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Abstract

Considering the rapid growth of population, its impact
on the environment, and limited available resources on our
planet, the need for monitoring the environmental processes
and managing our resources is unequivocal. Microwave
remote sensing provides a unique capability towards
achieving this goal. Over the pastdecade, significant progress
has been made in microwave remote sensing of land
processes through development of advanced airborne and
space-borne microwave sensors, and the tools — such as
physics-based models and advanced inversion algorithms —
needed for analyzing the data. These activities have sharply
increased in recent years since the launch of the ERS-1/2,
JERS-1,and RADARSAT satellites, and with the availability
of radiometric data from SSM/I. A new era has begun with
the recent space missions ESA-ENVISAT, NASA-AQUA,
and NASDA-ADEOSII, and the upcoming PALSAR and
RADARSAT?2 missions, which open new horizons for a
wide range of operational microwave remote-sensing
applications. This paper highlights major activities and
important results achieved in this area over the past years.

1. Introduction

The application of microwaves for remote sensing of
terrestrial targets is motivated by the all-weather, day/night,
and target-penetrating attributes of such systems. Though
traditional optical and multi-spectral imaging systems can
be used effectively in principle, issues related to the
atmospheric effects often render such systems less desirable.
Inthe pastdecade, several satellite-borne synthetic-aperture
radars (SAR) were launched for the remote sensing of the
environment.

The successful application of SAR technology to
address a wide range of remote-sensing problems helped

the advancement of SAR systems to include polarization
diversity and operation in interferometric mode. The first
remote-sensing space-borne polarimetric SAR system, and
the firstsingle-pass interferometric SAR, were flown aboard
the Space Shuttle in 1994 [1] and 2000 [2], respectively.
was given in [3]. A very good review of radar polarimetry
techniques and interferometric SAR systems and
applications can be found in [4] and [5].

The most significant event in recent years was the
launch, performed by the European Space Agency, of the
ENVISAT satellite, carrying onboard a set of innovative
sensors, including the Advanced Synthetic Aperture Radar
(ASAR)[6]. This C-bandradaris asignificantimprovement
over the ERS-1/2 SAR, in that it makes observations at
different incidence angles and polarizations possible, and
allows for scanSAR operations. The satellite was launched
on March 1, 2002, but data were made available to the
scientific community in the fall of 2002, only after the
commissioning phase. Thus, most of the work performed so
far with satellite radar still involves the use of data from the
currently in-orbit ERS-2 and RADARSAT, or from archives
of ERS-1 (C band) and JERS (L band).

The combined active microwave instrument (AMI),
operatingat Cband (5.3 GHz) and with vertical polarization,
is aboard the European remote-sensing satellite ERS-2.
AMI is composed of a SAR and a scatterometer (SCAT),
operating in an interleaved mode. In SAR wave mode,
10 km x 5 km images are acquired at a nominal incidence
angle of 23°, with a spatial resolution of about 30 m. The
ERS-1/2 scatterometer continuously illuminates a 500 km-
wide swath with a resolution of 45 km [7]. A first
interferogram, using radar data from the ERS-2’s SAR
instrument and Envisat’s ASAR instrument, has already
been produced by scientists from the German Aerospace
Centre (DLR). They analyzed images taken in 1999 (ERS-
2)and 2002 (Envisat) over the town of Las Vegas in the US
[6]. Producing an interferogram with data from these two
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satellites was not initially considered to be feasible, since
the SARs on ERS-2 and Envisat operate at slightly different
frequencies, and this was enough to complicate the joint
processing of data from the ERS and Envisat sensors.
However, generation of interferograms using ERS and
ENVISAT by the application of permanent scatterers with
very stable scattering phase centers was proposed in [8, 9].

RADARSAT-1 was launched in November, 1995,
circling the Earth in a sun-synchronous polar orbit [10].
RADARSAT-1 operates at C band, and offers users a wide
variety of beam selections. The satellite’s SAR has the
unique ability to shape and steer its beam from an incidence
angle of 10° to 60°, in swaths from 45 to 500 km in width,
with resolutions ranging from eight to 100 m.

As far as passive systems are concerned, two space-
borne microwave radiometers, called the Advanced
Microwave Scanning Radiometer, were launched in 2002
toprovide new observational data. One sensor isthe AMSR-
E, aboard the Earth Observing System (EOS) Aqua of the
US National Aeronautics and Space Administration (NASA)
[11]. The other is the AMSR [12], aboard the Advanced
Earth Observing Satellite-11 (ADEOS-II) of the National
Space Development Agency of Japan (NASDA). AMSR
and AMSR-E are almost identical sensors, and have lower
frequencies of 6 GHz and 10 GHz, and much better ground
resolution compared to previous sensors. Indeed, the ground
resolution ranges from 43 x 75 km?at the lower frequency,
to 3.5 x 5.9 km? at the highest frequency. We expect to
retrieve soil moisture and vegetation biomass on a global
scale with reasonable accuracy from the lower-frequency
channels of these sensors. Geophysical products are currently
being validated by means of several methods, such as the
use of existing in-situ data, and by comparing data with data
from other sensors [13 ].

Among the near-future space-borne radar remote-
sensing systems, the Japanese fully polarimetric Phased
Array type L-band Synthetic Aperture Radar (PALSAR),
operating at 1.27 GHz, and RADARSAT-2, operating at C
band, can be mentioned. In high-resolution mode (~10 m)
the system can be used in fully polarimetric mode over a
swath width of 70 km. PALSAR offers another attractive
observational mode, called the ScanSAR mode. By
sacrificing spatial resolution (~100 m), PALSAR can
provide a swath width of the order of about 250-350 km,
most appropriate for monitoring targets of large extent,
such as sea ice and rain forests [14]. Scheduled for launch
in 2004, RADARSAT-2 will provide data continuity to
RADARSAT-1 users and offer data for new applications.
The RADARSAT-2 Synthetic Aperture Radar (SAR) is
fully polarimetric, and will be able to acquire data at all or
any of HH, VV, and HV/VH polarizations over a range of
resolutions from 3 m to 100 m [15].

Apart from the contributions made in the preparation

ofthese missions, the microwave remote-sensing community
has been deeply involved in improving the knowledge in
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the field by analyzing experimental data collected from
satellite, airborne, and ground-based sensors, and is engaged
indeveloping more advanced forward models and inversion
algorithms. To this end, studies have also been performed
by using data from sensors not specifically designed for
land, use such as SSM/T, AMSU [16], and TRMM [17].

The literature concerning microwave remote-sensing
terrestrial targets and Earth processes is rather extensive,
and cannot be entirely covered here. This article attempts to
highlight major activities and important results in this area
over the past decade.

2. Retrieval of Land Parameters

Theavailability of a considerable amount of Synthetic
Aperture Radar (SAR) and multi-frequency radiometric
data, obtained in recent years from airborne and space-
borne systems, has stimulated significant research in
interpreting data and investigating their potential in various
applications. Forenvironmental studies, the focus of research
on microwave remote-sensing of land processes can be
categorized into: 1) land classification, 2) soil-moisture
retrieval, 3) forest and crop biomass estimation, and 4) ice-
and snow-pack parameter estimation.

2.1 Image Processing and
Land Classification

The first step in most retrieval algorithms is image
classification, where the domain of the imaged scene is
divided into different general categories, which, in turn may
each be subdivided into statistically homogeneous domains.
Several different types of microwave image classifiers are
now routinely in use. The classification techniques
implemented so far can be categorized into statistical-based
approaches, such as the maximum-likelihood classifier
[18], unsupervised and knowledge-based classifiers [19,
20], and neural-network classifiers, which use a non-
parametric classification technique [21-23]. A methodology
known as the “decision tree” classification technique has
also been used successfully forawiderange of classification
problems, but it has not been tested in detail by the remote-
sensing community [24]. Algorithms for edge and change
detection, using polarimetric and/or multi-frequency SAR
data, have been developed, and were reported in [25, 26].

Microwave land-coverage studies have been
performed at high resolution with airborne sensors, such as
JPL AirSAR [27] and CCRS C/X SAR [28]; satellite SAR;
and at global scale, mainly with the ERS-1/2 Wind
scatterometer and the SSM/I. The potential of multi-
frequency polarimetric SAR data for separating agricultural
fields from other types of surfaces, and in discriminating
among classes ofagricultural species, has been demonstrated
by various authors [e.g., 28]. Lee et al. [30] exploited the
land-use classification capabilities of fully polarimetric
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synthetic-aperture radar (SAR) versus dual-polarization
and single-polarization SAR for P-, L-, and C-band
frequencies. A variety of polarization combinations was
investigated for application to crop and tree-age
classification. The authors found that L-band fully
polarimetric SAR data are best for crop classification, but
that P band is best for forest-age classification. This is
because longer-wavelength electromagnetic waves provide
higher penetration. Moreover, the HH and VV phase
difference is important for crop classification, but less
important for tree-age classification

Recent research addressed to urban areas by using
multi-temporal analysis of SAR data has demonstrated that
the coarse resolution of ERS images does not prevent the
possibility of characterizing these areas [31, 32]. Tupin et
al. [33] established the usefulness of multiple SAR views in
road detection.

Significantefforts have also been devoted to addressing
land-cover characterization on a global scale by using ERS
scatterometer data. These studies showed that the radar
backscattering, 0°, was able to describe the vegetation
cycle in a semi-arid region and in boreal forests [34, 35]. A
few significant studies for distinguishing land surfaces and
estimating quantitative parameters with the use of space-
borne microwave radiometers were conducted using data
from the Scanning Multi-channel Microwave Radiometer
(SMMR) and the Special Sensor Microwave Imager (SSM/
I). This research led to establishing empirical or semi-
empirical rules for land-surface classification [e.g., 36,37].
The 19-37 GHzspectral gradientand the 37 GHz brightness
temperature, 7b, were effective for freeze/thaw classification
in the northern prairies and for characterizing the land
surface in Greenland [38, 39]. Convenient indices, derived
by the observed backscattering and brightness temperature
from the ERS scatterometer and the SSM/I, made possible
the monitoring of seasonal variations in various types of
land surfaces [40, 41].

2.2 Soil Moisture

Soil moisture, and its temporal and spatial variations,
are influential parameters in both climatic and hydrologic
models. The measurement of soil-moisture content (SMC)
is one of the most important targets of remote sensing, and
significant amounts of experimental and theoretical studies
have been carried outsince the late 1970s. The soil dielectric
constant at microwave frequencies exhibits a strong
dependence on the soil’s moisture content. For example, at
L band, the real part of the dielectric constant ranges from
3 for dry soil to about 25 for saturated soil. This variation
canresultinachange onthe order of 10 dB in the magnitude
ofthe radar-backscatter coefficient [42],and of 100 K in the
magnitude of the brightness temperature. An important
component required in the soil-moisture inverse problem is
theknowledge of the relationship between the soil dielectric
constantand its moisture content. Accurate empirical models
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and measurements for soil dielectric constant were given in
[43-45].

Asmentioned earlier, the radar backscatter and thermal
emission at low microwave frequencies are both sensitive
to soil-moisture content. Vegetation cover is one major
difficulty encountered in practice, which masks the soil
surface and reduces the radiometric and radar sensitivities
to soil-moisture content. Controversial opinions have been
expressed regarding the superiority of the radiometric
technique overradar, or vice-versa. Duetal. [46] investigated
the question by using radiative-transfer models for three
types of canopies, all at 1.5 GHz, and this led to the
conclusion that as far as vegetation effects are concerned,
neither sensor can claim superiority over the other. From an
experimental point of view, a certain conclusion on this
point has not yet been reached. Surface roughness is the
other disturbing factor that may significantly affect the
measurement of soil moisture. This quantity has also been
the subject of many investigations. In general, it has been
stated that backscatter is more sensitive to this factor than
emission.

2.2.1 Passive Systems

Soil-moisture-content research with microwave
radiometers has been active since the late 1970s, and has
recently been revitalized by new missions: the already-in-
orbit AMSR-E and AMSR, and the planned SMOS, selected
by the European Space Agency (ESA) in the framework of
the Earth Explorer Opportunity Missions; and AQUARIUS,
selected by NASA as part of the Earth System Science
Pathfinder small-satellite program. The SMOS mission
[47] is based on a dual-polarized L-band radiometer that
uses aperture synthesis to achieve a ground resolution of
50 km. AQUARIUS [48], based on a combination of L-
band active and passive conical-scanning instruments, will
have similar performance, and will use radar data to correct
for surface roughness.

Most experimental research on soil moisture with
passive systems has been carried out in the US at GSFC in
Greenbelt (Maryland), USDA in Beltsville (Maryland),
JPL in Pasadena (California), MIT in Cambridge
(Massachusetts), the University of Michigan (Michigan),
and Princeton University (New Jersey); and in Europe at
INRA in Avignon (France), the University of Amsterdam
(The Netherlands), and the CNR in Florence (Italy). An
excellent summary of recent research can be found in the
special issue on “Large Scale Passive Microwave Remote
Sensing of Soil Moisture” of the /EEE Transactions on
Geoscience and Remote Sensing, published in August,
2001. Large airborne experiments, called the Southern
Great Plains Hydrology Experiments, were conducted in
the US in 1997 (SGP97) and 1999 (SGP99) to address
significant gaps in the knowledge, and to validate retrieval
algorithms designed for the AMSR and the AMSR-E. In
1997, the L-band Electronically Scanned Thinned Array
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Radiometer (ESTAR) was used for daily mapping of soil-
moisture content over an area greater than 10000 km? for a
one-month period. Results showed the consistency of both
theretrieval algorithm and the instrument. Error levels were
on the order of 3% [49, 50]. In the SGP99, the Passive and
Active L- and S-band airborne sensor (PALS) [51, 52] was
used together with the C-band Polarimetric Scanning
Radiometer (PSR/C). The acquired data provided
information on the sensitivities of multi-channel low-
frequency measurements to soil-moisture content for various
vegetation conditions with water contents inthe 0-2.5 kg m?
range. The 1.41 GHz horizontal-polarization channel
showed the greatest sensitivity, with a retrieval accuracy of
2.3%. PSR/C images showed spatial and temporal patterns
consistent with meteorological and soil conditions, and
indicated that the AMSR instrument can provide useful
soil-moisture information.

As a part of the same SGP experiment, an observing-
system simulation experiment (OSSE) was carried out to
assess the impact of land-surface heterogeneity on the
large-scaleretrieval and validation of soil-moisture products,
using the 6.925 GHz channel on the AMSR-E sensor. To do
this, a high-resolution hydrologic model, a land-surface
microwave-emission model (LSMEM), and an explicit
simulation ofthe orbital and scanning characteristics for the
AMSR-E were used. Results within the 575000 km? Red-
Arkansas River basin showed that for surfaces with
vegetation water contentbelow 0.75 kg/m?, two scale effects
induced rms errors of 1.7% into daily 60 km AMSR-E soil
moisture products, and rms differences of 3.0% into 60 km
comparisons of AMSR-E soil-moisture products and in-
situ field-scale measurements sampled on a fixed 25 km
grid [53].

In the same area of SGP99, SSM/I and TMI satellite
data were acquired over a two-week period under excellent
meteorological conditions [10]. The analysis of the resulting
maps showed that consistent satellite-based SMC retrieval
is possible, and that data provided by the 6.9 GHz AMSR
channel should offer significant improvements.

The problem of the effective temperature of the
emitting surface at 6.6 GHz was investigated in [54], in
which the magnitude of the long-term mean difference
between actual and effective temperature was estimated by
using data from the Scanning Microwave Multi-channel
Radiometer (SMMR).

Various approaches have been considered for
retrieving SMC from multi-frequency radiometric data,
and, in particular, from the AMSR-E measurements [55].
These approaches differ primarily in the methods used to
correct for the effects of soil texture, roughness, vegetation,
and surface temperature. A common assumption is that
over most land areas at the AMSR-E footprint scale, the
effects of variability in soil texture and roughness on the
observed brightness temperature are small compared with
the effect of variability in soil—moisture content. This has
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been demonstrated in a number of model sensitivity studies
[e.g., 56]. These parameters may therefore be approximated
as non-variable. The vegetation-opacity coefficient can
also be approximated as non-time-varying. However, it
exhibits some dependence on crop type at the field scale,
and the assumption of spatial uniformity must be considered
a potential source of error. Soil-moisture-content retrieval
approaches that have been investigated in previous studies
include:

* Single-channel retrieval with sequential corrections
using ancillary data [57, 58];

 Iterative forward model corrections using multi-channel
brightness temperatures [56];

» Correction using multi-frequency polarization indices
[59];

* Variations or combinations of the above methods [60,
61].

Other methods, based on Bayesian iterative inversion of a
forward model [62] or neural networks [63, 64], have also
been investigated.

The algorithm implemented for AMSR-E [56] was
based on aradiative-transfer (RT) model; itused an iterative,
least-squares algorithm, based on six radiometric channels.
The primary rationale for this choice was that of minimizing
the dependence on external ancillary data. The retrieval
model assumes that temperature and moisture are uniform
over the sensing depths ofthe frequencies used, and that the
frequency dependence of the vegetation attenuation factor
can be adequately characterized. The first factor is aided by
usingnighttime (1:30 a.m., descending-pass) measurements
when the temperature and moisture profiles are reasonably
uniform. Analysis of SMMR data taken over deserts and
forests was used to obtain pre-launch estimates for AMSR-
E.

Another algorithm, developed within the framework
of the AMSR project, has been proposed in [59]. This
algorithm is based on the sensitivity to moisture of both the
brightness temperature, 7b, and the polarization index, P/,
at C band, and uses the polarization index at X band to
correct for the effect of vegetation by means of a semi-
empirical model. Comparing the values of SMC retrieved
from airborne measurements with those measured on the
ground, the authors found a correlation coefficient of 0.78
with the standard error of estimate SE = 4.31. Thealgorithm
was further validated by using data from the SMMR and the
SSM/I. Another approach, based on polarization difference,
which used a radiative-transfer model to solve for soil-
moisture content and vegetation optical depth
simultaneously, was tested with SMMR observations over
several test sites in Illinois. Results compared well with
field observations of soil-moisture content and vegetation-
index data from satellite optical sensors [60].

Due to the coarse ground resolution of space-borne
microwave measurements, the resolution cell may include
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a non-homogeneous surface. The effects of within-pixel
variability were exploited by several authors, who found
that errors in the retrieved soil-moisture content were
generally negligible for a heterogeneous bare soil, and less
than 3% of the actual soil moisture for a pixel that was
heterogeneous in vegetation and soil moisture [65-71].

Thethickness of the soil layer through which moisture
can be directly estimated by means of a microwave
radiometer has been investigated by many experimental
studies. Most researchers have come to the conclusion that
at L band this layer is about 5-10 cm. This result matches
well with the requirements of those processes such as
infiltration and evapotranspiration that take place within
this first layer of the soil medium. In other applications,
where soil-moisture profiles down to several decimeters are
necessary, microwave must be coupled to appropriate
hydrological models. The effectiveness ofthe Kalman filter
for retrieving such a quantity was demonstrated in [72] by
using field observations and a simulation study. The
usefulness of assimilating remotely sensed measurements
into land-surface models was discussed in [73-75]. Burke et
al. [70] explored the potential for using low-resolution
passive microwave in a two-dimensional Land Data
Assimilation System (LDAS) for estimating deep-soil
moisture from surface-soil moisture. Houser et al. [73]
investigated four-dimensional (4-D) soil-moisture
assimilation using in-situ and remote-sensing observations.
A refined four-dimensional algorithm that accounts for
model errors and fully incorporates process dynamics into
the estimates was developed in [75].

Simultaneously with experimental research,
theoretical investigations were performed to interpret
experimental data and to provide tools for the retrieval of
land parameters. The classical approach to computing the
brightness temperature of soils is the radiative-transfer
theory, which can treat multiple scattering in a medium
consisting of random discrete scatterers. However, the
theory assumes independent scattering, and then disregards
coherenteffects. Ifthe temperature of the medium is constant
and energy conservation holds, the emissivity can be
expressed as one minus the reflectivity, and the problem of
computing the brightness temperature is brought back to the
computation of the bistatic scattering coefficients. Most of
the models developed for soil and vegetation are based on
this method. The problem of computing the brightness
temperature of land surfaces has been extensively treated in
the three volumes of the recent book by Tsang and Kong
and their collaborators [76-78]

An evaluation of classical methods (Physical Optics,
small perturbations, and integral equations) to compute the
emissivity of rough soils from the bistatic scattering
coefficient was performed by comparing model simulations
with experimental data obtained at C and X bands on an
artificial dielectric surface with the same statistical properties
used inthe model [79]. The results showed that on relatively
smooth surfaces (height standard deviation HSID = 0.4 cm),
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all the models fitted the vertical component of emissivity
quite well, and underestimated the horizontal component of
emissivity. On rougher surfaces (HSID = 2.5cm), the [EM
model slightly underestimated the horizontal component
and overestimated the vertical component.

Li et al. [80] have recently proposed a rigorous
solution of the problem of computing emissivity from a
two-dimensional (2D) wet soil with arandom rough surface
by applying a physics-based two-grid method, combined
with a sparse-matrix canonical-grid method. The advantage
of this approach is that unlike analytic approximations,
such as the Kirchhoff method and the Small Perturbation
Method, this method solves the three-dimensional
Maxwell’s equations numerically. The use of the fast
numerical method presented in the paper shows that
numerical simulations of emissivities can be calculated
with modest CPU resources. Thus, the results of extensive
numerical simulations can be directly applied to passive
microwave remote sensing of soil moisture.

2.2.2 Active Systems

This possibility of monitoring soil-moisture changes
using SAR data has stimulated a large number of studies
focused on establishing a relationship between the observed
SAR response and surface soil-moisture content. For a
homogeneous soil with a perfectly smooth surface, the
scattering of electromagnetic waves is totally forward, and
depends on permittivity of the medium. For arough surface,
radiation is scattered in various directions, and also generates
backscattering. Thus, two basic properties determine the
backscatter response observed by the SAR system: the
permittivity of the medium and the roughness characteristics
of the surface. Both parameters are, in turn, related to
different geophysical parameters of the soil. With the
adventofthe polarimetric SAR, radar remote sensing of soil
moisture has attained significant prominence in the past two
decades. Initially, extensive experimental studies using
polarimetric scatterometers were carried to establish a
relationship between radar response and the surface
roughness and soil moisture [81]. Extensive field
experiments have also been conducted to examine retrieval
algorithms ranging from simple analytical to regression/
empirical models [82-84]. For example, the already
mentioned SGP97 was conducted using a variety of active
and passive remote-sensing tools on different platforms
(truck, aircraft, and satellite) [85, 86].

Careful experiments under laboratory conditions or
large field experiments all indicate that in order to retrieve
soil-moisture content, more than a single backscatter
observation is needed to separate the effects of surface-
roughness parameters from the moisture content. Often
times, only the surface rms height — and, in some cases, the
surface correlation length — are sought for the surface-
roughness parameters. In reality, the surface power spectral
density is the quantity that affects the radar response;
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however, retrieving surface parameters other than the rms
height and correlation coefficient seems to be beyond the
realm of possibility for radar remote-sensing tools. This
implies that the experimental regressions between
backscattering coefficient and soil-moisture content
presented in the literature are both time and site dependent,
and, thus, difficult to generalize.

SIR-C/X-SAR data pointed out that in the scale of
surface roughness typical of agricultural areas, a co-polar
L-band sensor provided the highest information content for
estimating soil-moisture content and surface roughness.
The sensitivity to soil-moisture content and surface
roughness for individual fields was rather low, since both
parameters affected the radar signal. However, in considering
data averaged over a relatively wide area that included
several fields, the correlation with the temporal variation of
soil-moisture content was significant, since the effects of
spatial roughness variations were smoothed [87]. On the
other hand, the sensitivity to surface roughness was better
manifested at a spatial scale, integrating in time to reduce
the effects of moisture variation [87]. The retrieval of both
soil moisture and surface roughness from multi-frequency
polarimetric data was performed with good results by
means of semi-empirical models [88, 89], or by inverting
the IEM model [90].

The current limits of soil-moisture retrieval from
ERS-SAR data were analyzed in [89] by using synthetic
datasets, as well as a large pan-European database of
ground and ERS-1 and ERS-2 measurements. The results
from this study indicated that no more than two soil-
moisture classes could be reliably distinguished using the
ERS configuration, even for the limited roughness range
considered.

Inhydrological modeling of runoffand water balance,
various input data — such as land use, soil moisture, and
digital elevation terrain models (DEM) —can be acquired or
estimated by the use of remote-sensing techniques. A good
example of ERS SAR data assimilation in an integrated
flood-forecasting model to translate rainfall into runoft was
given in [91]. In the model, digital elevation terrain models
derived from interferometric SAR data are used for a static
description of a watershed, and dynamic model variables
are obtained from the surface soil-moisture distribution
estimated from SAR backscattering data.

Several scientists investigated the retrieval of soil-
moisture content on a large scale by using ERS Wind
Scatterometer data [e.g. 92, 93]. The results illustrated the
applicability of these data for measuring land parameters,
and offered the potential for deriving a physically-based
alternative to empirical indices for estimating regionally-
variable parameters.

As mentioned earlier, apart from surface-roughness

parameters, the existence of short vegetation on the surface
makes the retrieval of soil-moisture content very
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complicated. Vegetation cover and its temporal variations
are believed to be the major stumbling blocks in monitoring
soil-moisture-content variations using microwave. A very
complicated coherent-scattering model, which accounts for
scattering from rough surfaces, vegetation cover, and their
near-field interaction, was demonstrated in [94]. The inverse
of this model was then used to demonstrate its ability for
estimating the physical parameters of a soybean field,
including soil moisture from a polarimetric set of AIRSAR
images.

2.3 Snhow

Snow cover constitutes the largest component of any
of the cryosphere, and plays a significant role in the global
climate and climate response to global changes. It can be
viewed as a sensitive indicator of variations in the climate
system. Remote-sensing instruments have been shown to
be the mostappropriate tools for monitoring snow parameters
over large extended areas. In addition to global-climate
studies, remote sensing of snow packs is of great importance
in forecasting the snow-water runoff. The currently available
snow products are based on single sensors; thus, the temporal
and spatial limitations are given by the sensor characteristics.
For users to be able to utilize remote-sensing data in
operational monitoring and management of snow, the data
must fulfill the temporal and spatial resolution and accuracy
requirements. The availability of data from new satellite
sensors, such as ENVISAT, AQUA, and ADEOSII, should
provide the scientific community with important tools for
developing and bringing into operational use remote-sensing
systems, for both regional and global mapping.

From the electromagnetic point of view, a snow
medium can be considered to be a dense, heterogeneous
medium, composed of anamorphous interconnected matrix
ofice particles, air voids, a thin film of water on ice surfaces,
and pockets of water among ice particles. Existing
theoretical-modeling techniques for the snow medium can
be categorized into two major groups: 1) field-based
techniques (Maxwell’s equations), and 2) techniques based
on the law of conservation of power (radiative transfer).
Field-based techniques are formulated either based on
single scattering or dielectric fluctuations, and then the
distorted Born approximation (DBA) is used to find the
solution [77]. Although obtaining the solution for the
distorted Born approximation is straightforward, some
particular material characteristics, such as the dielectric
correlation function, are exceedingly difficult to obtain.
Measurement techniques for characterizing this correlation
function involve a very arduous process [77]. It has been
shown [95] that the correlation function must be known
with high accuracy, including its tail region, to obtain an
accurate prediction of scattering. At higher frequencies (X
band and up), formulations based on the single-scattering
theory fail because the size of the particles forming a snow
medium becomes a considerable fraction of the wavelength,
and they occupy an appreciable volume fraction (>10%).
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In this case, an appropriate approach is the radiative-
transfer technique. Dense Medium Radiative Transfer
Theory (DMRT), under the quasi-crystalline approximation
with a coherent potential, and Strong Fluctuation Theory
(SFT) are the most rigorous approaches to modeling
microwave emission and scattering from snow packs at
high frequencies [77, 96-98]. These approaches take into
account the coherence of the scattering from random
scatterers, and satisfy the energy-conservation constraint.
An exhaustive description of the two theories can be found
in [76-78]. Recent measurements, performed in the Italian
Alps using multi-frequency passive sensors, demonstrated
the capability of the DMRT to represent experimental data
[99].

An approach to computing the effective permittivity
of wet snow by using strong fluctuation theory was shown
in [100]. In this work, snow was treated as a two-phase
mixture where the water was considered to be inclusions
embedded in dry snow. The shape of the scatterers was
taken into account by using an anisotropic azimuthally
symmetric correlation function. Model results were found
to be in good agreement with experimental data. Although
the DMRT method is quite rigorous, accurate determination
of fundamental quantities of this formulation, such as
extinction matrix and phase matrices, is not straightforward.
Recently, numerical approaches for the determination of
these quantities have been developed [101, 102]. Inaddition
to numerical methods, quantities such as the extinction
matrix can be measured experimentally, as shown in [103].
Apart from the theoretical approaches addressed above,
purely empirical approaches may be considered [104];
these, however, have the obvious limitation that the entire
parameter space of the target cannot be sufficiently well
knownto allow estimation of more-specific target properties.
To circumvent the difficulties associated with the above-
mentioned techniques and to offer some means by which
realistic modeling of dense media might be accomplished,
a new hybrid experimental /theoretical modeling scheme
was introduced in [105]

2.3.1 Passive Systems

The capability of microwave radiometers to monitor
snow parameters and seasonal variations in snow cover has
been the subject of several experimental activities carried
out since the late 1970s, using ground-based, airborne, and
satellite systems [e.g., 106-111]. Measurements carried out
between 3 GHz and 90 GHz pointed out the sensitivity of
microwave emission to snow type and to snow-water
equivalent (SWE). At the lower frequencies of the
microwave band, emission from a layer of dry snow is
mostly influenced by the soil conditions below the snow
pack and by snow layering. However, at the higher
frequencies the role played by volume scattering increases,
and emissivity appears sensitive to snow-water equivalent.
If snow melts, the presence of liquid water in the surface
layer causes a strong increase in emissivity, especially at
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high frequencies [106, 108]. The average spectra of the
brightness temperature show that the brightness temperature,
Tbh, of dry and refrozen snow decreases with frequency,
whereas the 7b of wet snow increases [99, 106].

In general, microwave radiometers tend to
underestimate the snow area compared with estimates from
visible-infrared maps [109]. In addition, the errors in
estimates of snow volume tend to be large, with standard
errors of 20 mm snow-water equivalent or more [110]. For
proper water-resource management and climate modeling,
greater accuracy in a local scale and on a daily basis is
required. Unfortunately, the spatial resolution of the SMMR
and SSM/I instruments tends to limit their effective use to
global-scale studies. Furthermore, currently available SSM/
I data are acquired twice daily only at high latitudes, with a
more restrictive coverage at lower latitudes. The AMSR
and AMSR-E will help to overcome some of these
drawbacks.

In general, high-frequency microwave emission from
dry snow increases as snow depth (SD) increases. However,
Th measured by the SSM/I within the former Soviet Union
during the 1987-1988 winter period showed dramatic
deviations from this pattern. Indeed, in the middle of winter,
Th approached a minimum and then began to increase,
despite the fact that the snow depth remained constant or
continued to grow [111]. Model results suggested that the
increase in 7b was due to a decrease in the single-scattering
albedo as the snow pack aged. This decrease in the albedo
was related to changes in the snow’s crystalline structure,
due to metamorphism. The midwinter minimum of 7b
caused ambiguity in the relationship between snow-water
equivalent and snow depth on 75 at high frequencies, and
substantial nonlinearity of this dependence at intermediate
frequencies. This midwinter minimum of 7b prevents the
use of a simple, regression-type algorithm to derive the
snow depth and snow-water equivalent from 75
measurements.

Several approaches have been proposed for retrieving
snow parameters by means of empirical algorithms, such as
the Spectral Polarization Difference (SPD), linear
regressions, or iterative inversion of forward models [110,
112-114]. The inversion technique based on the HUT snow
microwave emission model, developed in [115] and tested
with SSM/I data, showed snow-water equivalent retrieval
accuracies higher than those obtained with empirical
approaches.

Since microwave radiation is sensitive to both snow
depth and density, estimating snow depth alone requires
that assumptions be made about the snow density. For
average seasonal and global snow-depth estimation, “static”
algorithms, which assume temporally constant grain size
and density, have worked reasonably well [116]. However,
inthe cases ofrapid changes in internal snow pack properties,
estimates have been subject to errors. Dynamic algorithms,
based on DMRT combined with density and grain-radius
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evolution models, have demonstrated their superiority, in
that they tend to underestimate the snow depth less than do
the static algorithms [117, 118].

Other studies were addressed to the combined use of
electromagnetic and hydrological models [119, 120]. A
three-component retrieval algorithm, developed in [120],
included a DMRT model, a physically-based snow
hydrology model (SHM) that incorporated meteorological
and topographical data, and a neural network (NN). The
DMRT model related physical snow parameters to 7b. The
snow hydrology model simulated the mass and heatbalance,
and provided initial guesses for the neural network; the
neural network was used to speed up the inversion of
parameters. Inversion results obtained by applying the
algorithm to measurements at 19 GHzand 37 GHz V and H
polarizations compared favorably with ground-truth
observations.

2.3.2 Active Systems

A great deal of experimental and theoretical work has
been carried out pertaining to the radar response of snow.
Similar to the soil-moisture problem, very careful
experimentation with snow using radar systems over a wide
range of radar attributes and snow conditions have been
carried out initially to examine the feasibility, sensitivity,
and accuracy ofradar snow-parameter retrievals [121-124].
In addition, substantial efforts have been devoted to
characterizing and measuring the very complex dielectric-
constant behavior of snow with varying snow wetness
[125-127].

Snow-parameter retrieval is mainly confounded by
the complexity and dynamics of its structure and dielectric
properties. To elaborate on this, consider a typical target of
snow-covered ground. Target parameters that influence the
radar response and that must be potentially considered
include: 1) rough-surface parameters associated with the
top surface of the snow; 2) the snow volume itself, i.e.,
density and particle-size distribution, and vertical
distributions of these properties within the snow pack; 3)
snow wetness, when present, may well be a very complex
function of time and depth; and, finally, 4) the parameters
ofthe ground beneath, such as dielectric constant, roughness
parameters, and local slope.

Controlled experiments have concluded that
microwave frequencies offer the highest potential for the
retrieval of gross snow properties, such as depth or water
equivalence, parameters that are especially important for
hydrological applications. More specifically,a combination
of L- and Ku-band radars — with the lower-frequency
system measuring the parameters of the underlying ground
surface and the higher-frequency radar monitoring the
snow volume — was found the be an optimal configuration
[122].
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To examine the potential of active systems in mapping
the extent of wet snow, experiments have been carried out
by using both airborne and satellite SAR systems. For
example, significant seasonal changes of Radarsatand ERS
SAR backscatter from snow-covered surfaces in the Austrian
Alps have been observed. These were mainly caused by
variations of the snow liquid-water content and of the
surface roughness [128]. A comparison of snow maps from
SAR and Landsat-5 Thematic Mapper images showed
good agreement in areas of continuous snow cover, whereas
near the snow line, the SAR data slightly underestimated
the snow extent.

Algorithms have been implemented for deriving the
snow-covered areas (SCA) using change detection [128-
130]. These studied showed that contrary to wet snow, the
effect of dry snow in Alpine regions on C-band
backscattering is too small to detect snow cover, and that a
higher frequency would be necessary for snow retrievals
[129]. However, the snow-water equivalent of dry snow
was successfully retrieved on relatively smooth surfaces
from the difference between the signal of the snow-free
surfaces and the signal of the soil below the snow cover,
which depends on the depth of the frozen soil layer. The
latter is, in turn, related to the mass of snow [ 130]. Simulations
obtained on a global scale with a model developed on the
basis of data obtained from the Topex Poseidon Altimeter
showed that Ku band provided more accurate snow-depth
determinations than did C band [131], as predicated earlier
by the controlled experiments.

The analysis of multi-frequency polarimetric SIR-C/
X-SAR data showed that the frequency and polarization
behavior of the radar-backscattering coefficients of a snow
pack are very important for characterizing the physical state
of snow and ice, and for separating the accumulation and
ablation areas on glaciers [132]. The same data pointed out
that the relationship between snow-water equivalent and
backscattering coefficients at C and X band can be either
positive or negative [ 133, 134]. Therefore, development of
a simple empirical relationship between radar and snow
parameters is unrealistic. Instead, snow depth and particle
size were estimated from a physics-based first-order
backscattering model, through the analysis of the importance
of'each scattering term and its sensitivity to snow properties.

Inaddition to the conventional backscattering analysis,
recent work demonstrated the potential ofthe interferometric
SAR techniques (InSAR) for separating bare soil from wet
snow, and wet snow from dry snow. A new approach to
retrieve information on the changes in snow-water equivalent
from the phase difference in InSAR data was introduced in
[135]. In the case of dry snow, the backscattering was from
the snow-ground interface. However, the refraction of a
radar wave in dry snow results in an interferometric phase
difference, which is related to changes in snow depth and
density. InSAR was also found to be a useful tool for
monitoring the motion of glaciers [136, 137]. When this
approach was limited by phase noise, intensity tracking,
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based on patch-intensity cross-correlation optimization,
and coherence tracking, based on patch-coherence
optimization, were successfully employed [138]

The utility of SAR data in estimating snow-cover area
under wet-snow conditions is important for river-flow
prediction, especially in applications such as hydro-power
production and flood prevention.

Global observations with active systems were carried
out by using scatterometric and altimetric data from satellites.
The potential of a space-borne Ku-band scatterometer for
monitoring global snow cover was demonstrated by using
data from the National Aeronautics and Space
Administration (NASA) scatterometer (NSCAT), operated
on the Advanced Earth Observing Satellite (ADEOS) from
September, 1996, to June, 1997 [140]. Sensitivity of Ku-
band backscatter to snow conditions was illustrated with the
dramatic change over the US northern plains and the
Canadian prairie region corresponding to the snow event
leading to the 1997 “Flood of the Century.”

2.4 Forest Stands

A large portion of the Earth’s surface is covered with
vegetation of many different species and canopy
configurations. Vegetation cover on the Earth’s surface is
an important factor in the study of global change. The total
vegetation biomass is the most influential input to models
for terrestrial ecosystems and atmospheric chemistry. The
ability to monitor canopy parameters — such as total
vegetation biomass, total leaf area index, and soil moisture
content — is of vital importance to the study of the carbon
cycle and global warming. Microwave remote-sensing
techniques offer a unique opportunity to probe vegetation
canopies at various depths by operating at different
frequencies.

2.4.1 Passive Systems

Theoretical investigations have shown that passive
microwave remote sensing can contribute significantly to
the global study of soil and vegetation parameters in forests
[141, 142]. However, microwave radiometers on satellites
are hampered by the coarse ground resolution. On the other
hand, airborne sensors provide much better resolution, and
can be useful for detailed analyses of some particular areas
and surveillance of forests subject to fires or other sudden
changes. Moreover, the next-generation sensors (SMOS,
AMSR, AMSR-E) will be able to attain a much more
enhanced resolution. At present, only some experimental
data are available. These data have been collected mostly in
northern Europe on boreal coniferous forests using satellite
[143, 144] and airborne data [145]. Recently, L-band
radiometer measurements of coniferous forests were
performed by flying the ESTAR radiometer over loblolly
pine stands in eastern Virginia. The images of the area
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showed a strong correlation between forest biomass and the
measured brightness temperature, 75 [146].

Airborne radiometric measurements in a frequency
range from L to Ka band were carried out over six broad-
leaved forests and one coniferous forest in Italy [147].
Ground-truth data of the major tree parameters were avail-
able for the same tree stands. The analysis of the collected
data indicated that the use of microwave emission at the
highest frequencies made it possible to identify some forest
types, whereas L-band emission was more closely related to
tree biomass. Other relationships were found between emis-
sion and leaf-area index, basal area, woody volume, and
crown transparency. The significant relationship between
L-band emission and woody volume was further analyzed
by means of a discrete-element radiative-transfer model.
The analysis showed that the main contribution to the total
emission was due to the elements in tree crowns and, in
particular, to primary and medium branches, while double
reflection from soil was negligible. Simulations performed
at L band by using a model validated with experimental data
at C band confirmed these results, and pointed out an
appreciable sensitivity to soil moisture, even under devel-
oped forests [148].

2.4.2 Active Systems

The use of polarimetric, interferometric, and
polarimetric-interferometric SARs to survey forested areas
has become increasingly important in recent years [149-
153]. Experimental studies conducted since the early 1990s
with space-borne and airborne SAR systems led to the
conclusion that the radar-backscatter results from scattering
and/or attenuation of leaves, branches, and trunks, leading
to an indirect relationship between the radar measurements
and the biomass parameters. The greater temporal stability
of forest compared with many other types of land cover
presented a means of mapping forest areas using multi-
temporal data [154, 155]. However, the comparison of
results obtained over different forest sites is difficult, due to
differences in stand characteristics, validation procedures,
parameters used as evaluation criteria, selection of stands,
etc. Stand size seems to explain most of the variability ofthe
results, and although an attempt has been made to suggest
procedures to convert results from one stand size to another,
there still are open issues to be addressed [156].

It has been shown that the radar measurements are no
longer sensitive to biomass variation after a certain amount
of biomass value, which depends on the electromagnetic
frequency. This limit was estimated to be about 30-50 tons/
ha at C and L band (5 GHz and 1.2 GHz), and about 150-
200 tons/ha at P band (0.4 GHz), for both evergreen and
coniferous forests [151, 157-159]. In general, the use of P-
band channels can provide better estimates of stem biomass,
while L-band channels can estimate the crown biomass
more accurately [29, 153]. However, the most appropriate
approach for estimating forest biomass is the use of lower-
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frequency systems, such as the VHF (20-90 MHz) airborne
imagingradar CARABAS. Using this radar, signal saturation
was not observed up to 900 m?® ha. However, the sensitivity
to the volume was high in the range of 0-500 m® ha (e.g.,
1dB to 1.5dB for 50 m® ha), whereas it was reduced
beyond 500 m® ha [160]. The accuracy of the estimated
stem volume retrieved using these data and a new textural
method based on the variations of the standard deviation of
the backscattering coefficient was comparable to that of the
ground truth [161]. The other forest parameters could not be
estimated with such good accuracy, but this was partly due
to using the dominant values instead of averages. Also, it
was found that in the case of storms, the backscattering for
a given stem volume was considerably higher for wind-
thrown forests than for unaffected forests. This indicates
that VHF SAR imagery has potential for mapping wind-
thrown forests [162].

A key component in the study of microwave remote
sensing of vegetation is the understanding of the spectral
behavior of the dielectric constant of vegetation. Through
careful experimentation and examination of the dielectric
properties of water, bound water, and dry vegetation, an
approximate empirical formulation for the dielectric constant
of vegetation as a function of moisture content and
temperature was reported in [163]. The validity of this
model was examined by independent measurement
techniques, and its accuracy was found to be with 10% of
the measured quantities [164]. Extensive measurements of
complex permittivity for various parts of a conifer were
reported in [165].

In the early forest-scattering models, the forest
structure was simplified in terms of ahomogeneous random
medium, and the single-scattering theory was applied to
account for scattering and propagation in the random medium
[166-168]. Forexample,in[166]and [167], vector radiative
transfer was used to calculate the bistatic scattering from a
forest stand, represented by a two-layer random medium. In
amedium where particle size —such as tree trunks and large
branches — is comparable to the extent of the medium, a
radiative transfer model may not produce satisfactory results.
Furthermore, an important feature of a high-fidelity
scattering model is to preserve the structure of vegetation,
as different species of vegetation have their own unique
structures, and this has been shown to have considerable
effectat P and L band. An important effect of the vegetation
structure is the coherence effect, caused by the relative
position of the vegetation particles, which produce certain
interference patterns. To preserve the coherence effects and
the nonuniform attenuation and scattering profile, a Monte
Carlo coherent-scattering model for forest canopies was
also presented in [169]. In this model, realistic-looking tree
structures were constructed using a stochastic fractal
algorithm, and the distorted Born approximation was used
for scattered-field calculations. Common in all forest
scattering and emission models are scattering formulations
for broad leaves, needles, twigs, branches, and tree trunks
[170 -175].
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Recent advancements in the field of radar
interferometry have opened a new door to the radar remote
sensing of vegetation. In addition to the backscattering
coefficient, radar interferometers measure two additional
quantities that contain target information [176]. These
quantities are the correlation coefficient and the
interferogram phase. The premise of this investigation with
regard to retrieving vegetation parameters from INSAR
data stems from the fact that the location of the scattering
phase center of a target is a strong function of the target’s
structure. For example, the scattering phase centers of non-
vegetated terrain are located at or slightly below the surface,
whereas for vegetated terrain, these scattering phase centers
lie at or above the surface, depending upon the wavelength
of the SAR and the attributes of the vegetation. In recent
years, some experimental and theoretical studies have been
carried outto demonstrate the potential of InNSAR inretrieving
forest parameters. For example in [177-180], experimental
data using ERS-1 SAR repeat-pass and DO-SAR single-
pass were employed to show the applications of SAR
interferometry for classification of forest types and retrieval
of'tree heights. The accuracy achieved in separating forest/
non-forest areas by using a single pair of repeat-pass SAR
interferometry was on the order of 80%-85%. Similar or
slightly better classification accuracies were reported with
multi-temporal backscattering coefficients using C-band
ERS data [154].

Simplified theoretical models have also been
developed to establish relationships between the
interferogram phase and coefficient of correlation with the
physical parameters of vegetation and the underlying soil
surface[181, 182]. A far more accurate model for estimation
of scatter phase-center location, based on the Monte Carlo
simulation of fractal trees, was developed later [183]. This
model accounted for the exact structure, shape, size, number
density, and orientation distributions of vegetation in desired
forest stands, and its accuracy was tested against JPL
TOPSAR [184] data.

Whereas radar polarimetry provides an enhanced
capability in recovering target-structure anisotropy
(preferred orientation), and SAR interferometry reveals the
target’s penetrability and vertical extent, a polarization-
agile interferometric SAR has this combined capability,
and can provide the target-structure parameters far more
conveniently than can the individual sensors. Polarimetric
target decomposition techniques have also been suggested
and successfully demonstrated using polarimetric/
interferometric SARs [185, 186]. More sophisticated
techniques, using interferometric SARs — such as multi-
baseline INSAR — have also been tried, and showed
significant potential for retrieving vegetation parameters
[187, 188].

The retrieval of target parameters in an imaged scene
is possible through the use of multi-frequency observations,
polarization diversity of imaging polarimetry, estimation of
the scattering phase-center height, and textural information.
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The study of the inversion problems has been of great
importance from the onset of remote-sensing science [189,
190]. To make the inverse-scattering problem tractable,
overly simplistic forward models were initially used [191].
With the availability of significant SAR and accurate ground-
truth data, statistical and regression inversion methods have
been investigated [192]. Like most empirical models, the
success of these techniques is somewhat limited to the range
of system and measured target-parameter space. Other
systematic inversion algorithms, such as neural-network
approaches [193] and genetic algorithms [ 194], using more
sophisticated forward models, have been developed.

2.5 Short Vegetation Crops

As mentioned in the previous section, vegetation
biomass plays a very important role in the Earth’s climate
dynamics and the atmosphere’s carbon cycle. However,
another vegetation class that must not be overlooked is the
category ofherbaceous vegetation, both natural and cultural.
At approximately 30 million square kilometers, this
vegetation type covers 20% of the Earth’s dry surface,
accounting for more than 30 billion metric tons of total
biomass. An understanding on a global scale of the
biophysical parameters that describe this vegetation is thus
highly desirable.

Although the sensitivity of microwave emission to
crop type and biomass has been demonstrated in several
investigations, the ground resolution of passive systems is
inadequate for operational systems, and recent research has
mostly been addressed to the study of SAR data.

The large amount of SAR data collected at different
times made it possible to evaluate the potential of multi-
temporal analysis in timing critical phases of the crop-
growth cycle, and in separating broad-leaf crops from
cereals (small leaf) [29, 195, 196]. The radar response of
these two types of crops to biomass showed that for crops
characterized by small-plant constituents, such as wheat
(narrow-leafcrops), 0° decreased asthe biomass increased,
whereas the trend was quite the opposite in plants with
bigger leaves and stems, such as sunflowers (broad-leaf
crops) [197]. Model simulations confirmed the trends of the
experimental data, and made it possible to evaluate the
contribution of single-plant constituents to total
backscattering. In “broad-leaf” crops, o° from stalks
dominated at L band, while at C band, leaves made a
significant contribution to scattering and attenuated the
contribution of stems. In “narrow-leaf” crops, the
contributions of leaves and stalks were comparable and
closetototal backscattering. The analysis of the contributions
of each scattering mechanism showed that in general,
double scattering was the most important contribution for
stalks, direct scattering prevailed for leaves, and soil
contribution was appreciable even for well-developed crops
[198].
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On the other hand multi-frequency observations
pointed out that for remote sensing of crops, low microwave
frequencies (<5GHz) are recommended, and therefore
one must carefully account for the coherence effects. The
model developed in [199] may be among the first to address
the coherence effects caused by the vegetation structure. A
very careful coherent model for grass-type vegetation, such
as a wheat field, and measurements over the entire growing
season are reported in [200-202]. Simulations performed
with a coherent model confirmed the experimental relations
found between backscattering and the biomass of broad-
and narrow-leaf crops, and demonstrated the contribution
of the InSAR observation in crop discrimination [203].

A model based on the Method of Moments and
Monte Carlo simulation for similar crops showed the
importance of near-field scattering and coherence to the
target radar response [204]. In [205], an analytical
polarimetric coherent scattering model for short branching
vegetation — such as a soybean crop — was developed that
accounted for the second-order near-field interaction among
particles, as well as the underlying rough surface and
particles. In this paper, retrieval of soil moisture and
vegetation parameters was demonstrated, using data obtained
from JPL AIRSAR.

A number of studies have been carried out aimed at
using remote-sensing data to improve the accuracy of crop-
functioning models in predicting the yield and the evolution
of canopy variables through the crop cycle. Two main
approaches have been used and reported in [206]. In the first
approach, some crop variables were retrieved by inverting
the radiative-transfer models, and used to force or to
recalibrate some well-identified parameters of the crop-
functioning model. In the second approach, a crop model
was coupled with a radiative transfer model to simulate the
whole process from canopy functioning to remote-sensing
data, by fitting simulated results to observed results. The
assimilation of optical and radar data in a coupled crop-
plus-radiative-transfer model was tested by [207], using
data acquired over wheat fields. The study showed that
assimilating optical and radar data into a crop model is
feasible. However, in this case, the introduction of radar
data did not improve the accuracy of the results.

3. Final Remarks

In this article, we tried to provide the reader with a
comprehensive overview of the recent techniques and
approaches in microwave remote sensing of land. Both
analytical and experimental remote-sensing methods for
active and passive systems were surveyed. It is important to
mention here that the wealth of knowledge in this area is
overwhelming, and it quickly became obvious to us that we
could not possibly include all the significant contributions
reported in the literature in the limited space of this article.
This fact also indicates the great progress made in the
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science and technology of microwave remote sensing over
the past decade, such as that related to the operational
applications of SAR interferometry. Despite this significant
progress, there are still considerable challenging problems
for which the existing remote-sensing tools and
methodologies do not provide solutions with desirable
accuracies, as requested by the users. It is on these problems
— such as land classification and the measurement of land
hydrological parameters on a routine basis — that further
research need to be focused. It is believed that further
investments in advanced space-based remote-sensing
instrumentations, with new functionalities and modalities —
such as low-frequency active and passive systems aboard
satellites with short revisit time — will provide the scientific
community with sufficiently large, precise, and frequent
databases to allow for accurate and consistent retrieval of
target parameters.
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