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Numerical Scattering Analysis for
Two-Dimensional Dense Random Media:
Characterization of Effective Permittivity

Kamal Sarabandi,Senior Member, IEEE, and Paul R. Siqueira

Abstract—In this paper, a new numerical method for de-
termining effective permittivity of dense random media in two
dimensions is presented. The core of the method is to compare
the average scattered field of a random collection of scatter-
ers confined within an imaginary boundary with the scattered
field from a homogeneous dielectric of the same shape as the
imaginary boundary. The two-dimensional (2-D) problem is ag-
gressively studied here to provide insight into the dependence
of the method’s convergence on particle size, boundary shape,
and boundary dimension. A novel inverse scattering method
is introduced based on the method of moments (MoM), which
greatly reduces the computation time and increases the flexibility
of the procedure to analyze a variety of geometries. Results
from this 2-D method may be used directly to compare with
theoretical methods for determining effective permittivity such as
the Polder–Van Santen mixing formula or field techniques such
as the quasi-crystalline approximation.

Index Terms—Electromagnetic scattering, random media.

I. INTRODUCTION

A fundamental electromagnetic characteristic of a radar
target is its permittivity or, equivalently, its propagation

constant for a nonmagnetic material. Most natural targets
at certain scales can be considered to be inhomogeneous,
consisting of discrete components (or inhomogeneities) that
are separate from a uniform background material. A uniform
layer of snow for instance at low frequencies may appear
to be a homogeneous medium, variations of interest being
differences in snow depth or changes in the snow wetness on a
scale similar to the observing wavelength. As the wavelength
decreases there will come a point where it is necessary
to consider the interaction of electromagnetic fields with
individual crystals of ice that make up the snow layer. In such
a case, the background medium may be considered the host
and the ice crystals the inclusions. In both of these cases, it is
of interest to theoretically predict the effective permittivity of
the random medium. At low frequencies this is accomplished
through the use of a mixing formula that directly models the
interaction of electromagnetic fields with individual scattering
particles through the polarizability tensor of isolated particles.

The most commonly used mixing formula is given by
Polder and Van Santen [4]. The Polder–Van Santen mixing
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formula relates the combined, effective dielectric constant
of a collection of particles, to that of its constituents. The
Polder–Van Santen model, as with many mixing formulas,
relies on the observing wavelength to be much larger than the
scale of the inhomogeneities within the material under study.

Approaches where the field interaction with the individual
discontinuities are taken into account are termed field models,
popular forms of which are Foldy’s approximation, strong
fluctuation theory, the quasi-crystalline approximation (QCA)
and the quasi-crystalline approximation with coherent potential
(QCA-CP) [1], [13]. With the exception of Foldy’s approxi-
mation, these theories include additional interaction terms that
occur because of multiple scattering between individual parti-
cles. These theories are thereby considered to be more accurate
than mixing formulas when scattering from individual particles
becomes a factor. Theoretical field approaches, however, must
truncate this interaction at some given order to make the theory
tractable—a truncation through which an approximation is
introduced. The validity of this approximation for different
situations is often difficult to assess, particularly when the
variety of situations that need to be considered is large.

Validation of the mixing formula and field models is com-
monly accomplished through a comparison with physical
experiment. Several drawbacks of experimental methods are
that it is difficult to reduce natural variabilities in the sample
under study and often it is not possible to gather sufficient
and accurate ground truth to fully characterize the experi-
ment. One such example is with the implementation of the
quasi-crystalline approximation where knowledge of the pair-
distribution function of particle positions is required. The
pair-distribution function of particle positions is a parameter
that is nearly impossible to measure for a naturally occur-
ring random medium. These variabilities can be reduced by
performing a controlled experiment in the lab, as in one
notable experiment performed by Mandt [3] where individual
glass spheres were placed at computer generated positions in
Styrofoam. While experiments such as the one described here
are an important component in analyzing the validity of field
models or mixing formulas, errors still may be introduced due
to insufficient sample sizes or possible systematic errors made
in the measurement. Furthermore, it is difficult to provide a
broad and sufficient experimental data space to fully evaluate
a theoretical method. It is, of course, also useful to analyze
similar problems through alternate approaches so as to provide
a measure of validity to those measurements.
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An alternative to the physical measurement process is to
perform Monte Carlo numerical simulations where, through
the use of computers, physical variations can be eliminated.
Such a numerical method requires the use of a packing
algorithm to simulate particle arrangements in a medium and
an electromagnetics code such as the method of moments
(MoM) (or the -matrix method) to solve for the fields
within the medium under study. These methods are capable
of accounting for all multiple scattering terms within the
medium and, therefore, can be considered an exact solution
for the problem. One such method uses a truncated-matrix
approach to estimate the extinction from a collection of up to
4000 spheres confined in a cubic volume [2], [14]. Extinction
for the nonabsorptive scatterers is calculated by integrating
the incoherent power scattered by the cubic volume over
all observation angles (i.e., the amount of coherent power
attenuated due to scattering). In effect, this method calculates
the imaginary component of the effective permittivity due to
multiple scattering. Difficulties with this method may arise,
however, due to the fact that the volume is isolated in free
space, thereby enhancing the contrast of the scattering volume
being analyzed from its surroundings; ideally, the volume
under study would be immersed in a homogeneous medium
with a permittivity equal to that of the effective permittivity
of the volume. Furthermore, because of this contrast problem
it is likely that the calculated extinction would be dependent
on the shape and size of the boundary walls, an effect not
thoroughly explored in the paper.

In this light, we present a new method of determining
the complex effective permittivity for two-dimensional (2-
D) dense random media. The core idea of the method is to
confine a random distribution of particles within an imaginary
boundary from which the coherent field may be determined
over many realizations. Using a homogeneous material whose
dimensions are the same as the imaginary boundary used for
the random distribution of particles, we adjust the permittivity
of the material so that the homogeneous medium coherent field
is identical to the random medium coherent field. Thus, rather
than ignoring the effect of the boundary shape and size, it is
directly taken into account.

The 2-D problem is rigorously implemented here to provide
insight and guidance for future work in analyzing the more
general problem in three dimensions. This is accomplished by
exploring the convergence effect as it depends on boundary
shape and size and particle size. The 2-D problem does have
direct application in modeling field interaction with fibrous
material such as muscle tissue or dense prairie grasses. Results
from this study can also provide a very important contribution
to the study of dense media; that is, an “exact” solution for
the effective permittivity that may be used as a benchmark for
testing theoretical formulations such as the Polder–Van Santen
mixing formula (this paper) and the QCA [10].

II. REVIEW OF THE INCOHERENT METHOD

The coherent method for determining in this article can
be contrasted against the incoherent method for determining
the extinction coefficient— —given in [2] and [14]. The

Fig. 1. Illustration of a volume current due to dielectric fluctuation in a
random medium. Shown are some spherical components of the random
medium.

purpose of this section is to make the distinction between the
two methods clear, and to emphasize potential difficulties in
the application of the incoherent method.

To begin, both methods examine the scattered field from a
random collection of scatterers situated in free space (Fig. 1).
For a given incident field, numerical calculations may be
used to determine the scattered field, which is composed of a
coherent and incoherent component (the coherent component
does not vary between each realization)

(1)

By performing many realizations of the random ar-
rangement of scatterers, the coherent field may be found by
averaging the scattered field

(2)

The incoherent field for each realization may be found by
solving (1). The coherent field is related to the size and
shape of the confining boundary and arises from the random
collection of scatterers behaving in part as a coherent structure
with permittivity defined as . The incoherent field arises
from dielectric fluctuations between the inclusions and the
background and it is this field which provides the basis for
the incoherent technique.

Following the incoherent technique, the extinction coef-
ficient is found by summing the power scattered into the
incoherent field. This is accomplished via the integration

(3)

where the factor normalizes the scattered power with respect
to the distance from the origin. The extinction coefficient is
determined by , where is the area containing the
random medium. Thus, the extinction coefficient is directly
related to the incoherent field scattered from the random
medium. Because the source and the observer are located
outside of the random medium a potential problem with the
incoherent technique arises; that is, the dielectric contrast
between the random medium sample and that of free space
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has the potential of altering the behavior of fields from
the way they would appear if the source and observer had
existed in a medium whose permittivity was . Because
the incoherent field is excited by the coherent field, the
existence of a dielectric boundary on the incoherent fields
would fundamentally alter the problem. The coherent method
presented in this chapter circumvents this difficulty by directly
taking into account the effective boundary of the random
medium sample. To highlight this issue, a theoretical approach
can be taken.

Fluctuations in the scattered field between different particle
arrangement realizations are attributed to spatial variations
between the permittivity of the inclusions/spaces
and that of the background . These fluctuations act as
a volumetric current distribution that can be concisely
described by the wave equation as

(4)

where is the electric field within the boundary containing
the random medium. Here we may pose two questions: 1)
what is the contribution of a volume current to the coherent
field and 2) what is the contribution of a volume current
to the incoherent field? The answer to the first question is
straightforward. By definition, the dielectric fluctuations do
not contribute to the coherent field. We address the second
question by relating the scattered field to the current fluctuation
via the dyadic Green’s function,

(5)

Here, is the dyadic Green’s function in the presence of a
homogeneous dielectric scatterer with the prescribed boundary.

From the above discussion, it can be seen that the scattered
field is a function of both the effective permittivity and the
shape of the boundary. In contrast, the incoherent method uses
the free-space Green’s function and does not take into account
these factors (a sparse medium assumption). This assumption
runs counter to the method’s original premise that the random
collection of scatterers behave in part as a coherent structure
with permittivity .

To demonstrate that the conservation of energy approach
that the incoherent method relies upon is not appropriate
for inclusions that demonstrate absorption losses, we refer
to Fig. 2. This figure illustrates the normalized extinction
coefficient, calculated by the coherent method (—),
the incoherent method (– – –), and the Polder–VanSanten
mixing formula as a function of volume fraction for
two different particle permittivities— and

. It is expected that the Polder–VanSanten
mixing formula provides the lower limit for the extinction
coefficient because it only accounts for losses due to absorption
(inclusion diameter in this example is ).

For the lossy case (indicated by’s) the extinction coeffi-
cient calculated by the incoherent method becomes unphysi-
cally smaller than the extinction coefficient predicted by the
mixing formula, and is even less than the extinction coefficient
predicted by the incoherent method for the low-loss inclusions
shown by ’s. This clearly indicates that the incoherent method

Fig. 2. Normalized extinction coefficient comparison between the coherent
method (—), the incoherent method (– – –), and the Polder–Van Santen
mixing formula (� � �) for two different inclusion permittivities: low-loss
�i = 3:6 + i0:01(�) and lossy�i = 3:6 + i0:1(�).

is incapable of predicting the absorption loss in evaluating the
extinction coefficient. It is interesting to note that by adding the
absorption loss calculated by the Polder–Van Santen formula
to the extinction calculated by the incoherent method, the
result calculated by the coherent method can be reproduced
approximately. However, this is not the case for the low-
loss example in Fig. 2. In this case, the mean-field trapped
within the boundary bounces many times which gives rise to
an overestimation of extinction.

On a final, less critical note, it should be remembered that
the extinction coefficient is related to the imaginary component
of effective permittivity via the equation

(6)

Calculation of from requires a knowledge of
, a quantity not provided by the incoherent method.

The real part of effective permittivity is dependent on multiple
scattering between particles as a measure of the mean-free
path (i.e., the phase delay) and is an important parameter in a
number of remote-sensing problems.

The coherent method described in this paper circumvents the
problems discussed above by taking the effect of the boundary
into account. In doing so, we are able to directly calculate both
the real and imaginary components of effective permittivity.
The validity of the coherent technique is emphasized in later
sections where we show that the average field does, in fact,
represent a coherent field scattered from a homogeneous body
with permittivity .

III. FORMULATION OF THE COHERENT METHOD

In this section, the numerical procedure for characterizing
the effective permittivity of a random medium containing
discrete scatterers is outlined. The procedure for determining
the effective permittivity is a four step process. The first
step is to generate a collection of particles with a specified
volume fraction and particle arrangement contained within
an imaginary boundary. Second, given an incident field, the
MoM [5], [6] is then used to solve for the scattered field.
Third, scattered fields for each realization of the collection of



SARABANDI AND SIQUEIRA: NUMERICAL SCATTERING ANALYSIS FOR 2-D DENSE RANDOM MEDIA 861

Fig. 3. Model for determining the effective permittivity for a random col-
lection of scatterers.

particles are averaged over all observation angles to determine
the coherent scattered field which is related to the shape
and size of the imaginary boundary, as well as the effective
permittivity. Finally, the effective permittivity of the medium
is then found by finding the best fit between the coherent
field from the Monte Carlo simulations and the field scattered
from a homogeneous medium with permittivity— having
the same boundary as the imaginary boundary. This step is
an inverse scattering problem for which a novel technique
based on the eigen-analysis in conjunction with the MoM is
developed.

The packing algorithm used here [9] simulates the arrange-
ments of particles with arbitrary shape, size, and orientation
for “natural” dense media. From this arrangement of particles,
a MoM solution for the scattered fields is obtained and the
process is repeated many times to generate the statistics of the
scattered field. This Monte Carlo simulation determines the
average (coherent) scattered field as a function of observation
angle for a random dense medium . At this
stage it is possible to retrieve the incoherent scattered power,
which can be used directly to provide insight into the phase
function used by radiative transfer. By taking the coherent
scattered field one step farther, it is possible to determine the
effective propagation constant, which can, in turn, be used
to compare with QCA or even to create an empirical mixing
formula for the simulated media.

To characterize the propagation constant of the mean field,
we search for the dielectric constant of a uniform, homo-
geneous dielectric whose shape and size are the same as
that used to bind the collection of random scatterers and
which exhibits the same scattering pattern. It has been found
that a unique effective permittivity does exist such that the
scattering patterns from both the homogeneous and random
media are very closely matched and, thus, the basic concept
of the approach is validated. In the first case, a rectangular
dielectric slab is used (Fig. 3). The MoM is used to determine
the scattered field from this uniform dielectric as a function
of observation angle and dielectric constant . A
minimization technique can then be used to find the best fit
permittivity for the observed scattered field of the uniform slab
to the average field from the random scatterers

(7)

To find the minimum of (7) by iteration requires calculation
of the volume currents and the scattered field for each new
trial. While performing these calculations for each trial entails
a straightforward electromagnetic numerical solution, since
the dimensions of the boundary may be electrically large (as

required by convergence criteria), the procedure can become
very time consuming. However, a novel inversion solution
is introduced in which using the MoM, the problem may
be solved essentially only once—additional trials entailing a
simple matrix multiplication.

IV. DIELECTRIC INVERSION MOM:
EIGEN-ANALYSIS PROCEDURE

The procedure of determining the scattered field from a
dielectric body with inhomogeneous dielectric profile is a
simple extension of the MoM. In this procedure, the dielectric
dependence of the impedance matrix is explicitly separated
from the equation, where it is highlighted that only the
diagonal elements of the impedance matrix depend on the per-
mittivity. By computing the eigenvectors and eigenvalues of
the impedance matrix, it is possible to perform an inversion of
the matrix prior to the inclusion of the permittivity term. Thus,
calculation of the scattered field requires only a multiplication
of the inverted eigenvector matrix and the dielectric term.

Consider a 2-D dielectric body illuminated by a plane
wave. The incident wave induces a polarization current that
becomes the source of the scattered field. The induced current
is proportional to the total electric field inside the scatterer
and is given by

(8)

where represents the incident wave and is the scattered
field given by

(9)

Here, is the dyadic Green’s function for 2-
D problems and and are, respectively, the free-space
propagation constant and characteristic admittance. Substitu-
tion of (9) in (8) results in the desired integral equation for
the polarization current.

Solution to this integral equation must be obtained numer-
ically. Using the MoM, the integral equation is cast into a
matrix equation of the following form:

(10)

where is the impedance matrix, is the polarization current,
and is the excitation vector. The polarization current can be
obtained by inverting (10) and is given by

(11)

where is an implicit function of . The minimization
algorithm (depending on the initial guess) usually requires the

calculation of many times, a numerical procedure which
makes the inversion algorithm numerically very inefficient for
large scatterers.

In what follows, a procedure for the calculation of the
polarization current is presented that does not require repetitive

evaluation of for different values of . The minimization
routine can be made efficient by noticing that the permittivity
appears only in the diagonal elements of the impedance matrix.
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By splitting the impedance matrix into a diagonal term
and a modified impedance matrix term , we have

(12)

where is the identity matrix and . Note that
the matrix is dependent only on the scatterer geometry
and is not dependent on the permittivity of the scatterer. By
computing the eigenvalues and the eigenvector matrix of
the matrix, it is known that

(13)

Also noting that the identity matrix can be expressed by

(14)

(11) can be written as

(15)

where the dependency of the polarization current on the
permittivity has been made explicit. The calculation of the
eigenvalues and eigenvector matrix is performed only once
for a particular scattering geometry. The determination of the
scattered field as a function of dielectric constant has then
been converted from one of matrix inversion to matrix mul-
tiplication. Convergence of the minimization takes place after
approximately 20 s (15 iterations) on a Sun 10 workstation
for a dielectric slab where is the wavelength in
a dielectric slab with permittivity . Equivalently, this is 300
unknowns for the TM polarization and 600 unknowns for TE
polarization. The speed-up factor encountered is roughly two
orders of magnitude.

V. 2-D MIXING FORMULA

It is important to compare the numerical results from this
analysis to theoretical models. At low frequencies, theories that
relate the effective permittivity of a mixture to the permittivity
of its components are termed mixing formulas, the most
common of which is given by Polder and Van Santen [4].
The derivation given here parallels this work as it is applied
to the 2-D problem.

We begin by examining the interaction of one particle of a
mixture with the surrounding mean field . We wish to find
the effective permittivity , which is related to by

(16)

The electric flux density in the medium may be written as

(17)

where is the area, and are the permittivity of the host
and included materials, and the summation is taken over all
of the particles in the medium. After some manipulation,

we arrive at

(18)

with the volume fraction . If we assume that
the mean-induced field in the particles may be expressed as
the scalar product between a mean-normalized polarizability
tensor and the mean field in the medium, we find
that the summation in (18) may be written as

(19)

This substitution would be correct for a low-frequency tenuous
medium where individual particles do not perturb the field
appreciably. The mean-polarizability tensor in two dimensions
is split into the TM and TE polarization. For the TM po-
larization, this tensor is unity, independent of particle shape
and size. For TE polarization, the polarizability tensor can
easily be obtained for arbitrary particle shapes, as outlined
by Sarabandi and Senior [7]. For a circular cylinder, the
normalized polarizability tensor can be obtained analytically,
and is given by

(20)

For radially symmetric particles or assuming random orienta-
tion, we find the average polarizability as the average of the
diagonal terms of the polarizability tensor. Thus, for the two
polarizations we arrive at the mixing formulas for circular
cylinders as

(21)

(22)

for the TM and TE polarizations, respectively.

VI. RESULTS FOR ASIMPLE BOUNDARY SHAPE

Multiple trials of the presented method have been shown
to provide values of effective permittivity independent of the
boundary shape and independent of the boundary size once
the size has passed some critical limit. This section describes
the analysis of one such shape for varying particle size. The
following section will address more completely the problem
of algorithm convergence and shape independence.

The shape considered in this example is a rectangular
dielectric slab where is the wavelength in a

dielectric slab with permittivity which reflects
the real part of the inclusion permittivities. The size is chosen
in this example so that at a volume fraction of 100%, the
discretization of the homogeneous slab of ten samples per
wavelength will still be valid. The mean particle diameter is
chosen to be one of or , and follows
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a normal distribution with unity mean and 25% standard
deviation . A minimum of 300 realizations were
performed for each volume fraction and the mean-scattered
field determined. From this mean-scattered field, the forward
and backscatter directions were used as sample points in the
minimization algorithm given by (7). Other points might have
been used, but empirical testing showed that this was not
necessary, convergence to a unique solution occurred for all
volume fractions and all particles sizes used for both TM and
TE polarizations of the incident and scattered fields.

Demonstration of the ability of the method to find a true
effective permittivity is given in Figs. 4 and 5 for volume
fractions of 10% and 80%, respectively. It can be seen in
both extreme cases that the bistatic scattered field from the
homogeneous dielectric gives an excellent fit to the entire
average bistatic scattered field from the random medium, even
though only two points in the forward and backscatter direction
are used in determining the effective permittivity. This is
particularly remarkable in Fig. 4 (10% volume fraction) where
the locations of the scatterers for any particular realization is
not reflective of the shape and size of the imaginary boundary.
Furthermore, it has been observed that the solution to (7)
is unique. This observation was made by plotting the error
function in (7) over the space of realistic (i.e.,

and ), whereby it was
noticed that only one local and global minimum existed.

Results from the simulations with varying volume fraction
and particle size can be compiled onto a single plot that details
the dependence of effective permittivity (real and imaginary
components) on these parameters. Comparison can then be
made with the theoretically derived mixing formula of Polder
and Van Santen, given in the previous section. This comparison
is shown in Figs. 6 and 7 for the TM and TE polarizations.

For the TM polarization it is interesting to note the exact
agreement with the mixing formula model for small particle
size for real permittivity. This behavior indicates that the
mean-field approach taken by the mixing formula is indeed
effective for small particles illuminated by an -polarized
field. As particle size increases, we note a deviation from
the mixing-formula model. The imaginary component of the
effective permittivity is especially illuminating as we note
a measured loss term greater than the one predicted by
the mixing formula, a result that indicates that the larger
particles are contributing to the scattering process, a factor
not accounted for in the mixing-formula model.

For the TE polarization we see a significant deviation from
the mixing-formula results. The deviation of the numerical
model, however, is an improvement over the mixing formula
in that it follows the expected trend toward the limiting case of
unity volume fraction. Similar to the case of TM polarization,
the loss term for the -polarized field demonstrates increased
scattering losses due to the larger particle sizes as is expected.

This section has demonstrated how the presented method
can be used to determine the effective permittivity for a
random medium. The behavior of the effective permittivity
was shown to behave in a manner consistent with what would
be expected for changing volume fraction and particle size. An
important question is whether or not the permittivity calculated

(a)

(b)

(c)

Fig. 4. Algorithm results for 10% volume fraction. (a) A sample collection
of particles confined within an imaginary boundary. (b) Average scattered
TM field (solid line) and the scattered field from a homogeneous dielectric
with permittivity �e� (dashed line). (c) Average scattered TE field (solid
line) and the scattered field from a homogeneous dielectric with permittivity
�e� (dashed line). An average number of 34 particles were used for each
realization. The incident field is broadside from the vertical direction.

is dependent on the shape and size of the bounding area used.
The next section addresses this problem and offers answers as
to how small the imaginary boundary may be to still reflect
the large-scale behavior of the material parameters.

VII. CONVERGENCE CONSIDERATIONS

This section seeks to offer evidence for the convergence of
the solution for effective permittivity and to test independence
of the method from the shape of the imaginary boundary used.
To begin this controlled study, small particles of uniform
diameter are used where, as before, is the field
wavelength within the included material whose permittivity
is chosen to be —the background material
being free space.

There are some important differences between the results
shown in this section and those given in the previous section.
In this section, the imaginary part of the scatterer permittivity
is chosen to be ten times smaller than that used in the previous
section to assure that multiple scattering is allowed to take



864 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 5, MAY 1997

(a)

(b)

(c)

Fig. 5. Algorithm results for 80% volume fraction. (a) A sample collection
of particles confined within an imaginary boundary. (b) Average scattered
TM field (solid line) and the scattered field from a homogeneous dielectric
with permittivity �e� (dashed line). (c) Average scattered TE field (solid
line) and the scattered field from a homogeneous dielectric with permittivity
�e� (dashed line). An average number of 278 particles were used for each
realization.

place more significantly. As a consequence however, since
the imaginary component of the effective permittivity is a
factor of approximately 36 times less than the real component,
numerical errors in the estimate of the imaginary component
may be much more evident than those for the real component.
Another difference of concern between this and the previous
section is that scatterers of uniform diameter are used here.
Thus, for high-volume fractions in the range of 50% to the
limit of 91%, the resulting collection of scatterer positions will
be nearly crystalline and, therefore, anisotropic. To avoid this
additional complexity, only volume fractions ranging from 10
to 50% are shown here.

We have already seen the ability of the method to achieve
an excellent fit between the average scattered field from the
random medium and the scattered field of a homogeneous
dielectric. There are two questions that will be addressed in this
section: 1) how large should the scattering boundary be and 2)
how many realizations are required to determine the forward
and backscatter field accurately? As it happens, the answer

Fig. 6. Simulation and mixing formula results for TM polarization. Real
(solid line) and imaginary (dashed line) components of the effective permit-
tivity derived from the Polder–Van Santen mixing formula compared with
effective permittivity obtained by numerical simulation. Symbols indicate
different particle diameters of�i=10—�; 2�i=10—�, and 3�i=10—�.
Inclusion permittivity is�i = 3:6 + i1:0.

Fig. 7. Simulation and mixing formula results for TE polarization.

to these two questions are related; the larger the confining
boundary gets, the larger is the variation of the electric field
in the forward and backscatter directions. Thus, as the bounded
area increases, so does the uncertainty of the calculated field.

To determine the convergence of the method for changing
boundary size we refer to Fig. 8, which displays the real part
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Fig. 8. Solution dependence on boundary dimension for TM and TE polar-
izations. Different lines on the graph represent the average permittivity for a
given volume fraction off = 0:1; 0:2; 0:3; 0:4 or 0:5.

Fig. 9. Forward and backscatter field magnitude distributions. Numerical
simulations (bar graph) follow the Rice–Nakagami distribution (solid line).
This example is for a square box of dimension 1.5�� 1.5 �, 40% volume
fraction TE polarization.

of the effective permittivity for the TM and TE polarizations
as a function of boundary size for differing volume fractions
of particles. We note in the figure that the solution is stable
for a wide range of boundary sizes (i.e., horizontal lines). As
boundary size decreases farther from the displayed range, it is
expected that errors will increase due to an insufficient number
of scatterers located within the boundary. At the other extreme
of a large boundary size, it is expected that the numbers
will become error prone due to the increased uncertainty in
measuring the forward and backscattered field.

Individual realizations of the forward and backscatter field
magnitude accurately follow a Rice–Nakagami distribution
(Fig. 9) [11, p. 94] where the mean value and standard

Fig. 10. Standard deviation of backscattered field magnitude for three dif-
ferent volume fractions (0.1, 0.3, and 0.5) and both TM and TE polarizations.
Similar behavior was observed for the forward-scattered field as well.

deviation are dependent on the boundary shape and size. To
explore the size dependence of the standard deviation, Fig. 10
shows the standard deviation of backscatter magnitude for
changing boundary size and volume fraction for both the TM
and TE polarization. It can be seen from the graphs that
the variation in observed field is not strongly dependent on
volume fraction, but does increase steadily as the boundary
size increases. If we make the observation that the standard
deviation increases by a factor of two between the boundary
sizes of and , to achieve a given accuracy of field
magnitude, the larger boundary would require four times as
many simulations. The ideal boundary size would then appear
to fall somewhere between and .

There are three basic geometries that have been tested:
a circular disk, a rectangular slab, and a square. Real and
imaginary effective permittivities for these shapes are shown in
Fig. 11 (note that the imaginary component is multiplied by a
factor of ten) as a function of volume fraction for both TM and
TE polarizations. Also given for comparison are the mixing
formula results obtained from (15) and (16). From this figure
it can be seen that there is essentially an exact match between
the real permittivities for all three shapes with some small
deviation being noticed for the imaginary part of the effective
permittivity. These differences are likely due to difficulties in
estimating an imaginary component that is much smaller than
the real component of the permittivity with a relatively small
number of realizations.

So far, in this section, it has been demonstrated that
the proposed technique yields stable results independent
of boundary shape and size. It was also shown that the
forward and backscattered field magnitudes accurately follow
a Rice–Nakagami distribution whose variance increases as a
function of boundary dimension. One final test is to show the
dependence of minimum boundary size on particle size. As
particle size increases, it is expected that increased scattering
and reduction in the number scatterers for a given volume
fraction will increase the minimum boundary dimension for
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Fig. 11. Effective permittivity comparison for differing boundary shapes.
Shown are the real and imaginary permittivities for three different boundary
shapes:�—circular disk(diameter = 2�i), +—rectangular slab (3�i��i)
and �—square box (1.5�i� 1.5 �i). The imaginary part of the effective
permittivity is multiplied by ten so that both parts of the effective permittivity
may be displayed on the same graph. Lines indicate results from the 2-D
Polder–Van Santen mixing formula.

Fig. 12. Real part of effective permittivity versus boundary dimension for
three different particle sizes:�i=10—�, 2�i=10—�, 3�i=10—� and a
volume fraction of 40% TM polarization.

which the algorithm will converge. Fig. 11 demonstrates this
behavior by plotting the effective permittivity as a function
of boundary dimension for three different particle sizes
( and ) at a volume fraction of 40%
for a TM polarized field. From this figure it is evident that the

particles converge to a stable value even at the smallest
of boundary sizes used. As particle size increases, so does the
required boundary size. Particles of diameter require
a boundary equal to or larger than two wavelengths before
reaching convergence. Thus, care must be taken to insure that:
1) boundary size is large enough to insure convergence and

2) a sufficient number of realizations is used to sufficiently
calculate the coherent field.

VIII. C ONCLUSION

This paper has put forward a new technique for numerically
determining the effective permittivity of a random medium
in two dimensions. A key component of the technique is a
MoM/eigen-analysis inversion technique that efficiently cal-
culates the volume currents for a deterministic body with
variable permittivity. This inversion technique was applied to
a range of random media that varied particle size, volume
fraction, boundary size, and shape. Results from the inversion
technique where compared with the 2-D Polder–Van Santen
mixing formula and shown to agree in the small-particle low-
volume fraction limit. The last section then addressed the
problem of boundary size, particle size, and convergence of
the solution. The extensive study performed in this section
of the paper will provide insight as how to approach the 3-
D problems. The strength of the method is to create multiple
scattering numerical solutions for effective permittivity for a
group of canonical situations. Such solutions can then be used
to analyze theoretical methods such as the Polder–Van Santen
mixing formula, the QCA, or future models that address the
dense random media problem.
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