Randomness

What next?
Random Walk
Attribution

- These slides were prepared for the New Jersey Governor’s School course “The Math Behind the Machine” taught in the summer of 2012 by Grant Schoenebeck.
- Large parts of these slides were copied or modified from the previous years’ courses given by Troy Lee in 2010 and Ryan and Virginia Williams in 2009.
What is a “random” number?

• Randomness is not so easy to define...
• One approach, developed independently by Solomonoff, Kolmogorov, and Chaitin identifies randomness with incompressibility.
• “A random string admits no description shorter than the length of the string itself.”
What is a description?

• Deeply related to computation.
• A description of \(x \) is a Java program which, when run, outputs \(x \) and halts.
• The program “print \(x \)” will always work, but has size about the length of \(x \).
• We say \(x \) is incompressible (random) if there is no program which outputs \(x \) and is shorter than \(x \) itself.
• Intuitively, if a string possesses patterns, this allows us to compress it.
 – 01
 – for i=1 to 20 print “01”
Incompressibility

• Most strings are incompressible.
• There are simply not enough descriptions to go around.
 – Number of strings of length n is 2^n
 – Number of strings of length n-c is 2^{n-c}
• At most 2^{-c} fraction of strings can be compressed by c bits.
• What is the relationship to learning?
Incompressibility Method

We can discover properties of random objects by using the fact that they cannot be compressed.

Consider a graph with n vertices.

Graphs can be identified with binary strings of length $\binom{n}{2}$.
Consider a graph with n vertices.

Graphs can be identified with binary strings of length $\binom{n}{2}$.

Graph:

\[
\begin{array}{ccccccccccc}
1 & 6 & 10 & 8 & 7 & 2 & 3 & 5 & 4 & 9 & 10 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & \ldots \end{array}
\]
A k-clique is a subset of k vertices with an edge between every pair.

Q: Do random graphs have large cliques?

Idea: if a graph had a large clique, we could use this to give a short description of the graph.
Alternative Notion of Random Graph

We have identified random graphs with those that cannot be compressed.

Another common model of a random graph is one chosen uniformly at random.
Suppose that a graph has a clique of size k. How can we use this information to give a shorter description?

Name the k vertices involved, say they are connected “all-to-all” then give explicit description of rest of graph.

Replace $\binom{k}{2}$ bits of description with $k \log n + c$
Cliques in Random Graphs

We will be able to give a shorter description of the graph when

\[k \log n + c \leq \binom{k}{2} \leq \frac{k^2}{2} \]

An incompressible graph will not have a clique of size larger than about 2 log n.

Similarly, an incompressible graph will not have an independent set of size larger than about 2 log n.

In fact one can also show that an incompressible graph will have a clique of size 2 log n.
Constructing Random objects

- Can we construct a graph of n vertices with no clique or independent set of size $> 2\log(n)$?
- Since “most” graphs have this property, it should be easy.
 - Just output a random graph
 - Cannot efficiently check if property holds
- Can we do this deterministically?
 - Currently we do not know how.
 - Can construct s.t no clique/IS of size $> 2^{(\log n)^{o(1)}}$
Incomputability of Kolmogorov complexity

• For contradiction: assume there is a program:
function KolmogorovComplexity(string s) that takes as input a string s and returns $K(s)$.

• Consider:
function GenerateComplexString(int n)
 for i = 1 to infinity:
 for each string s of length exactly i
 if KolmogorovComplexity(s) >= n
 return s
 quit

• Hardwire large n for input. Get program that output string of complexity n but only has description of size $\log(n) + c$ bits (where c is size of above program).
Communication Complexity
A place where Randomness Helps!

• The dialogues of Alice and Bob...
Alice and Bob make a date

Are you free on Friday?

No, have to work at the Krusty Krab.

How about Saturday?

No, have to work at the Krusty Krab.

How many emails can it take to set a date?
Measures of Communication

• We want to quantify the amount of communication sent back and forth.
• Several ways to do this: number of emails, total number of characters, volume of breath...
• Being computer scientists, we will use bits.
Alice’s schedule

Alice’s schedule for the week:

<table>
<thead>
<tr>
<th>Mon</th>
<th></th>
<th>Tue</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Morn</td>
<td>Aftn</td>
<td>Eve</td>
<td>Morn</td>
<td>Aftn</td>
<td>Eve</td>
</tr>
<tr>
<td>Free</td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>Free</td>
<td>Free</td>
</tr>
</tbody>
</table>

We can convert this into a string of bits where

0=Busy, 1=Free

Any 21 bit string is a valid input.
Set Intersection

Alice’s schedule for the week:

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Mon</th>
<th>Tue</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morn</td>
<td>Aftn</td>
<td>Eve</td>
<td>Morn</td>
<td>Aftn</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Bob’s schedule for the week:

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Mon</th>
<th>Tue</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morn</td>
<td>Aftn</td>
<td>Eve</td>
<td>Morn</td>
<td>Aftn</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Set Intersection

Alice’s schedule for the week:

100 011 100 011 101 010 000

Bob’s schedule for the week:

001 001 001 001 001 110 110

Q: Is there a position where both strings have a ‘1’?

Known as the set intersection problem.
Set Intersection

• In general, Alice and Bob will each hold a n bit binary string.
• Again, the task is to decide if these strings have a common position with a ‘1’ or not.
• Notice the problem can always be solved with $n+1$ bits of communication
 – Alice can send her entire input to Bob, he can produce the correct output.
 – This is known as the trivial protocol.
Try It!
Communication Matrix
Communication Matrix

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Communication Protocol

We also assume the communication is in bits.

The last bit of the protocol is the answer!

100 011...

001 001...

1 0 0 0 1 1 0

1 0 0 0 1 1 0

1 0 0 0 1 1 0

1 0 0 0 1 1 0
Communication Protocol

The first bit Alice sends depends only on her input. She knows nothing about Bob’s schedule...

100 011...

1

001 001...
Communication Protocol

The first bit Alice sends depends only on her input. She knows nothing about Bob’s schedule...

100 011...

1

001 001...

0

100 111...

001 001...
Communication Protocol

The first bit Alice sends depends only on her input. She knows nothing about Bob’s schedule...

1 111 111...

1

001 001...

We can divide Alice’s inputs into two groups:

- those where she first says 1
- those where she first says 0
Communication Protocol

The first bit Bob sends depends only on his input and the bit sent by Alice.
Communication Protocol

The first bit Bob sends depends only on his input and the bit sent by Alice.
Communication Protocol

The first bit Bob sends depends only on his input and the bit sent by Alice.

Conclusion: Bob groups his inputs into two sets, conditioned on Alice’s message.
Communication Matrix
Communication Matrix
Communication Matrix

<table>
<thead>
<tr>
<th></th>
<th>010</th>
<th>001</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>011</td>
<td>000</td>
</tr>
<tr>
<td>011</td>
<td>000</td>
<td>111</td>
</tr>
<tr>
<td>100</td>
<td>111</td>
<td>110</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Communication Matrix
Observations

• Protocol partitions matrix into rectangles.
• With each additional bit of communication, a rectangle can be split into two. After c bits of communication, at most 2^c rectangles.
• For protocol to be correct, all inputs lying in the same rectangle must have the same output value. We say that such a rectangle is monochromatic.
Diagonal property of rectangles

If \((x,y)\) and \((x',y')\) lie in the same rectangle...
Diagonal property of rectangles

So must \((x,y')\) and \((x',y)\).

So must \((x,y')\) and \((x',y)\).
Going back to SI

<table>
<thead>
<tr>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Going back to SI

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Lower bound for SI

• Notice:
 – all anti-diagonal entries are 0.
 – all entries below anti-diagonal are 1.

• No two anti-diagonal entries can be in the same monochromatic rectangle!

• This means at least 2^n monochromatic rectangles are needed---n bits of communication.
Recap

• We just showed a lower bound---any protocol with less than n bits of communication will incorrectly answer the set intersection problem on some input.

• For set intersection, the trivial protocol is optimal!
Bob goes to the moon

Alice wishes to send a huge file M to Bob

Bob receives some file M'.

Is the file corrupted along the way?

Does $M = M'$?
Bob goes to the moon

Bob could just send M' back.

This is very costly.
Checking Equality

More abstractly, the problem is the following:

Alice has an n bit string M, Bob has an n bit string M'.

They want to answer 1 if M=M' and 0 otherwise.
This is known as the identity matrix:

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Communication Matrix

• By the diagonal property of rectangles, no two pairs \((x,x)\) and \((y,y)\) can be in the same monochromatic rectangle.

• Again we need \(2^n\) many monochromatic rectangles, and so \(n\) bits of communication.

• Is communication complexity always so boring?
Randomized Model

• Not if we allow randomness!
• Alice and Bob are each given the same book of random numbers. This is known as shared randomness.
• For every input, they must output the correct answer with probability 90%.
Randomized Protocol

Alice looks at string $R = \text{first } n \text{ bits of book.}$

Then she computes

$$a = M \cdot R = \sum_i M_i R_i \mod 2.$$
Randomized Protocol

Alice looks at string
R=first n bits of book.

Bob checks if $a=a'$, where

$$a' = M' \cdot R = \sum_i M'_i R_i \mod 2.$$

If they are equal he outputs 1, otherwise outputs 0.
Correctness of Protocol

• If $M=M'$ then we will always have $a=a'$. No mistakes.
• If $M \neq M'$ what is the probability that $a=a'$?
• M and M' must differ in some position. Assume it is the first one.
Correctness of Protocol

Consider the random strings \(R \) in pairs \((0r, 1r)\).

Now notice that

\[
M \cdot 0r = M \cdot 1r
\]

\[
M' \cdot 0r \neq M' \cdot 1r
\]

So either

\[
M \cdot 0r \neq M' \cdot 0r \quad \text{or} \quad M \cdot 1r \neq M' \cdot 1r
\]

For half the random strings, we get different answers.
Randomized Protocol

Protocol Recap:

Alice computes

$$a = M \cdot R = \sum_i M_i R_i \mod 2.$$

Bob computes

$$a' = M' \cdot R = \sum_i M'_i R_i \mod 2.$$

If $M=M'$ then $a=a'$ for any R.

If $M \neq M'$ then $a=a'$ for at most half of the R's.
Deterministic vs. Random

• Here we have a case where with randomness we can provably do better than without.
• Deterministically, we must send the entire input, n bits!
• But if Alice and Bob share a book of randomness, constant communication suffices.
On the model

- Sharing randomness is a strong assumption.
- Can eliminate assumption, but communication increases to $\log(n)$ bits.
 - First “derandomize” to use $\log(n)$ bits of public randomness
 - Then can just share the random coins.
Equality with random primes

• Idea: With her own (private) randomness, Alice chooses a random prime number between 1 and \(n^2 \).

• Alice sends Bob \(p \) and \(a = M \mod p \), known as “fingerprint” of \(M \).

• Again Bob checks if \(a = M' \mod p \).
Correctness of the protocol

• How many bits does this take?
• If $M=M'$ then again clearly $a=a'$.
• Suppose that $M \neq M'$ yet $a=a'$:
 – $M \mod p = M' \mod p$;
 – $M-M' = 0 \mod p$
• How many prime divisors can $M-M'$ have?
 – At most $\log(M)$
There are lots of primes!

• **Prime number theorem (1896):**
 Asymptotically, the number of primes less than N is $\frac{N}{\log N}$

 – a random n bit number is prime with probability $< \frac{1}{n}$

• $\frac{N}{2 \log N}$ primes less than n^2

• only $\log(N)$ of them are “bad”.
Questions?

• How do you choose a random prime efficiently?
• Can you find an n-bit prime efficiently deterministically?
• Can every protocol with shared randomness be modified to use private randomness in this way?
Randomness and Computation
Randomness in Algorithms

• Suppose we:
 – Allow our ideal computer access to truly random bits
 – Are satisfied with the correct answer 99.9999999% of the time.

• Do we get any additional computational power?
• Such computers can do things that a deterministic computer cannot.
 – For example, output a random string.
 • Given n, a randomized algorithm can output a n-bit string that is random with high probability.
 • If there was a deterministic program which could do this, it would (for large enough n) contradict the fact that the string is incompressible!
A guessing game...

- I am thinking of 10 numbers from 1 to 20...
- Can you guess one of them?
- No matter what my choice, the probability a random algorithm would not succeed in 10 guesses is 2^{-10}
Primality Testing

• Given integer \(n \), is \(n \) prime?
• Sieve of Eratosthenes takes time \(\sqrt{n} \)
• Rabin (1980) gave a randomized algorithm taking time \(\log(n)^3 \)
 – (called Miller-Rabin test)
 – Repeating the test 50 times, the probability a composite is declared prime is at most \(2^{-100} \)
• In 2002, Agrawal, Kayal, and Saxena gave an efficient deterministic algorithm for primality testing.
 – Kayal and Saxena were still undergraduates at the time.
 – The running time of this algorithm is about \(\log(n)^6 \)
Can Randomness Help?

• Seems inconceivable that access to a random string helps you compute.

• Reasonable complexity assumptions imply it ain’t so.

• Some practical algorithms can only be done with randomness or are faster with randomness.

• Provably help in other contexts!
Polynomial Identity Testing

• Polynomial Identity Testing: Given a polynomial is it identically 0?
 \[p(x, y) = x^2 - y^2 - (x + y)(x - y) \]
 \[p(x_1, \ldots, x_4, y_1, \ldots, y_4) = (x_1^2 + x_2^2 + x_3^2 + x_4^2) + (y_1^2 + y_2^2 + y_3^2 + y_4^2) \]
 \[-(x_1y_1 - x_2y_2 - x_3y_3 - x_4y_4)^2 - (x_1y_2 + x_2y_1 + x_3y_4 - y_4x_3)^2 \]
 \[-(x_1y_3 - x_2y_4 + x_3y_1 + x_4y_2)^2 - (x_1y_4 + x_2y_3 - x_3y_2 + x_4y_1)^2 \]

• What the problem? We just expand the polynomial and see if everything cancels?
• A polynomial with n variables and degree d can have \(\binom{n + d}{d} \) terms. Ideally, running time poly in n and d.
Representation

- Polynomial given to us as a circuit.
- Degree of a polynomial is maximum sum of exponents in a monomial.
 - E.g degree\((x^2y^3z + xy^2z)\) = ?
Univariate Case

Say we have a univariate degree d polynomial.

$16x^5 - 20x^3 + 5x$

This will have at most d roots!

Evaluate the polynomial at $1, 2, 3, \ldots, d + 1$.
With more variables...

- \(f(x, y) = xy \)
- Now there are an infinite number of zeros!
Return of the guessing game

- It still looks like we would have to pretty unlucky for all the points we choose to be roots of the polynomial.
- Try evaluating the polynomial at random points!
Classic Example of a Randomized Algorithm

• Let $p(x_1, x_2, ..., x_n)$ be an n-variate polynomial of degree d.

• Let $S = \{1, 2, ..., 2d\}$ Choose $a_1, a_2, ..., a_n$ uniformly from S.

• Evaluate $p(a_1, a_2, ..., a_n)$
 – If zero say it’s the zero polynomial.
 – o. w. we know its not the zero poly.
Example

- \(f(x, y) = xy \)
 evaluated at points
 \(\{0, 1, 2\} \times \{0, 1, 2\} \)
Schwartz-Zippel Lemma

• Lemma:
 \(p(x_1, \ldots, x_n) \) st \(\text{degree}(p) = d \) and not \(\equiv 0 \).
 For any set \(S \), if \(a_1, a_2, \ldots, a_n \) are each chosen at random from \(S \) then
 \[\Pr[p(a_1, \ldots, a_n) = 0] < \frac{d}{|S|} = \frac{1}{2} \]
Perspectives

• The deterministic primality testing algorithm first formulated the problem as checking a polynomial identity.

• Giving an efficient deterministic algorithm for polynomial identity testing is one of the most important open problems in TCS.