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A widely held viewpoint in optics, namely, that dynamic magnetic effects are extremely weak at optical fre-
quencies, is re-examined. Nonlinear charge motion induced by the optical magnetic field in dielectric systems
is analyzed, is predicted to be resonantly enhanced, and is observed experimentally in CCly, C¢Hg, and H,O at
the fundamental input frequency. Excellent agreement is obtained with a classical magnetic harmonic oscilla-
tor model, which shows that the maximum dynamic magnetic dipole (MD) moment at optical frequencies is one
half the electric dipole (ED) moment. As a consequence, magnetic dipole radiation generated by the optical
magnetic field with an intensity one fourth that of ED radiation, as well as unanticipated nonlinear optical
effects such as magnetic white-light generation, can arise in homogeneous transparent dielectrics. The mecha-
nism of MD formation is confirmed experimentally to be second order in the input field, and the strength of the
radiation is accounted for as a first-order contribution to the vector potential. Predictions are made of optical
magnetic resonance, negative permeability, self-induced magnetic birefringence, and optically induced

Faraday rotation. © 2008 Optical Society of America

OCIS codes: 190.0190, 190.4410, 190.7710, 320.7110, 350.3618.

1. INTRODUCTION

As is well-known, radiation fields can be calculated in a
simple way from the motion of charges in a source region

of interest using the vector potential A(7,t). When decom-
posed into multipole contributions the source current in

the leading term of A(F,¢) is taken to point along the in-

cident electric field E(7,¢) and to give rise to an oscillating
electric dipole (ED). This is because only the electric field
can generate linear charge acceleration and, in the case of
plane waves, the magnetic force on a charge g traveling at
velocity v is F,,=q(0 X k X E/c) where k is the direction of
propagation. This is smaller than the electric force by v/c,
where c is the velocity of light in vacuum. At nonrelativ-
istic intensities (I< 10 W/cm?2) scattered fields are
therefore expected to be dominated by electric dipole ra-
diation. In this paper it is nevertheless shown theoreti-
cally and experimentally that charge motion perpendicu-
lar to the electric field that is nonlinear and magnetic in
origin can have important consequences at optical
frequencies in transparent dielectrics at moderate
intensities.

Historically the idea of producing magnetization by
optical means dates back to the beginning of nonlinear op-
tics. In 1961, Pitaevski [1], Shen and Bloembergen [2],
and others [3] described theoretically how a static magne-
tization could be generated by an “effectively magnetic”

interaction proportional to E(w) X E*(~w) in the case of
circularly polarized fields. Since that time, several groups
have ascribed strong optically induced magnetization ef-
fects and ultrafast manipulation of static magnetizations
with light to nonlinear, difference frequency interactions.
For a recent review, the reader is referred to [4]. Addition-
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ally, when the optical intensity becomes high enough to
accelerate electrons to nearly the speed of light during an
optical cycle it is well-known that magnetic interactions
become important [5]. Here, however, we describe dy-
namic magnetization that is generated through the action

of the optical magnetic field B(w) via a nonlinear interac-

tion proportional to the tensor product E(w)B(w) at non-
relativistic intensities. Despite its dependence on two in-
put fields (neither conjugate nor circular) this optically
induced magnetization will presently be shown to be
intense and to oscillate at the fundamental frequency w
rather than at a difference or harmonic frequency.

The initial terms of the multipole expansion for the vec-
tor electromagnetic potential produced in the far field by

an arbitrary current distribution specified by J(7') can be
written [6] as

4 _ 1 (_
—A(F,t):—fJ(F’,t’)dSr’
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Here the position vector of the field point is R and that of

(1.1)

the source is 7'; so the vector potential depends on 7=R
-7, the magnitude of which is just R in the far field, with
a retardation of ¢t'=¢t—R/c. The second term is separable
into symmetric and antisymmetric parts that correspond
to magnetic dipole and electric quadrupole components,
respectively. Following this decomposition the ratio of the
magnetic dipole moment m (from the second term) to the
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ED moment p (from the first term) is found to be very
small for source regions the size of atoms or molecules at
optical frequencies. In the experiments reported here on
molecular liquids the dipole approximation (27a/\ < 1) is
certainly upheld and so one can estimate the ratio (set-
ting angular momentum of the charge to be Planck’s con-
stant 7) to be

m

p

him,c
() e

Qo

where m, is the electron rest mass and ag is the Bohr ra-
dius. The ratio in Eq. (1.2) is equal to the fine structure
constant a=e%/fic=1/137 and the relative intensity of
the magnetic dipole radiation is proportional to its
square. Since o is extremely small, magnetic dipole ra-
diation originating from the second term in Eq. (1.1) is ig-
nored in optical interactions. Landau and Lifshitz [7]
stated that “there is no meaning in using magnetic sus-
ceptibility from optical frequencies onward, and in dis-
cussing such phenomena we must put u=1." However
this traditional viewpoint overlooks the possibility of a
large oscillatory magnetic dipole moment in the first term
of Eq. (1.1), originating from a nonlinear source current.

Because the current density in the first term of Eq.
(1.1) is induced by forces that cause linear and circular
motion, it can be decomposed into linear (electric) and cir-

cular (magnetic) components, < £.o and J M, Tespectively,
to obtain

—ikr

o€ e—ikr

- - Mo -
A7) = fJE,w(r’)d3r’+ fJM,w(r’)dSr’

+ o (1.3)

In Eq. (1.3) the subscript w indicates that an harmonic
approximation has been made for the time dependence of
AF,b). d £,0and J M, are distinguished by different conti-
nuity relations VJE,w:—&p/ Jt and v-JM,Q,:O. Jyy oscil-
lates around the magnetic field at frequency w in the
plane formed by the electric field and the wave vector of
the light. It therefore contains a component perpendicular

to E and parallel to wave vector k.
In Eq. (1.3) the first term on the right containing o, E.o

yields an ED. The second one containing o M,» can be
shown to be strictly magnetic dipole (MD). This result is

given in Appendix A. Currents of the J M, type are gener-
ated by magnetic Lorentz forces in all matter, but are
usually negligible in weak optical interactions. As we

shall show, however, the motion perpendicular to E can be
resonantly enhanced in bound electron systems at moder-
ate intensities, resulting in magnetic dipole strengths
comparable to those of electric dipoles in the same sys-
tem. In this way, magnetic effects ordinarily reserved for
the relativistic regime [5] become observable at much
lower intensities. Moreover it can be anticipated that in
dielectric media large ensembles of optical MDs of this
type will not suffer from diamagnetic cancellation.
Because the optically driven charge motion of bound
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electrons does not form closed current loops (at nonrela-
tivistic intensities), no opposing current cancellation can
take place between neighboring molecules. The macro-
scopic magnetic response will be additive and large like
electric polarization.

In Section 2 a model is developed for simple harmonic
radial and torsional motion of bound charges interacting
with light. The treatment is restricted to linear restoring
forces (or a parabolic intramolecular potential) to empha-
size that none of the results described in this paper are
related to nonlinear electric field effects—proportional to
E2, E3, etc. Such terms, mediated by nonparabolicity of
the intramolecular potential in nonlinear optics, are ex-
cluded from the model. It is shown that a magnetic mo-
ment proportional to the incident light intensity can arise
and grow to a maximum value of one half the ED mo-
ment. That is, the magnetic scattering intensity is pre-
dicted to be quadratic with respect to input intensity be-
low saturation (I<I;), and to maintain a constant
proportionality with respect to the electric polarization
over a wide range above it. In the saturation regime
(I>1,), this phenomenon mimics a magnetic scattering
process that is linear rather than nonlinear in the inten-
sity. The predicted polarization, frequency, intensity
dependence, and saturated relative intensity of the
magnetic scattering are all shown to be in excellent ac-
cord with experimental observations in several dielectric
liquids. This work therefore has numerous interesting
consequences that were not realized in the early days of
nonlinear optics.

2. CLASSICAL THEORETICAL MODEL

Classical continuum theory accurately describes optical
interactions far from electronic resonances. Hence the
standard model that explains optical absorption, disper-
sion, and resonance in bound electron systems based on
Newton’s second law of motion [8] is quantitatively pre-
cise in regions of transparency. An important element of
this model is that a restoring force counterbalances the
driving force exerted on charges by the electromagnetic
fields. In the simplest case the restoring force is linear in
the displacement of electrons (charge —e and mass m,)
from equilibrium positions. Here we make the same as-
sumption, but extend the idea of a radiant polarization
driven by electric displacement currents to magnetization
driven by magnetic displacement currents. Magnetic
forces are included in the equation of motion and the re-
storing forces are not assumed to be purely radial, but
may have different components parallel and perpendicu-

lar to the main driving field E.

Consider a plane electromagnetic wave that is polar-
ized along x and propagates along the Z axis through a
centrosymmetric system of charges initially at rest, as
shown in Fig. 1. The assumption of centrosymmetry is not
necessary, but is helpful in interpreting the analytic
results and experiments in centrosymmetric samples.
Electric and magnetic field components may be repre-
sented by
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Fig. 1. Classical charge motion produced by an electromagnetic
wave polarized along x and propagating along z. Dashed (solid)
vertical arrows schematically indicate motion with (without) the
Lorentz force.

E(z,t) = 32(Eq exp[-i(wt — k2)] + c.c.),

B(z,t) = 39(By exp[-i(wt - k2)] + c.c.).

Allowing for charge displacements in both the x and Z di-
rections (due to E and B, respectively), the equation of
motion m,(6%F'/3t2)=F in component form yields

Px(2) 9x(2) eE(t) eB(t)dz(t)
- +

—— + y— + wix(t) = , (2.1

g My T m, m, ot @1)
Pz(t) 0z(t) 5 eB(t) dx(t)

+ Yo—— + w5z (t) = — . 2.2

g g T2 m, @2

Since restoring forces parallel and perpendicular to E are
independent, the corresponding force constants K;
Emeuﬁ and K2Emew§ for motion along X and Z, respec-
tively, are assumed to be unequal (K;# Kj). Orthogonal
motions of electric charges in the intramolecular potential
well sample different topography of the potential surface.
This is illustrated in Fig. 2, where the slope of the poten-
tial surface can be seen to differ for radial versus azi-
muthal motion of a bound charge. Similarly, the damping
coefficients y; and 7y are assumed to be unequal (y;
# Y2).

Taking the optical fields E and B to be in phase, as they
are in vacuum and dilute media, nontransient solutions
to Egs. (2.1) and (2.2) that describe charge motion have
the simple forms

x(t) = 3[xo exp(- iwt) +x; exp(iwt)], (2.3)

2(t) = 5[z exp(~ i20t) + 2 exp(i2wt)]. (2.4)

Solutions for the displacements x(#) and z(¢) are needed to
determine the magnitudes of the current densities Jg
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Fig. 2. TIllustration of the dependence of restoring forces on di-
rection of classical motion of a charge in a simple molecular po-
tential well V(r). The slopes of the potential (and therefore the
restoring forces) are different for motions in the two directions
indicated by double-headed arrows.

=-Nex and Jy=—2Nez. Solving for the amplitudes by
substituting Eqgs. (2.3) and (2.4) into (2.1) and (2.2), we
find

(eEy/m,)
Xo = 9 . P ) (25)
(0™ +iwy; - 0])(1 + N(w,By))
1 —ilww(eEym,)
0= T o 2. o 2 :
2 (0® +iwy; — 0])(4o” + 2iwy, — w3)(1 + N(w,B)))
(2.6)

The magnetic renormalization factor N(w,By) in Egs.
(2.5) and (2.6) is given by

N(w,By) = (1)2103/2((02 +iwy; — w%)(4w2 +2iwy; — wg),
(2.7)

where w,=eBy/m, is the cyclotron frequency.

Notice that the charge trajectories produce oscillatory
motion along both the x and Z directions, as indicated in
Fig. 1. Charge motion along the direction of propagation
is a projection along z of the equivalent magnetic current

Ju(t) that oscillates at the fundamental frequency w as

electrons curl around the B field. It is important to note
that this motion resolves itself into a doubled oscillation
along the fixed Cartesian z axis, as assumed in Eq. (2.4).
Both the z-directed oscillation at 2w, and its phase shift
by 7/2 with respect to motion along the x axis, can easily
be pictured by inspection of the figure. As the charge
moves from —x; to +x7 and back to —x(, completing one
cycle of the electric polarization, the motion along z un-
dergoes two cycles centered about a displaced origin.
Since the restoring force in our model is strictly linear,
this motion at 2w is the result of the (nonlinear) magnetic
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force and can arise even in centrosymmetric media where
quadratic restoring forces are absent and harmonic gen-
eration by the electric field alone cannot take place. The
frequency-doubled solution for z-directed motion yields a

current density Jj; that circulates around B at frequency
w. To show this explicitly, the magnetic current

[JM(w)]SpthM@cos wt written in spherical coordinates
can be transformed to Cartesian coordinates using the

substitution #=4% cos wt—2 sin wt. This yields
[ 31(20)cars = Syl cos wt — 2 sin wt]cos wt
= %JM[JE(I +cos 2wt) —Z sin 2wt]. (2.8)

Thus, projection of the axial vector [J u(®)]s,p onto fixed
Cartesian axes produces two vector current components
that are of polar character, doubles the frequency of mo-
tion, halves the amplitude, and shifts the origin of charge

motion. This shows that [J u(®)]spn yields a MD oriented
parallel to B, oscillating at frequency  following the pre-

scription Jy(w)=V X M(w). However, in Cartesian coordi-
nates, the polarization responsible for MD emission at the
fundamental frequency appears frequency-doubled, in a
form that might be written as P,(2w)=-Nezy(2w), since it

is proportional to the projection of J(w) on z. Note that
in the present model this polarization can only generate
magnetic dipole radiation, since second-harmonic electric
dipole radiation is forbidden by centrosymmetry. More-
over, Jg(w) obeys the charge conservation equation V-Jg
=-dp/dt for electric currents, whereas J w(w) does not
(V-dJy=0).

The frequencies of electric and magnetic resonance are
found by setting the denominators in Eqgs. (2.5) and (2.6)
equal to zero. There is a common resonance at w= w1, but
motion along z also exhibits a second resonance at

W= wyl2. (2.9)

This purely magnetic resonance condition calls for an op-
tical frequency that is half the resonant frequency of lin-
ear motion along z. This tuning requirement is signifi-
cantly relaxed at high intensities, as described in a
forthcoming publication [9].

The intensity-dependent ratio of magnetic to electric
field displacement current densities may be evaluated di-
rectly from Eqgs. (2.5) and (2.6). Far from ED resonance,
this yields

20w, (40® - w§)2 + (2w7yy)%]Y2

(40? - 02)? + 402

(2.10)

R depends linearly on the input field amplitude through
its proportionality to w, and hence to B. Consequently the
ratio of magnetic to electric emission intensity (~R?) is
predicted to rise linearly with optical intensity and to ex-
hibit purely magnetic resonant enhancement. On reso-
nance, R becomes of order unity as w,— ys.

To determine the maximum ratio R, ,, of magnetic to
electric current densities at elevated power levels, we now
integrate Ampere’s law using the geometry of Fig. 3 for a
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Fig. 3. Geometry for integration of Ampere’s law to determine
relative magnitudes and phases of electric and magnetic current
density.

plane wave propagating along the z axis with its electric
field linearly polarized along x and its magnetic field ori-
ented along y. The wave impinges on an arbitrary spheri-
cal volume V containing a uniform density N of bound
electrons. These charges establish a polarization current

density e_]pzf’ and a magnetic displacement current Jj,
according to

VX H=goB +J,+dy. (2.11)

Allowing for current components parallel and perpendicu-
lar to E, we write

dJ

P=°_]Pyl+c_]p,H’ c_]M=t_]M,L +c_]M,u, (2.12)

where :]M,L=—JM5 sin wt and :]M’”=JM92 cos wt as in Eq.
(2.8). Next we substitute Eq. (2.12) into Eq. (2.11).
Ampere’s law can then be integrated over surface S in

Fig. 3. Components perpendicular to E are orthogonal to
the surface normal 71g. Hence the result is

f(?xﬁ)—d§=sOJE-d§+JJp,-d§+J:fM,|~d§.
S S S S

(2.13)

To deduce a relationship between optically induced cur-
rents c_Ip and J,;, one can specialize the calculation to op-
tical frequencies by substituting Faraday’s law (V

XE)/iop for H in Eq. (2.13). Furthermore we set u
=uo(1+ x,,), and consider y,,< 1, which ostensibly limits
the estimate of R, to transparent media with small po-
larization and magnetization far from resonance. While
our experiments were indeed performed in this limit, the
theoretical result obtained for R ., below is more general,
as will become evident.

With these approximations, the integral on the left side
of Eq. (2.13) is equal to the first term on the right. Hence
one obtains
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pr d§+f Jyr, - ds, (2.14)
S

ij’l‘d§=_f p” ds
S

A similar integration over surface S’ in Fig. 3 yields

IJM,Jdg:—f J,,, - ds.
S’ S’

Because the amplitudes of J,; parallel and perpendicular
to the electric field are equal (Jy; | =Jy =), the addi-
tion of Eqgs. (2.15) and (2.16) yields the result

or

(2.15)

(2.16)

1 1
—_Q[Jp]totz__JE' (2.17)

2

Since the input electric and magnetic fields are in phase,
the sign in Eq. (2.17) is a phase factor indicating that the
magnetic moment opposes the optical magnetic field. The
ratio Ry .c=|Jy/Jg| =1/2 calculated in Eq. (2.17) is the
same as the ratio of magnetic to electric dipole moments
of a perfectly conducting sphere in magnetostatics [10],
but here it is obtained in a classical model that treats
bound electrons as the carriers of electric and magnetic

r r

oy X 7) X AV f oy X #)dV’
X

J (Jy X 7) X AV’ f Iy X FAV’
X

r r

Since the maximum magnetic current density is [/3/]max
=R . Jg=(1/2)Jg, it follows that the ratio of far-field in-
tensities cannot exceed

(2.21)

Equation (2.21) gives the maximum possible value of the
ratio R of magnetic dipole to electric dipole emission in-
tensity in dielectric materials. Based on Eq. (2.10), this
ratio depends not only on intensity but also on the mate-
rial, since the magnetic resonant denominator must play
an important role in accounting quantitatively for system
response. A complete treatment of the dynamics, address-
ing aspects of primary parametric resonance at high
modulation index [12], is deferred to another paper [9]
however.

Equation (2.21) shows that with full resonant enhance-
ment, the dynamic magnetic dipole moment due to the
passage of light in the nonrelativistic limit may be one

‘/“(JEXrerV' JJExde'
r
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displacement current densities at optical frequencies. It
indicates that of all the charges displaced along x by E, at

most half can turn in the B field and contribute to positive
magnetic current by passing through the surface S’.

Scattered electromagnetic fields in the radiation zone
may be calculated using the expressions [11]

E

dv, (2.18)

rad =

1 J([j]xf)xf

47e,c? r

_ 1 ([IxF
Hrad=4_f dV,

(2.19)

mc r

where square brackets indicate evaluation at the retarded
time and the integration is performed over source volume
V. Dots indicate time derivatives and 7 is a unit vector in
the direction of the point of observation, at a distance r
from the scattering volume. Knowledge of the vector cur-

rent densities J5 and J,; (assumed to be uniform in this
continuum model) associated with time-varying ED and
MD moments is enough to determine the electric and
magnetic dipole components of light radiated from the
sample. This can be seen explicitly by calculating the ra-

tio of the magnitudes of the Poynting vector S=E. .4

X H ,q for electric and magnetic radiation, namely S;,/Sg,
given by

r

‘ f oy X #) X V"’ f oy X #)dV’

I
-

(2.20)

[

half the electric dipole moment. The argument of Appen-
dix A explains how such a magnetic dipole contributes to
the first multipole term of the vector potential, yielding
MD radiation one fourth the intensity of ED emission and
transcending the traditional limitations on magnetic ef-
fects described in Section 1. In the experimental portion
of this paper, we show that intense magnetic effects are
indeed observable at optical frequencies, bearing out
these expectations.

3. ELECTRIC AND MAGNETIC
SUSCEPTIBILITIES

We now solve for the gyrotropic response of an anisotropic
system subjected to a transverse electromagnetic plane

wave. The fields E(¢) and B(¢), as well as the charge dis-
placement from equilibrium 7’(¢), are assumed to vary
harmonically in time. The wave is assumed to propagate
along the z axis so that Cartesian components of the fields
and displacement are given by
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. A
E=3[Eox +Egyle™ +c.c.,
B = 3[Bo.i + Byl +c.c.,
7 = [x0% + v +202] + 3 [x(l)x +y V5 +2zle i e c.
+ 5[ +y 5 + 221 H + cc.,

respectively. The equation of motion can then be written
as

my +myyr +Kr' =—eE —er X B, (3.1)

where —m,yr' provides viscous damping and —K7' is the
restoring force. We shall assume that both the damping
constant y and the spring constant K may be different in
different directions.

By identifying the electric polarization P(t)=—Ne7'(t),
and its frequency components according to P(¢)=P©
+3[PWeiot 4 peiot] | I PR)g=iZat 4 p2)7gi2ut] coupled
equations for all the terms of P can be obtained directly
from Eq. (3.1). The starting equations for Cartesian com-

ponents of P(¢) are

mepx +me7xpx+KxPx =N92E0x _e(PyBOZ _PZBOy),
(3.2)

mepy+meyypy+KyPy=NezEOy_e(PzBOx_PxBOZ)’
(3.3)

mepz +me')/zpz +K2Pz = _e(PxBOy _PyBOx)~ (34)

System susceptibilities that account for magnetization ef-
fects may be calculated by solving Eqs. (3.2)—(3.4) for the
components of P,, P,, and P, at frequencies appearing in
the expansion of 7'(¢) given above, namely 0, o, and 2.
Specifically, y is evaluated according to the relations

[x(0)];=P{V/eoEy;, (3.5)
[x(w)];=PV/eoEy, (3.6)
(x(20)]; = PP/e(Ey;, (3.7)

where i, j, and & are Cartesian coordinates x, y, or z.
When defined in this way, the susceptibilities are all di-
mensionless, and have the merit of showing the nonlinear
magnetic contributions explicitly. However different or-
ders of the nonlinear interactions appear together in the
susceptibility at each frequency.

If we retain only the leading terms in the susceptibili-
ties (written in Cartesian coordinates), that is only those
terms depending on one or two input magnetic field am-
plitudes, the results for nonzero contributions to the sus-
ceptibility y are as follows.

Zero frequency (0):

iewB’
0z

_________+cec. |, (3.8)
4K AF .G,

Ne2
[(X(0;0,— w)]19=
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Ne2 —iewB*
0;w, — +cec |, 3.9
[X( w,— w)]21 4KAF ( )
Ne2 —iewB*y
0;w,— ________~ _+cec. |, (3.10
[X( w w)]13 AKAF.C, ( )
Ne2 iewB*y
0; +c.c. |, 3.11
X(0;0,~ w)]s1 = IKAT, (3.11)

Ne2[ iewB;,
xXO0;0,- 0)ogg=—| ——_+cc. |, (3.12)
X #7 e | AK,AF.C,

Ne2— —iewBSx
0;0,-w)]ge=—| —__+ce.|. (3.13)
[x Is2 e _4K2AyFyGy (

Fundamental frequency (w):

Ne? 1
[x(ww]n-— Ak (3.14)

[x( N Net| BB, | (3.15)
0 0,-0,0)]jpg=— — |, (3.15
X P75 | 28,A,AIFF,G,

Ne2 [ —e2w2BszOy
W, 0,- 0,0)]|gg=—| ———— |, (3.16
[x( ) o1 s | ZAxAyAZ'FxFyGy ( )
Ne2 1
= 3.17
[x(w;w)]eg = A F G' ( )
Ne2|  -e*"BoB,

[X(w;a),—a),a))]23= - ’

g0 | 2A/A,AF,F.G,G, |

(3.18)
Ne2[  -e*’B, B |
I(@;0,- 0,0)) = | 20/AAFF.GG, |
(3.19)
Ne?
c)]s3 = — , 3.20
[X(w w)]33 €0 AzeGz ( )

Ne2| -e*’B; B, |
w;m,— 0, =— ——— |, (3.21
[X( )]31 £ _2AxAyAZFxF2G2_ ( )

[x( ) Net| —etBuy | (3.22)
0,0,0,-0)|j3=— —_____|. (3.22
X P 5y | 28,AJAFF.G, |

Second-harmonic frequency (-2w):

iewBOZ :|

— (3.23)
20/A,F,G,

Ne?
[X(2a) w, w)]12 [
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Ne2 —iewBy,

X2w;w,0)]; = W (3.24)
Ne2 —-iewBy,

X2w;w,0)]13= m (3.25)
Ne? lewB,,

X2o;w w)]31— W (3.26)
Ne2 —iewBy,

2 = R — 3.27
X2w;0,0)]5= 2AyAZFyG ( )
Ne2 lewB,

X2w;0,0)]53= m (3.28)

In the expressions above, the resonant denominators are
defined in terms of Cartesian coordinates i=x,y,z to be

AiE —mew2—ime’yia)+Ki, (329)
At, = — 4mew2 - 2imeyiw +Ki' (330)

The various F' factors can be written using cyclic permu-
tation of the indices as

IBorl*  |Bosf®
Fi=1-— —+— |, (3.31)

24; \ A A,

and, finally, we also have

(e®?|Bog/|Boy))?
Gy=1l-—o—o, (3.32)

20,A,(A))°FF,

(e*?|Bogl|Bo.l)®
G,=1-———F—. (3.33)

42,(8)PAF,F,

We note that in all the susceptibilities above x;;= X only
when the field amplitudes are real and the optlcal fre-
quency is far from any resonance.

In the unperturbed principal axis system, the suscepti-
bility tensor has diagonal components x;1(w), x29(®), and
x33(w), given by Egs. (3.14), (3.17), and (3.20). Upon exci-
tation with intense light off-diagonal terms are contrib-
uted in various orders as specified by Egs. (3.8)—(3.28). In
the present calculation, all such terms are magnetic in
origin since quadratic and higher-order electric field
terms have specifically been excluded. Note that the
mixed character susceptibilities x(0), x(w), and x(2w) can
generate either electric or magnetic dipoles. ED fields ap-
pear at frequencies 0, w, and 2w as indicated by the argu-
ment of y. However, because the magnetic dipole moment
oscillates at +w in the rotating frame of E (see Section 2),
the MD fields appear at w in the lab frame. Considering
response at frequency w only, and specializing again to
the case of a real x-polarized wave propagating along z,
the susceptibility tensor far from any resonances can be
taken to have the form
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X11 0 —i|x1]
x=| O X22 0 . (3.34)
i|X31| 0 X33

When the medium is lossless, the quantities |y;5(2w)| and
|x31(2w)| are real and equal. These off-diagonal terms
form polarizations such as P(Z)(2w)—lso| X(z)(Zw) |E,(w)
that account for z-polarized magnetic emission at the fun-
damental frequency w. By determining the eigenvalues of
the tensor y in the presence of light the components of x
in the diagonalized (primed) reference frame are found to
be x11=x11=Ix13l> X52=x22, and x33=x11+|x13/- Noting that
X117 X297 X33 even if the material is initially isotropic
(x11=X22=X33), we conclude that optical magnetization
generates linear birefringence in the medium. Similarly,
for probe waves that are not collinear with the incident
field, it generates circular birefringence.

Self-induced magneto-optic birefringence is weak un-
less the cyclotron frequency approaches the optical fre-
quency or large resonant enhancement is present. How-
ever if these conditions are met, wave energy will
propagate in a direction that is slightly different from Z in
the laboratory frame, as one can easily show. By solving
the wave equation % X (& X E)+(w2/c¢2)E =—(w?/c2)YE, re-
fractive indices for x- and y-polarized light are found to be
ne=\1+x11— (|x13>/[1+ x11]) and n, =1+ g, respectively,
and an axial electric field component develops with a rela-
tive amplitude given by

— X31
E.= ( )Ex_ (3.35)
1+ x11

Hence there is a small angle between the Poynting

vector and the optical wave vector % given by
f=tan " (|x13|/[1+x11]). This angular deviation of the
Poynting vector results in a “walk-off” effect that is simi-
lar to that encountered in naturally birefringent crystals.
Here, though, it results from magnetic anisotropy. The di-

rection of S differs from £ because B is not parallel to H.

The off-diagonal susceptibilities derived above are non-
linear in their dependences on optical field amplitudes,
even though quadratic or higher-order dependences in E
were omitted from the theoretical model. Because the
definitions Egs. (3.5)—(3.7) remove the linear electric field
dependence from the calculated susceptibilities, any re-
sidual field dependence is fundamentally magnetic in ori-
gin. Although it is common practice to decompose suscep-
tibilities using a power series to separate first-, second-,
and higher-order dependences on E, Egs. (3.8)—(3.28)
have the merit of revealing novel effects such as the self-
induced birefringence and beam walk-off effects described
above that are the direct result of optical magnetization.

With these results in hand, an expression for the mag-
nitude of the off-resonant optical magnetization M itself
can be obtained. For a dielectric medium (with conduction

current density J,=0), the relationship between M
and J,; is expressible in terms of components parallel

and perpendicular to the electric field: [(VXM),|



Rand et al.

=) . | =) =|(VXM),|. As determined earlier, the
magnetic current is also related to the motion of real
charges by

[Tl = - R|(Jg)|=-R p

Hence it is apparent that the magnitudes of magnetiza-
tion and electric polarization are related by

a(P),

|(§XM)L|=|(§XM)H|=_R ot

By evaluating the indicated derivatives for an x-polarized
plane wave propagating in the z direction and using the
dispersion relation of light together with the constitutive

relation B=uH = puo(H+M), the optical magnetization per
unit volume parallel to B=B(t)y is found to be

M(t) =-cRP(t)j. (3.36)

At high intensities, nonlinear restoring forces in real
atomic systems eventually cause nonlinear optical effects
to appear that are proportional to powers of the electric
field (E?, E®, etc.). Since the nonlinear magnetization in
Eq. (3.36) scales in proportion to polarization at elevated
intensities, one can surmise that intense, purely magnetic
nonlinear effects may be observable at moderate intensi-
ties too. This is borne out by experimental results on mag-
netic continuum generation shown in Section 4. There,
observations are presented of intense magnetic white-
light generation in two dielectric media and the magnetic
emission is found to resemble the corresponding, highly
nonlinear electric process closely.

An additional consequence of intense magnetic re-
sponse at optical frequencies is that Poynting’s theorem
must be modified to include magnetic energy storage in
the medium. Customarily [10] the rate of energy loss at
an arbitrary point in space is equated to the negative di-
vergence of the Poynting vector S. Including dynamic
magnetization, this yields

_ _ _ _ 19 _ _
-V-S=E-J+—-——(ugH -H+¢)E -E)
2 ot
_dJ _ _ d_
H-—uyM+E-—P)|. 3.37
+ at#«o + ot ( )

The energy loss rate is determined by three terms on the
right-hand side of Eq. (3.37). The first two are irreversible
(ohmic) losses and changes in the energy stored in the
free space electric and magnetic fields, respectively. The
third and fourth terms describe changes in energy stored
in the motion of charges. When the magnetization is no

longer negligible (M/at=0) its effect on energy balance
must be taken into account.

4. EXPERIMENTS AND RESULTS

As a preamble to the description of experimental proce-
dures, we note how ED and MD scattered radiation are
distinguishable on a purely experimental basis. In Fig. 4,
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Fig. 4. Relative orientations of incident and scattered dipole
electromagnetic fields for (a) vertical incident polarization (which
yields a maximum intensity for ED radiation detected through a
vertical analyzer and an MD null), and (b) horizontal incident po-
larization (which yields a maximum intensity for MD radiation
detected through a horizontal analyzer and an ED null).

we illustrate how rotation of a signal polarizer can be
used to separate linearly polarized ED and MD signals.
When the incident polarization is vertical [Fig. 4(a)], the
radiant MD magnetic field points in the direction of ob-
servation, producing a null intensity for MD radiation
measured in this direction. When the incident polariza-
tion is horizontal [Fig. 4(b)], the radiant MD magnetic
field is vertical, producing a maximum intensity in the di-
rection of observation, consistent with Poynting’s vector.
For these same two polarizations the radiant ED fields
produce a maximum and a null. Hence the incident polar-
izations that produce maximum ED and MD scattered in-
tensities are orthogonal and the corresponding fields may
be readily separated using vertical and horizontal analyz-
ers in a standard 90° scattering geometry.

Experiments were performed with three sources: A
chirped pulse amplified laser system, a cw mode-locked
Ti:sapphire oscillator and an Ar gas laser. The highest
peak powers were obtained from a frequency-doubled Er-
:glass fiber laser that was regeneratively amplified in Ti-
:sapphire at a repetition rate of 1 kHz (Clark MXR CPA-
2001). This yielded average output powers as high as
100 mW in pulse trains of ~150 fs pulses at a fixed wave-
length of 775 nm. To measure radiation patterns, low av-
erage powers in the neighborhood of 3.5 mW were focused
with a 30 cm lens to avoid optical component damage and
to limit peak intensities at the sample to I <10 W/cm?.
Power dependence was measured with collimated beams
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of diameter <3 mm over the lowest intensity range that
gave observable signals, to eliminate the possibility of po-
larization rotation of signals crossing the interaction re-
gion toward the detector. A cw mode-locked Ti:sapphire
oscillator provided output pulses of ~100 fs duration cen-
tered at 810 nm, and operated at a repetition rate of
80 MHz. By using a 2 cm focusing lens, peak intensities at
the sample of up to 101° W/cm? were obtainable with this
source. Finally, output in the 1-10 W range was available
from a cw Ar laser operating at 514 nm. Peak intensity
achieved in this case using a 20 cm focusing lens never
exceeded 105 W/cm?2.

Light from these sources was directed through a double
Fresnel rhomb or a half-wave-plate into liquid samples of
CCly, Hy0O, and CgHg. The intensity of light scattered at
right angles, polarized either transverse (ED) or parallel
(MD) to the incident wave vector, was measured through
a calcite linear polarizer and 10 nm bandpass interference
filter. In the case of the high power experiments, many
wavelengths from the ultraviolet to the infrared region
were selectable for signal detection, because of the broad
spectral redistribution of light that accompanied white-
light generation. The mode-locked oscillator could not
reach this threshold, however, even with tight focusing, so
no such spectral reshaping took place in the samples. In
this instance only Rayleigh scattering at the incident
wavelength was generated and detected at 810 nm. Detec-
tion wavelength in experiments with linearly polarized Ar
laser radiation was 514 nm.

Radiation patterns of light with ED or MD polarization
were determined by recording intensity versus rotation
angle of the input polarization [13]. Since only isotropic
samples were studied, this accurately mapped out the
spatial distribution of scattered intensity at each signal
polarization. To establish the multipole character of the
emission reliably on a purely experimental basis, mea-
surements of this type were always performed with inten-
sities at the sample of I<10'! W/cm? to avoid unwanted
laser-induced polarization distortions in beam control
optics or samples.

In experiments with amplified pulses time-averaged
signals were recorded with a Hamamatsu 636-10 photo-
multiplier and standard photon counting techniques. Lin-
early polarized beams of average input power ~3 mW
were softly focused into liquid samples of CCly, C4Hg, and
H,0 prefiltered through 0.2 um meshes. Detector sensi-
tivity was found to vary by approximately 40% between
orthogonal signal polarizations, so signal corrections were
necessary. A precision right-angle prism was used during
alignment to define the 90° scattering angle within
3 arc min. Two optical stops of diameter 3 mm separated
by 10 cm were placed between sample and detector to
limit both the wave vector bandwidth and to maintain the
relative contribution of out-of-plane electric dipole signal
intensities below 1074. A CaCOs analyzer with 10~* rejec-
tion ratio was selected and carefully positioned after the
apertures to eliminate motion of the signal beam on the
photocathode at different orientations of the analyzer.
Representative results from these experiments are shown
in the polar plots of Figs. 5(a) and 5(b).

Experiments with the mode-locked oscillator, at greatly
reduced peak intensities, utilized mechanical chopping of
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Fig. 5. Polar plots of experimental radiation patterns of mag-
netic (solid circles) and electric (open circles) scattering intensi-
ties obtained using amplified pulses above white-light threshold
in (a) CCly and (b) H,0.

the input beam and synchronous detection with a
polarization-insensitive EG&G FND-100 photodiode. Up
to 400 mW of average power was focused at 50% duty
cycle into the sample region with a 2.0 cm lens providing
excellent signal levels through apertures reduced to
1 mm, which kept spurious signal levels below 107°. Ra-
diation patterns obtained in this way at the central laser
wavelength 810 nm for all three liquid samples are shown
in Fig. 6. The solid curves are fits to dipolar cos? ¢ and
sin? ¢ angular dependences. Identical experiments using
approximately 1 W of output from an Ar laser light fo-
cused into CCly produced no measurable signal with axial
polarization at all and will not be discussed further.
Peak intensities in the oscillator experiments were lim-
ited to < 2Xx101° W/cm?2, 1000 times below white-light
and bubble formation thresholds in HyO [14]. However
the focal spot position was still slightly intensity-
dependent due to incipient self-focusing, necessitating the
use of an unfocused beam from the amplified source for
reliable determinations of the intensity dependence of
magnetic scattering (Fig. 7). These relative MD-ED mea-
surements, at power levels intermediate between those of
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Fig. 6. Radiation patterns of MD (solid circles) and ED (open
circles) scattering intensities obtained using unamplified pulses
below white-light threshold: (a) CCl,, (b) magnified view of the
magnetic component in CCly, (¢) HyO, and (d) CgHg.
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Fig. 7. Experimental intensity of magnetic dipole scattering
versus input intensity in CCl,. The solid (dashed) curve is a lin-
ear (quadratic) regression through the data.

the Ar laser and white-light experiments, showed a tran-
sition from negligible magnetic scattering at low input
power to intense signal levels at higher intensities.

5. DISCUSSION

Radiation patterns measured above white-light threshold
revealed two-lobed patterns of scattered light intensity
measured with the analyzer parallel (closed circles) or
perpendicular to the optical wave vector (open circles) of
the laser beam. The open circles in Fig. 5 correspond to
familiar ED scattering. The closed circles correspond to
magnetic emission, polarized orthogonal to the ED pat-
tern. In Figs. 5(a) and 5(b) the scattered intensity ratios
are Sp;//Sg=0.22+0.05 and S;;/SE=0.38+0.10, respec-
tively. These results therefore agree quantitatively with
the maximum ratio for MD scattering S;;/Sy=0.25 deter-
mined in Eq. (2.21), within experimental error. However,
the effects of intensity fluctuations from the laser and the
white-light generation process are evident in the data,
and other measurements (discussed below) provided
much clearer determinations of the multipole character of
the magnetic radiation and its generation mechanism.
Also, ionization is thought to accompany white-light gen-
eration [15]. Hence any interpretation of the experimen-
tal results in Figs. 5(a) and 5(b) as arising purely from
bound electron dynamics is compromised. The remainder
of this discussion therefore focuses on results from experi-
ments in un-ionized dielectric samples.

Saturated magnetic scattering was observed at the fun-
damental wavelength of a Ti:AlyO5 oscillator at intensi-
ties as low as 1019 W/cm? [Figs. 6(a)—-6(d)], a result that is
in quantitative accord with Eq. (2.10) assuming paramet-
ric resonance and a linewidth of 7yy=20,~3.2
x 10 rad/s or less. Because of the absence of any depo-
larized background scattering in CCl, and reduced ampli-
tude fluctuations when a mode-locked oscillator was used,
the measurements of Fig. 6(b) plainly showed that the ra-
diation is purely magnetic dipole in character. This is
compelling evidence of intense MD response from bound
electrons in dielectric atomic systems at intensities of
~101°W/em? [13]. The ratios of MD—ED scattering inten-
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sity in Figs. 6(a), 6(c), and 6(d) are 0.27+0.04, 0.23+0.04,
and 0.28+0.04, respectively; again in agreement with
Eq. 2.26 within experimental error. On the other hand,
the absence of magnetic response in experiments per-
formed with the cw Ar laser indicated that no observable
MD emission takes place at low intensities. Hence a tran-
sition between these two regimes must exist, as confirmed
by the results of Fig. 7. The MD signals in Fig. 7 show a
quadratic dependence on incident intensity and an accu-
rately linear ratio of MD-ED signals, providing good
agreement with the predicted power dependence and non-
linear mechanism of MD generation in Eq. (2.10) below
saturation.

6. CONCLUSIONS AND SUMMARY

The main results of this paper are the observation and ex-
planation of intense magnetic radiation induced by the
passage of light through dielectric media: Magnetic con-
tinuum generation over a broad range of wavelengths and
magnetic scattering at the fundamental wavelength. Ex-
perimentally, we have demonstrated that observed mag-
netic scattering is purely dipolar, is nonlinear in origin,
and is comparable to ED scattering only at elevated (but
nonrelativistic) intensities in bound electron systems by
virtue of resonant enhancement. All the results of this pa-
per (experimental and theoretical) are consistent with the
dipole approximation (a¢/A<1), in contradistinction to
[16]. Our model explains the unprecedented intensity of
MD emission as the result of parametrically enhanced
magnetic forces acting on bound electrons, exceeding the
standard limit of magnetic response expressed by
Eq. (1.2) through a nonlinear mechanism whereby moder-
ately intense optical fields induce large magnetic dis-
placement currents. Many more magneto-optic effects
analogous to known electro-optic effects may therefore be
observable at lower intensities than previously thought.
Two such effects predicted in this paper are self-
induced linear birefringence and optically induced
Faraday rotation. In the first, pump light produces field-
dependent changes of the susceptibility elements (xi;
# X2 7 X53) that affect pump propagation. In the second,
the polarization of an orthogonal probe librates about the
propagation axis at the optical frequency (Section 3). A
third effect, predicted by Eqgs. (3.8)—(3.13), is magneto-
electric charge separation and static voltage generation
across dielectric samples in the direction of propagation of
light. Finally, there is the possibility of attaining negative
refractive indices in homogeneous dielectric media by ex-
ploiting dynamic magnetic response. As shown in Section
2, electric and magnetic response in bound electron sys-
tems share a common resonance condition. Consequently,
for a sufficiently sharp dispersion feature, negative per-
meability should be attainable at small blue detunings
from the common resonance provided that point symme-
try of the meeting is such that rotations about y trans-
form in the same way as displacements along x. Negative
refractive index behavior may be realizable in homoge-
neous dielectric media, since both & and u could be nega-
tive over the same range of frequencies simultaneously.
Low-loss approaches to subwavelength imaging [17],
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magnetic mirrors [18], nanolithography and electromag-
netic cloaking [19] may become practical.

APPENDIX A

Here we show explicitly that an arbitrary current source
J, includes a radiant magnetic dipole in the first term of

the multipole expansion of the vector potential A,. After
decomposing the current into components parallel and
perpendicular to the optical electric field, the latter is
shown to be the Cartesian projection of the curl of a dipo-

lar magnetization from the solenoidal part of J,. If a (non-
linear) mechanism exists to generate a large magnetic
source current of this type, magnetic dipole radiation that
is not limited to a small fraction of the electric dipole ra-
diation is generated.

In the presence of magnetic forces, there is no reason to
assume that the vector potential is parallel to any par-
ticular incident field direction. Hence we write Eq. (1.1) as
the sum of source terms parallel and perpendicular to the

incident optical field E.

47R _ _ .
_Aw(F) = f Ju,w(F,)dV+ f JL,w(F,)dV+ .
Mo v v

(A1)

(For the remainder of this development, the subscript in-
dicating Fourier component  is dropped.) The first term
on the right of Eq. (A1) contains the usual electric dipole
term generated by the electric field. The second term is
typically assumed to be negligible in isotropic media at
nonrelativistic intensities because the electric field only
accelerates charges in the direction of E itself. However, if
an open loop current component J, with the property
V-J, =0 is generated by the optical B field by any
means—for example, by parametric resonance between
the motions driven by E and B in a bound electron
system—the calculation below shows that magnetic di-
pole radiation contributes to A in first order.

The usual expression for the magnetic dipole moment
m in a source volume V is

=y f (7 X J)dv. (A2)
\4

Here J is implicitly azimuthal with respect to B (i.e., J
=Jy=J .0 for propagation along 2). Unless J is azi-
muthal, according to Eq. (A2), it cannot contribute to the
magnetic moment. The differential element of m is then

related to the magnetization per unit volume M by dm
=MdV. Consequently M= %[F X ], and

_ 1. =

VXM=Y x[LFExdy]. (A3)

Cartesian components of the volume integral of Eq. (A3)
are
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_ _ d
f [VXM]AV| = %J ik~ Epim¥1(2J410) AV,
14 ; v

(Ad)

where the indices i, j, k£, and m may be x,y, or z. The
Levi-Civita symbol &;;, is nonzero for unrepeated indices,
has the value +1 if the indices form a cyclic permutation
of xyz, and is —1 if the indices are anticyclic. The factor of
2 in the integrand accounts for the projection of the oscil-

latory circular current JJ,; onto Cartesian axes [see Eq.
(2.8)]. Equation (A4) simplifies to

_ _ J
f [VXM]dV | = Sijkalmkf —x(Jye)mdV, (AD)
\4 i Vv 0x;

J

and can be re-expressed in terms of Kronecker delta sym-
bols using the identity &;;x&1,1 = 61 S — i, 6y to obtain [20]

_ _ J
f [VXMIAV | =(6;8, - 5im5jl)f —x) (0 dV,
v ; v 9%

J J
= JV {ijl(JMe)j - %xj(JMe)i:| dv.
(A6)

Using the product rule to expand the derivatives in Eq.
(A6), together with the identity

[%- V1 p0)i=V  [Z(Tar0) 1= TV -X1=V - [2(a10):1- 3T ar0);s
Eq. (A6) becomes

l f medv} _ f [(F - Tups + oo
v ; Jv

-V [Z(Jp0)11dV. (A7)

Because there are no magnetic charges, magnetic cur-

rents are divergence-free (V-Jy=0). Consequently the
first term on the right of Eq. (A7) vanishes, yielding

lJ WXM]dV} =J [(Tao)i = V- [E(Tap)i 1AV
\4 i \4

(A8)

In a homogeneous medium where the charge response is
uniform throughout space, the current amplitude o,y is
also a constant that can be removed from the second in-
tegral on the right. Using the divergence theorem to re-
write this last term as an integral over the surface S that
encloses source volume V, we find that

J [X(Jpr9);1dV = (JMG)if x¥ds=0, (A9)
v s

since X is positive as much as it is negative over the sur-
face S. Hence

l f WxM]dV} = f (J30,dV. (A10)
v i v
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Thus circular current components with the property

V-J=0 can produce magnetization (and magnetic dipole
radiation) via the first term in the multipole expansion.
Equation (A10) is valid regardless of the magnitude of

dP/dt, and applies to insulators or conductors alike (see
below). Consequently, dynamic magnetic moments can be
much larger than previously thought at optical frequen-
cies. In Eq. (3.36) the magnetization was shown to be pro-
portional to the electric polarization in insulators, and
was not limited in magnitude to a small fraction of the or-
der of (1/137)2 times the electric dipole moment. This ap-
plies not only to dielectrics but also to weakly conductive

media, where VXM may be comparable to 4P/dt while
still consistently representing the curl of a magnetic
dipole moment per unit volume, as we now show.

If the total current (Jro7) is simply decomposed into an
electrical (nonsolenoidal) part governed by the usual
charge continuity equation and a magnetic (solenoidal)
part with zero divergence then, provided y,, <1 as in the
approximation of Section 2, one finds from an integration
of Ampere’s law [6] that

0=+ nonsol + V X M + 3P/, (A11)

where Jror=dJ 1+ nonso- Equation (Al1l) may be decom-
posed into two distinct parts:

J+VXM=0,
where
V-de=0, (A12)
and
I nonsol + 9P/t =0,
where

V- C_]nonsol # 0. (A13)

This decomposition in terms of physically distinguishable
portions of the total current eliminates any restriction on

VXM due to polarization [7], since P does not appear in

Eq. (A12). Thus, there is no inherent restriction on |M| at
high frequencies other than that imposed by the simple
fact that of all the charges within a volume that can be set
in motion by the time-varying electric component of an
electromagnetic wave, at most half can be deflected
around the origin to form a positive magnetic current by
the magnetic component [13].
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