BN widens the scope of line swapping,
however, it also imposes higher overheads on the underlying cache.
In order to minimize these overheads and reach to a network with
higher depth, we employ an efficient circuit-level implementation
of a BN which is presented in [30]. A memory hash-table can also
be used as an alternative here. However, since this network is in the
critical path of the cache access, we employ a BN which provides
inherent flexibility, lower delay, and lower power consumption.
Network Configuration Storage: The interconnection network

configuration is kept in the network configuration storage. Accord-
ing to our evaluations in the next section, a small fraction of the
manufacturing test time can be used to solve the configuration and
mapping problems. For the network configuration storage, we use
a low-voltage on-chip NOR-flash described in [31]. However, since
this structure is extremely small (mostly less than 400 bytes), em-
ploying other non-volatile memories (e.g. fuse, or EEPROM) has
negligible impact on our results.

Fault Map Array: The fault map array has the same number of
rows as the spare cache. For each redundancy unit in a spare cache
row, the fault map array stores the row number in the corresponding
logical group which utilizes that redundancy. For example, if a
broken data chunk in the 5th row of an eight-rows logical group
should be replaced by its corresponding spare unit, the fault map
saves 101 for that redundancy unit. This implies, that for a very
small granularity of redundancy, the length of the word-lines in the
fault map array can be significantly longer than the main cache.
The access time of the fault map array is comparable to the L1
cache. Hence, this structure should be accessed in parallel with
the tag array access for the L1. Conversely, for the L2 cache, the
access to this structure happens after the hit resolution from the
tag side, resulting in a significant reduction in the dynamic access
energy. In contrast to the network configuration storage, which
should be filled during the manufacturing test time, the fault map
gets its contents directly from the built-in self test (BIST) module
during the first boot of the system. Further, its content can be saved
on the hard-disk and retrieved during the machine boot up. This
mechanism works properly for the fault map since the BN routes
have already been fixed. And during the testing operation by BIST,
the effect of line swapping will be automatically accounted for.
Comparison Stage: This stage compares the least several sig-

nificant bits of the set segment of the address1 with the returned
content of the fault map array to determine whether that unit of
redundancy replaces the data chunk from the main cache.
MUXing Level: At the end of the access critical path, based on

the results of the comparison stage, the MUXing level determines
for each redundant unit whether the main cache or the spare cache
data is valid and drives that onto the cache output. Word-lines in
the main/spare cache are divided into equal units of redundancy.
The size of these redundancy units specifies the MUXing granu-
larity. On the other hand, since the read and write are symmetric
operations, the only modification in the implementation would be
to replace the MUXes with pass transistors.
In order to guarantee the proper operation of the on-chip caches,

we assume all the main SRAM structures in the ZC architecture
(i.e. main cache, spare cache, tag array, and fault map) would be
affected by the process variation. In our design, the main and spare
caches are the major contributors to the ZC area and potential fail-
ures in these structures are directly handled by our scheme. In or-
der to protect the fault map and tag array, we employ a process
variation tolerant 8T SRAM cell which is more area efficient than
simple transistor sizing [11, 10, 34]. However, it should be noted
that the 8T cell comes with around 36% area overhead and is not
cost effective for protecting the entire cache (Section 5).

2.2 ZC Configuration
Proper configuration of the ZC is crucial for achieving higher

utilization of the spare elements. The first step toward this is to
determine the input/output mapping for the BNs. In other words,
logically group together the cache lines that share a single spare
line. We model this as a graph coloring problem that can be solved
during the manufacturing test time. The solution to the coloring
problem provides the required BN configuration information which
is saved in the network configuration storage. On the first boot up
of the machine, the BIST module takes advantage of the already
configured BNs to find the faulty SRAM cells. The fault map array
is then populated by the BIST module based on the location of
the faulty cells in the main/spare caches. In order to achieve an
effective line swapping capability in ZC architecture, two major
algorithmic problems need to be addressed here: 1) Effective group

1The number of bits depends on the number of word-lines in each
cache logical group.



Figure 5: Mapping between the graph coloring problem and the defect pattern in themain/spare caches. The solid edges stand for the

intrinsic conflicts between the word-lines. The dotted edges correspond to the word-line conflicts due to the defect pattern. Numbers
written in the spare units indicate the corresponding cache word-lines to which the spare units are assigned. These correspondence

numbers form the content of the fault map array. (G=Green, B=Blue, P=Purple, O=Orange)

formation, 2) Benes network configuration.

2.2.1 Effective Group Formation

The problem of determining the logical groups that share a sin-
gle spare line in the ZC architecture is modeled as a graph coloring
problem. Figure 5 is an example that illustrates the process of map-
ping the defects in the main/spare cache to a graph. In the cache
arrays of Figure 5, each black box stands for a faulty cell. An 8-line
cache is divided into 4 logical groups and a spare line is assigned
to each logical group. Two local BNs are required to do the proper
shuffling. (e.g. lines 1 and 2 in the main cache form a logical
group that utilizes line ‘a’ in the spare cache) The first (second)
lines from different logical groups can swap their positions using
the corresponding local BN (e.g. lines 1, 3, 5, and 7 can swap their
positions).
The graph on the left hand side of the figure is constructed based

on the defect pattern in the main/spare caches. Each node in this
graph represents a line in the main/spare cache. Whereas, the edges
represent a conflict between a pair of lines, i.e., the two nodes con-
nected by an edge represent lines that cannot be in the same logical
group. A graph coloring algorithm can now be applied to this graph
to find a solution such that neighboring nodes are not assigned the
same color. Thus, after coloring, nodes with the same color are
guaranteed to have no edges between them implying that the corre-
sponding cache lines have no conflicts between them. Cache lines
with the same color thereby form a logical group. The graph edges
that represent conflicts between the lines can be broadly divided
into two categories:

Intrinsic Edges: Each of the lines in the spare cache is dedicated
to a single logical group in the main cache. This implies that
spare lines cannot be in the same logical group. As a result, 4
nodes (a, b, c, d) construct a complete sub-graph (Figure 5).
Moreover, the structure of the BN forces the lines connected
to a local BN into different logical groups. For example, lines
1, 3, 5, and 7 can not be in the same group. Consequently,
these 4 word-lines also form a complete sub-graph.

Defect Edges: The defect pattern in the main/spare cache intro-
duces other edges in this graph. These defect edges connect
the pair of lines that have at least one conflict (for the same
data chunk). For instance, there is a defect edge between the
nodes 3 and c, because both have their second data chunks
faulty.

A graph coloring problem is solvable for a graph G and an in-
teger K ≥ 0, if the nodes of G can be colored with K colors such
that no edge exists between the same colored nodes. For our prob-
lem instance, we want to show that if there are h logical groups in
the cache, and the nodes can be colored with at most h colors, then
there would be a feasible configuration for the BNs such that the
ZC works properly. But since there is always a complete sub-graph
in the problem graph with h nodes (due to the intrinsic edges), the
chromatic number is at least h. On the other hand, our problem
constraint dictates that we can use at most h colors for the graph
coloring problem. Hence, the graph coloring problem for the ZC
configuration should have a solution with exactly h colors. A valid
coloring assignment indicates no collision between the lines within
each logical group and replacement of the defective data chunks
can be properly handled.
Graph coloring is widely recognized as NP-complete. Thus,

for solving it, we use an approximate algorithm called Incomplete
Backtracking Sequential Coloring (IBSC) [16]. IBSC is a heav-
ily optimized version of the full backtracking solution. It restricts
the branching factor on each level to expedite the process of find-
ing the approximate chromatic number. On an average, IBSC only
increases the chromatic number of the graph by 5.2%, which is con-
siderably better than the theoretical upper bound that we used for
the analysis in Section 3. The complexity of the IBSC algorithm
is O(|V |4) and the actual runtime is discussed in the next section.
Furthermore, this algorithm can easily be converted to the exact so-
lution by eliminating the branching heuristic. It is especially useful
in the case of small graphs or when more computational power/time
can be devoted to the solver.
The graph coloring solution determines the assignment of lines

to logical groups. All the lines in the main/spare cache with the
same color form a single logical group. For example, all the lines
with the orange color are bound to the orange spare row using
the corresponding local BNs. Figure 5 illustrates a valid coloring
assignment. With this coloring assignment in place, the logical
groups formation is complete for the main cache. The next step is
to solve the BN configuration problem in order to make the cache
functional.

2.2.2 Benes Network Configuration

The BN is non-blocking and also allows any permutation of the
inputs to be mapped to the outputs. In Figure 6, the left cache struc-



Figure 6: Proper configuration of two BNs that transform the actual cache layout (left) to the virtual one (right) for the given coloring

assignment. The upper(bottom) BN connects the first(second) rows of the 4 logical groups. The 2-input MUXes with darker color

get the select bit as 1 and lighter color ones get the select bit as 0. (G=Green, B=Blue, P=Purple, O=Orange)

ture shows the physical cache layout with a solution for the graph
coloring problem. As described, the color of each line determines
the logical group to which the line is assigned. As a result, the posi-
tion of each particular line after the line swapping is apparent. For
instance, in the Figure 6, the last cache row has a green color which
corresponds to the first row of the spare cache. This denotes that the
last cache row should be mapped to the second row of the first logi-
cal group. The line ordering for the virtual cache layout on the right
hand side can be obtained from the physical layout by employing
two 3-layer deep local BNs. The BNs have to be properly config-
ured, by determining the select signals for the MUXes within the
BN, to achieve this re-ordering. Having the desirable permutation
between the inputs/outputs of the BNs, we employ the recursive
method described in [37] to configure the network. Since an n-
input BN is constructed from two identical n

2
-input sub-networks,

the configuration can be computed recursively in O(n2).

3. DESIGN SPACE EXPLORATION
The process of finding suitable design points for L1/L2 ZCs in-

volves fixing the architectural parameters. The high level architec-
tural parameters used for this exploration are listed in Table 1. In
addition, there are three main parameters specific to the ZC design:
a) size of the spare cache, b) depth of the BN, and c) the MUXing
granularity for the redundant data chunks. In this section, we sweep
a wide range of values for these parameters and study the overhead
of each design point. The number of spare cache lines was taken
from the set {2i | i ∈ {0, 1, ..., 7}}. Note that the length of the
word-lines is the same for the main and spare caches. The depth
of the BN is selected from the set {1, 3, 5, ..., 19} and the MUXing
granularity is selected from the set {2i | i ∈ {0, 1, ..., 10}} bits. In
total, considering both the L1 and L2 caches, there are 1760 points
in the design space. In order to prune this design space, a number
of practical design constraints were considered. For instance, de-
signs with more than 128 spare lines were not studied due to their
significantly high area/power/delay overhead. Detailed discussions
of these practical constraints and their impact on the design space
follows. Finally, we pick suitable configurations for L1/L2 ZCs.
1) Graph Coloring Solver Time: A deeper BN can provide

a wider range of cache line swapping, thereby improving ZC de-
fect tolerance. However, a deeper network also increases the com-
plexity of graph coloring and BN configuration. Out of these two,
the runtime of the graph coloring problem is by far the dominat-
ing factor. Figure 7 depicts the relationship between the size of
the graph-coloring problem and the time required to solve it using
the IBSC algorithm (Section 2.2). We ran the solver on a single
core Pentium-4 processor with 1GB of memory capacity and 2GHz
clock rate. The Y-axis in this plot is logarithmic. It demonstrates
the fast growth in the runtime of the solver with the increase in the
problem size.
The total manufacturing test time for a high-end processor (con-

sidering the functional, structural, wafer, and packaging tests) is
around a few minutes [33, 19]. Using this as a reference, we limit
the graph solver time to use a maximum of 10 seconds for all four
on-chip cache structures (L1-D, L1-I and two banks of L2). For the
case when the cache has 1 spare word-line for every k word-lines
and the depth of the BN is 2b − 1, the total number of nodes in the
graph coloring problem would be (k+1)2b. According to Figure 7
and based on our solver time budget, ZCs can use BNs that are up
to 9 levels deep and can connect 32 logical groups together. For
instance, if each logical group consists of eight word-lines, there
would be 32 × (8 + 1) = 288 nodes in the graph coloring prob-
lem. There are numerous works [12] on the parallel graph color-
ing algorithms that can be used for decreasing the solver runtime
and potentially increasing the allowable depth of the ZC. However,
scrutinizing them is beyond the scope of this paper. As a side note,
in order to get a feeling about size of the network, we look at the
transistor count here. A 9-level deep BN has less than 37K tran-
sistors while a 64K L1 cache, which is much smaller than L2, has
more than 3M transistors.
There is a less than 4% chance that the solver does not find a fea-

sible coloring assignment due to limitations on the time budget or
the inherent complexity of the collision pattern (Section 4). Using
a deeper BN, longer time budget for the solver, finer granularity
of MUXing, or a larger spare cache can further reduce this small
chance. Nevertheless, if such a situation does arise, we can ei-
ther resize the cache or simply reject it. Block/way disabling tech-
niques [26] can also be applied at the position of the faulty cell to
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Figure 7: The run-time of the IBSC graph coloring solver inms

for different edge densities and number of nodes in the graph.
In this figure, p is the edge density which is defined as the prob-

ability of having an edge between an arbitrary pair of nodes in

a random graph G(n,p).

preserve correct functionality. Note that the scenarios where ZCs
need to resort to such methods are very rare.
2) Probability of Operation : The probability of operation (Pop)

is a definitive metric for a reliable system. We calculate the prob-
ability that a specific ZC architecture can properly operate for a
given PF and use the results to further prune our design space. The
graph, which was generated in Section 2.2, represents an instance
of a defective cache. For the sake of this study, defective caches
are modeled as random graphs G(n,p) since SRAM cell defects oc-
cur as random events. These random defects are due to the major
contribution of the random dopant fluctuation to the process varia-
tion [4]. Here, n is the number of nodes and p is the probability of
having an edge between an arbitrary pair of nodes.
The next step is to estimate the graph coloring solution for these

graphs. Calculating the average upper bound of the chromatic num-
ber for a random graph is a challenging problem in graph theory [6].
We use two different proposed upper bounds to evaluate the Pop of
ZCs for a given number of failures. The same set of input con-
ditions are required for both of these upper bounds, which were
derived by Achlioptas [1, 2] and Bollobas [8]. The proposed up-
per bound by Bollobas (B) works better for smaller values of p and
the Achlipotas bound (A) is mostly applicable for the larger val-
ues of p. Thus, we used the weighted average of these two bounds
based on the p value (e.g., pA + (1 − p)B). Approximation al-
gorithms used to derive these upper bounds, have a significantly

Table 1: The target system configuration
Parameters Value

Frequency 4 GHz
L1 Caches 64KB data and 64KB instruction, 2-way set

associative, 2 cycles hit latency, 32B block size
L2 Cache 2 banks 2MB Unified, 16-way set associative,

12 cycles hit latency, 128B block size
Registers 128 integer, 128 floating point

ROB (re-ordering buffer) 128 entries

LSQ (load/store queue) 64 entries
Instruction fetch buffer 32 instructions

Issue width 4
FU (functional unit) 4 int ALU, 1 int mult/div, 2 memory system ports

FPU (floating point unit) 4 FP ALU, 1 FP mult/div

Main memory 250 cycle latency, 16 bytes with 10-cycle latency
Branch predictor combined (bimodal and 2-level)

BHT (branch history table) 4096 entries
RAS (return address stack) 32 entries

BTB (branch target buffer) 512 entries, 8-way associative

poorer approximation factor compared to the IBSC algorithm used
in Section 2.2 [22, 35]. The edge probability factor p is defined as
the ratio of the expected number of edges in the graph to the num-
ber of edges inKn (a complete graph with n nodes). The expected
number of edges in a randomly constructed graph can be calculated
by accounting for the intrinsic and fault edges:

Eedges = EIntrinsic + EF ault = m
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where m is the number of word-lines in each logical group, u is
the number of logical groups in a swapping set, b is the MUXing
granularity, t is the number of redundancy units in each word-line,
n is number of swapping sets, p1 is PF for the main cache, and p2

is PF for the spare cache. Here, αi = 1 − (1 − pi)
b shows the

probability of having at least one failure in b bits.
Figure 8 shows the Pop of an L2 ZC with 128 spare word-lines,

MUXing granularity of 8 bits, and 5 levels of swapping. In each
of the sub-figures, two of the parameters are fixed and the third
one gets the values from the original sweeping set. Notice that in
Figure 8(a), adding the first few levels of line swapping signifi-
cantly increases the robustness of the cache, but beyond 3 levels,
adding more levels has a diminishing return. Since the weighted
average of the two bounds is not an integer number, we employed
a semi-sigmoid function, which is a sigmoid function fitted to the
shifted step function (Number of Logical Groups + 0.5), for map-
ping the calculated chromatic number to Pop. Using this semi-
sigmoid function, if the calculated chromatic number is smaller
than the number of available logical groups in the swapping set,
the graph is colorable with a probability close to one and if the de-
rived chromatic number is one unit larger than the number of log-
ical groups, the probability would be close to 0. As shown in [3],
PF in 45nm can be as high as 10−3. Based on this fact, we pick
the design points from our design space that have Pop > 90% for
PF = 10−3.
3) Area and Power Overheads: Based on the limiting factors

that we have proposed, the size of the design space shrinks from
the 1760 starting points down to 103 points. The next factor for
eliminating the points is a one-by-one comparison. Given a design
point (L1, M1, D1)withL1 spare word-lines, MUXing granularity
ofM1, and aD1 deep BN and another design point (L2, M2, D2),
we can exclude the first point from the design space if it is inferior
in all dimensions:

L1 ≥ L2 , M1 ≤ M2 , D1 ≥ D2

This is equivalent to removing dominated points in the Pareto space
with dimensions L1, M1, D1. This step reduces the design space
to 11 points for L1 and 8 points for L2.
To evaluate our designs, we used CACTI 6.0 [24] for evaluating

the area, leakage power, and the dynamic energy for the SRAM
structures. The Synopsys tool-chain was employed for evaluating
area, timing, leakage power, and dynamic energy of the non-SRAM
parts. All designs are evaluated in 45nm.
Figure 9 shows the area, leakage power, and dynamic energy

overhead of the selected points in the design space. For instance,
L1-32-8-3 stands for an L1 design point with 32 redundant rows,
MUXing granularity of 8 bits, and BNs of depth 3. It is notable
that increasing the size of the spare cache does not always lead to
an increase in the area of the L2 ZC because the fault map size is
reduced. However, due to the longer L2 word-line, a finer MUXing
resolution is required which results in a relatively larger fault map
array for L2 compared to L1. The dynamic energy overhead for the
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(c) Percentage of static power overhead for
the L1 ZCs
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(d) Percentage of static power overhead for
the L2 ZCs
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(e) Percentage of dynamic energy overhead
for the L1 ZCs
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Figure 9: Area, power, and energy overhead of the potential L1/L2 ZCs which are stated in percentage.

L1 ZC was mostly higher compared to the L2 ZC. There are two
reason behind this: 1) The L1 cache accesses the fault map/spare
cache in parallel to the main cache and 2) The L1 cache reads the
entire set for every access whereas the L2 cache is able to read
just the right cache block because the tag and data are accessed
sequentially.
4) Cache Access Latency: The increase in the BN depth also

has a direct impact on the cache access time. Since on-chip caches
are essential for the performance of modern processors, we assume
no slack is available on the access time of the caches. Therefore,
any minor modification in the base caches results in at least one ex-
tra cycle access penalty. Nonetheless, in the case that considerable
slack is available, a design with narrow BN can be leveraged for
avoiding any additional cycle latency. In our design, the MUXing
level and BN are on the critical path of cache accesses. Based on
the timing analysis of our design, in Figure 9, design points with
BN depth less than or equal to 7 need one extra cycle latency for
the cache access while others (i.e. BN depth = 9) require 2 extra
cycles. In Section 5, we evaluate the performance drop-off due to
the additional access latency of the L1/L2 ZCs.

Considering the design points in Figure 9, we select L1-32-16-5
as the L1 ZC which imposes 16% area, 9% static power, and 19%
dynamic energy overhead over the baseline L1 cache. For the L2
ZC, L2-64-4-7 is selected which imposes 8% area, 9% static power,
and 16% dynamic energy overhead compared to the baseline L2
cache. These two selected configurations represent a good trade-off
between all the design objectives. However, based on a particular
optimization criteria, another design point might work better. For
instance, if static power is the main concern, the optimal design
point for L1 switches to L1-32-8-3.

4. YIELD ANALYSIS
In this section, we go through the process of manufacturing yield

calculation for a population of ZC enabled chips. A population of
1000 chips was generated from the selected ZC configurations for
this purpose. We account for both, inter-die (die to die (D2D)) and
intra-die (within die (WID)), components of the process variation.
VARIUS [28] is leveraged to model systematic, D2D, and module
level intra-die variations. Each chip is considered as a composition
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Figure 10: Distribution of generated chips by the number of faulty SRAM cells in their L1/L2 caches. A population of 1000 chips is

generated by considering the large-area clustering effect, intra-die, inter-die, systematic, and parametric variations.

of 8 SRAM structures: L1-Data, L1-Inst, two L2 banks, and the

corresponding spare caches. The
δV

th

Vth

is set to 12.5% which is the

projected Systematic + D2D variation for 45nm technology [4].
Having all the high level variation models in place, a two-step

approach is used to derive the number of faulty cells in each SRAM
array for an arbitrary chip in the population: 1) We take the intra-
module variation model from [4] with δVth

= 30mV . Using this
model, the nominal value of PF across each module is derived from
the data provided in [23] based on the average shift in Vth for that
module. 2) The clustering effect, which determines the degree of
defect dispersal in the cache structures, is also modeled. Due to
the high density of SRAM structures, the clustering effect has a
significant impact on the arrangement of the defects in the corre-
sponding SRAM arrays. We account for it by employing the large-
area clustering negative binomial model [17] which is based on the
well-known negative binomial yield formula.
Figure 10 illustrates the distributions of the 1000 generated chips

based on the number of faulty SRAM cells in their L1/L2 caches.
For instance, as Figure 10(a) shows, around 100 of the chips have
100 to 150 faulty SRAM cells in their L1 cache. These derived
distributions are consistent with the ones in [3]. It is interesting to
note that, in the case with no protection scheme for the cache, the
yield for 45nm technology could be as low as 33%.
Manufacturing yield is defined as the fraction of fully functional

chips to the total number of manufactured ones. This value can be
interpreted as the probability of operation for a particular chip after
the manufacturing process (Ychip). We define CW and Ci as events
that express the proper functionality of a manufactured chip and the
existence of i faulty cells in a chip, respectively. In the following
equations, Ntot is the total number of manufactured chips, Ni is
the number of the chips with i faulty cells, and Ncells is the total
number of SRAM cells. Based on the rules of probability:

Pr(CW ) =

Ncells
X

i=0

Pr(CW ∩ Ci)

=
1

Ntot

Ncells
X

i=0

Pr(CW |Ci) × Ni

Since we consider an independence between the PF of L1 and
L2 caches, as shown in [14], the yield of a chip can be written as:

Y ieldchip =
Y

i∈chip modules

Y ieldi (1)

As a result, Pr(CW ) can be written for each cache separately.
Equation 1 is used to calculate the chip yield in each case. Here,
Pr(CW |Ci) is the probability of having a functional cache given
that it contains i faulty cells and can be written as:

Pr(T, FM, MC, SC|Ti1 , FMi2 , MCi3 , SCi4) = Pr(T |Ti1)

×Pr(FM |FMi2) × Pr(MC, SC|T, FM, MCi3 , SCi4)

where i1 + i2 + i3 + i4 = i. In this equation, T/FM/MC/SC
are the events that the tag/fault map/main cache/spare cache ar-
rays work properly. Similar to the previous equations, Ti1 is the
event of having i1 faulty cells in the tag array. For the fault map
and tag array, we assume 8T cells guarantee the fault-free operation
of these relatively small structures (i.e. Pr(FM |FMi2) = 1 and
Pr(T |Ti1) = 1). Finally, calculation of the last term is discussed
in Section 3.
Given the population of 1000 (Ntot) generated chips,Ni for each

of the cache structures is known using the mentioned modeling.
Yields of the L1 cache and each L2 bank are calculated through the
described methodology. The derived yield for the L1 ZC and each
bank of L2 ZC are 98.8% and 98.2%, respectively. This implies
96.4% yield for the L2 ZC.

5. COMPARISON AND DISCUSSION
To demonstrate the efficiency of our design, we compare ZC

with conventional and recently proposed methods in this section.
As representatives for the ZC architecture, we pick the L1-32-16-5
configuration as the L1 ZC (16% area overhead and 99% yield) and
L2-64-4-7 configuration as the L2 ZC (8% area overhead and 96%
yield).

5.1 Comparison with Conventional Tech-
niques

Figure 11 demonstrates the amount of area overhead required to
protect the L1/L2 caches using different protection schemes. For a
given probability of failure, we started with the least possible over-
head for every mechanism and gradually increased the area over-
head until the Pop reaches 90%. An infinity symbol (∞) on the top
of a bar indicates that achieving Pop > 90% is not possible for the
corresponding protection mechanism. This figure only accounts for
the amount of redundancy required by SECDED (ECC), DECTED
(ECC-2), and row-redundancy methods while considering the com-
plete overheads for ZC modifications. In other words, hardware
overhead for encoder/decoder is not considered for ECC/ECC-2.
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Similarly, the decoder augmentation is not included in the area
overhead of the row-redundancy protection method.
Row-redundancy can protect any cache with inefficient usage of

the redundant elements. Nevertheless, as it is shown in [13], row-
redundancy with more than 10 extra rows is not efficient due to the
considerable increase in the row decoder latency. As shown in this
figure, the area overhead of ZC is significantly smaller compared
to even the 2 bit error correction scheme (ECC-2) which has a sig-
nificant power and area overhead for decoding/encoding. Going
beyond 2 bit correction using ECC codes is extremely expensive in
terms of the code storage area, decoding/encoding power and de-
lay [15]. On the other hand, single bit correction ECC cannot even
protect the cache structures with PF > 10−4. For L2, the differ-
ence between ZC and other protection mechanisms is even more
noticeable because of the longer word-line and larger cache size
that challenge the other protection mechanisms. In terms of the en-
ergy consumption, ECC and ECC-2 impose around 25% and 50%
overheads, respectively [15]. Whereas, both of the selected L1/L2
ZCs have less than 20% energy overhead (Section 3). Hence, it
should be clear that the conventional soft-error cache protection
schemes cannot deal with the high degree of process-variation in
deep nanometer technologies.

5.2 Comparison with Recently Proposed
Techniques

More recent proposals target high defect density scenarios that
are challenging if not impossible for conventional schemes. Here,
we compare ZC with three of these recently proposed cache reli-
ability schemes that target failure rates close to ours. For the pur-
pose of comparison, we measure the performance drop-off for a
system (Table 1) equipped with the selected L1/L2 ZCs in Sec-
tion 3. A performance loss is expected due to the extra cycle of
latency added to both L1 and L2 ZC designs. We used the Sim-
pleScalar [5] out-of-order simulator along with the SPEC-FP-2000
(171.swim, 172.mgrid, 173.applu, 177.mesa, 179.art, 183.equake,
188.ammp) and the SPEC-INT-2000 (164.gzip, 175.vpr, 176.gcc,
181.mcf, 197.parser, 255.vortex, 256.bzip2) benchmarks. On aver-
age, a 3.2% performance drop-off is observed, with maximum of
6.9% for 197.parser and minimum of 0.1% for 176.gcc.
Agarwal [4] proposed a fault-tolerant direct-mapped L1 cache

that uses cache block remapping to preserve correct functional-
ity under the process variation in 45nm. As Figure 1(a) depicts,
around 23% of the cache blocks expected to be faulty in this tech-
nology. This method maps faulty blocks to the neighboring func-
tional blocks in the same word-line, which forces the L1 to access
L2 for getting the values of these blocks. This method is only ap-
plicable to direct-mapped caches and cannot be efficiently applied
to L2. As shown in Figure 1, around 64% of the L2 cache blocks

are faulty and the value of these blocks must be retrieved from the
main memory. For our system configuration (Table 1), this results
in an effective access time of 164 cycles for L2 which hurts the
performance drastically. Nevertheless, considering only L1, they
achieved 94% yield compared to 99% yield for our scheme.
Wilkerson et. al [36] proposed two cache protection schemes

that use several layers of shifting to merge multiple defective lines
into a single functional line. Their method was originally designed
to reduce the operational voltage of the on-chip caches for power
saving. Reducing operational voltage of a cache causes the SRAM
cells to start failing and they tried to tolerate these unwanted fail-
ures. Alternatively, in order to improve the stability of an SRAM
cell, Chang et. al [10] proposed an 8T SRAM cell, which has been
studied and compared with the other alternatives in a more detailed
manner by Chen [11] and Verma [34]. These works show that 8T
is more effective than simple transistor up-sizing for improving the
stability of a bitcell. An 8T cell is more robust against read upset
failures compared to a conventional 6T cell due to the isolation of
the read and write paths [11].
Table 2 summarizes the comparison with these two schemes. As

can be seen, Wilkerson’s method has a notably higher performance
drop-off than ZC. This behavior is due to two reasons: three addi-
tional cycles of latency for L2 accesses (compared to 1 cycle for
ZC); and, the L1 and L2 capacities are reduced by 50% and 25%,
respectively, to provide spares for fixing failures. Wilkerson did
not report any power overheads, thus we do our best to provide
an estimate in Table 2. We ignore overhead due to ECC correc-
tion of repair patterns and the shifting layers along with their cor-
responding decoders. Wilkerson’s method has a significant power
overhead because parallel access to both banks is necessary in the
L1 and L2 caches (parallel access only occurs to the L1 ZC), and
there is a high leakage power for the ST cells used for the tag array.
Lastly, the area overhead of Wilkerson’s method is modest, with
ZC slightly higher. It should be noted that the area of L2 is around
41 times larger than L1. Consequently, area overhead of a protec-
tion scheme for the chip is mostly determined by the area overhead
for the L2 cache. The 8T cell provides superior performance to ei-
ther scheme, but at a cost of significant area overhead. The power
overhead of the 8T L2 cache is also notably higher than the ZC de-
sign. Overall, ZCs can tolerate high defect densities while resulting
in a modest amount of performance loss and providing area/power
overheads competitive with the best alternatives.

6. CONCLUSION
Nanoscale CMOS technologies bring demanding reliability chal-

lenges to designers due to high degrees of process variation. In
particular, SRAM structures are highly vulnerable to parametric al-
teration, thus the design of large on-chip caches that are both reli-



Table 2: Comparison with recently proposed cache protection schemes
L1 Cache L2 Cache

Protection Area Disabled Power Area Disabled Power Norm. IPC
scheme over. (%) (%) over. (%) over. (%) (%) over. (%) (SPEC-2K)
Wilkerson [36] 15 50 61 7 25 27 0.89
8T [11, 10, 34] 36 0 16 36 0 22 1.0
ZerehCache 16 0 15 8 0 12 0.97

able and efficient is an important problem. In this work, we present
ZerehCache, a flexible and dynamically reconfigurable cache ar-
chitecture that efficiently protects on-chip caches in high failure
rate situations. Our solution takes advantage of static multiplex-
ing of the rows along with the added capability of dynamic word-
line swapping to maximize the utilization of spare elements. Cache
fault patterns are mapped to a graph coloring problem to configure
the ZC architecture. We explored a large design space and came up
with two suitable architecture configurations for L1/L2 ZCs such
that they minimize the area and power overheads while achieving
a desired level of robustness. An L1 ZC with 16% and an L2 ZC
with 8% area overhead achieve yields of 99% and 96%, respec-
tively. Finally, we compared our scheme with several conventional
and state-of-the-art methods to illustrate its efficiency and effec-
tiveness.
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