Recap
Questions?
Algorithms

• Polynomial Time
 – Stable Marriage
 – Perfect Bipartite Matching
 – MaxFlow
 – Maximum Weighted Bipartite Matching
 – Approximation for Vertex Cover (x 2)
 • Maximal Matching
 • Linear Programming relaxation
 – Set Cover
 • Greedy
 – Linear Programs and Duality
 – Learning Disjunctions with Bounded Number of Mistakes

• Did not Cover
 – A LOT
 – Not just P and not P
 – Many algorithmic techniques developed
NP-completeness

• “Short Proofs”
• Horde of Problems
 – 3-SAT
 – 3-coloring
 – Traveling Salesman Problem
 – Vertex Cover
 – Clique
 – Independent Set
 – Hamiltonian Cycle
 – Graph partition
 – Conductance
Dealing with NP-completeness

• Average Case Complexity
 – Some instances may have short proofs

• Approximation
 – Can approximate certain problems
 – Others resistant to approximation

• Exponential Time Algorithms

• Reductions

• Did not talk about
 – Barriers to Progress
Reductions

• Use Hard Problem to show another problem is hard
 – Reduce from hard problem
• Use Easy Problem to show another problem is easy
 – Reduce to easy problem
• NP-completeness
• Undecidable
• Dealing with NP-completeness
• Show Cryptographic security
Cryptography

• “Sealed Envelops”
 – Coin flipping
 – Commitment
 – encryption

• Zero Knowledge Proofs
Incomputable Functions

• Different levels of infinity
 – “Cardinality” via existence of bijections
• Halting Problem, Hello Problem, Kolmogorov Complexity
Randomness

- Kolmogorov Complexity
 - Define “random” string is incompressible (unlearnable)
- Showed that “random graphs” have no large cliques or independent sets
 - Stated that we do not know how to construct these without randomness “Finding hay in a haystack”
- Randomness Used in algorithms
 - Small chance of incorrect answer.
 - We don’t think it is necessary, but cannot get rid of it
 - Polynomial Identity Testing
- Randomness in Protocols
 - Provably need it to efficiently check equality
Communication Complexity

• Rectangular Method for Lower Bounds
 – Set Intersection
 – Equality

• Upper bounds
 – Trivial algorithm
 – Fingerprints for checking equality
Learning

• Learning is
 – Prediction
 – Compression
 – Clustering

• Classification
 – With error/ without error
 – Used Linear Threshold Functions to Learn Disjunctions with Winnow [Multipliclicative Updates]

• Online-Optimization
 – Experts
Experts Algorithms

- Approximate Linear Programming
- Hard-core Sets
- Boosting Learning Algorithms
Methodology

• Borrowed from mathematics
• Proof based
• Model computation mathematically
 – Ideal computers
What we did not cover

• Well, lots.
• Did not talk at all about data structures
• Did not talk much about optimizing algorithm run times
Computational/Algorithmic Lens

• Look at our world through the lens of computation
• Biology
 – Evolution (as a form of learning)
 – Sexual reproduction
• Social Sciences
 – 6 degrees of separation with navigation
 – Information Aggregation
• Economics
 – Efficiently finding equilibrium
• Physics
 – Quantum Mechanics
 – Phase Transitions