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-Radar Equivalent of Interferometric
SAR’s: A Theoretical Study for

Determination of Vegetation Height
Kamal Sarabandi,Senior Member, IEEE

Abstract—In this paper the theoretical aspects of estimating
vegetation parameters from SAR interferometry are presented.
In conventional applications of interferometric SAR (INSAR),
the phase of the interferogram is used to retrieve the location
of the scattering phase center of the target. Although the location
of scattering phase center for point targets can be determined
very accurately, for a distributed target such as a forest canopy
this is not the case. For distributed targets the phase of the
interferogram is a random variable which in general is a function
of the system and target attributes. To relate the statistics of the
interferogram phase to the target attributes, first an equivalence
relationship between the two-antenna interferometer system and
an equivalent�k radar system is established. This equivalence
relationship provides a general tool to related the frequency
correlation function (FCF) of distributed targets, which can
conveniently be obtained experimentally, analytically, or numer-
ically, to the phase statistics of the interferogram. An analytical
form for the p.d.f. of the interferogram phase is obtained in terms
of two independent parameters: 1)�: mean phase and 2)�:
degree of correlation. � is proportional to the scattering phase
center and � is inversely proportional to the uncertainty with
which � can be estimated. It is shown that� is directly related to
the FCF of the distributed target which in turn is a function of
scattering mechanisms and system parameters. It is also shown
that for a uniform closed canopy the extinction and the physical
height of the canopy top can be estimated very accurately. Some
analytical and numerical simulations are demonstrated.

I. INTRODUCTION

V EGETATION cover on the earth’s surface is an important
factor in the study of global changes. The total vegetation

biomass is the most influential input to models for terrestrial
ecosystems and atmospheric chemistry. Monitoring parameters
such as the total vegetation biomass, total leaf area index, and
rate of deforestation is vital to keep our planet capable of
supporting life. Microwave remote sensing techniques offer a
unique opportunity to probe vegetation canopies at different
depths. Since a forest stand is a very complicated random
medium with many attributes that influence the forest radar
response, accurate estimation of the forest physical parameters
requires a large number of independent radar observations
(multifrequency and multipolarization backscatter) in conjunc-
tion with some a priori information about the forest stand
[1]–[4]. The use of polarimetric synthetic aperture radars as
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active sensors to survey forested areas has reached a level of
maturity. Despite considerable advancement in retrieving the
canopy parameters from multipolarization and multifrequency
backscatter data, an unsupervised reliable inversion algorithm
has not yet been developed. With the recent advances in the
development of interferometric SAR’s [5]–[10], another set of
independent radar observation has become available for the
estimation of vegetation biophysical parameters.

The interferometric technique relies on a coherent imaging
process to find the range or distance to the scattering phase
center of the scatterers in the radar image. Based on this
principle, there are two standard approaches for extracting
topographical information using synthetic aperture radars. In
one approach, SAR systems equipped with two separate an-
tennas mounted on the SAR platform are used to generate
two complex co-registered images from two slightly different
aspect angles. The phase difference calculated from the cross
product of the two complex images, referred to as an interfer-
ogram [6], is processed to estimate the height information. In
the second approach the interferogram is formed using two
successive images taken by a single SAR with almost the
same viewing geometry [7], [8]. It is shown that the phase
of the interferogram is proportional to the wavelength, slant
range, look angle, distance between the antennas (baseline
distance), orientation of the antennas with respect to each
other, and the height of the scattering phase center above a
reference line [5], [9]. For nonvegetated terrain, the scattering
phase centers are located at or slightly below the surface
depending upon the wavelength of the SAR and the dielectric
properties of the surface media. Whereas for vegetated terrain,
these phase centers lie at or above the surface depending
upon the wavelength of the SAR and the vegetation attributes.
Although it is expected that for vegetated surfaces the temporal
decorrelation would hamper repeat-pass interferometry from
producing the location of scattering phase center, experimental
investigations has shown that even after 18 days the correlation
associated with forested area can be as high as 0.5 [11], [12].

The significant vegetation attributes are 1) the type of
vegetation; 2) the quantity or biomass of the vegetation; and 3)
the dielectric properties of the vegetation. As pertains to SAR
interferometry, the type of vegetation refers to the structural
attributes of vegetation elements and includes the shapes and
sizes of foliage and woody stems relative to wavelength and
their three-dimensional organizational structure. The biomass
refers to attributes such as the height of the vegetation,
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the thickness and density of the crown layer that contains
foliage and stems, and the number of plants per unit area.
The dielectric properties of the vegetation elements determine
scattering and propagation through the media; these may vary
with time due to seasonal changes in plant physiology and the
phase of water (liquid or frozen) or due to the presence of
water films resulting from intercepted precipitation or dew.

The main objective of this paper is to establish a thorough
understanding of the relationship between the INSAR parame-
ters and the vegetation attributes and the accuracy with which
the vegetation scattering phase center can be measured. To
accomplish these goals an equivalence between INSAR and

-radar techniques is established which facilitates numerical
simulations and controlled experiments using scatterometers.
Monte Carlo simulation of a forest canopy which preserves
the absolute phase of the radar backscatter allows for quan-
tifying the role of vegetation attributes in determining the
location of the scattering phase centers as measured by SAR
interferometry.

II. -RADAR EQUIVALENT OF AN INSAR

In this section an equivalence relationship between an
interferometric SAR and a -radar is obtained. As will be
shown later the statistics of the phase of the interferogram
or equivalently the location of the scattering phase center
and its statistics is a very strong function of the location
and number density of the forest constituent particles and
their dielectric and scattering properties. Understanding the
relationship between the tree height and the corresponding
location of the scattering phase centers requires numerical
simulations (Monte Carlo simulation of a fractal generated
forest stand) or controlled experiments using scatterometers.
The scattering phase center of a target can also be obtained
using a -radar assuming that the incidence angle is known.
Evaluation of the scattering phase centers using frequency shift
can easily be accomplished in a numerical simulation or in a
controlled experiment using a wideband scatterometer.

To demonstrate the equivalence between an INSAR and
a -radar consider a two-antenna interferometer as shown
in Fig. 1. In this scheme one of the antennas is used as the
transmitter and receiver and the other one is used only as the
receiver, the phase of the interferogram is related to the
difference in path lengths from the antennas to the scattering
phase center by

(1)

where is the wavelength (in repeat-pass interfer-
ometry the factor in (1) must be replaced by Having
calculated from (1) and knowing the baseline distanceand
baseline angle the look angle can be computed from

(2)

Referring to Fig. 1 it can easily be shown that the height of the
scattering phase center, with respect to an arbitrary reference
level, is given by

(3)

Fig. 1. Geometry of a two-antenna interferometer.

The accuracy in height estimation using this method is di-
rectly proportional to the accuracy in the measurement of
the interferogram phase. The uncertainty in phase measure-
ments is caused by two factors: (1) systematic errors, and (2)
indeterministic errors. The sources of systematic errors are
image misregisteration and lack of maintaining the geometry
of the interferometer. The source of indeterministic error is
fading. Basically the backscatter signal from a distributed
target including many scatterers decorrelates as the incidence
angle changes.

Now let us consider a radar capable of measuring the
backscatter at two slightly different frequencies and

Denoting the phase difference between the two
backscatter measurements byit can be shown that

(4)

where is the speed of light and is the radar distance to
the target scattering phase center. Comparing (4) with (1) and
(2) the desired relationship between the-radar and INSAR
can be obtained. Basically by requiring the backscatter phase
differences, once obtained from a small change in the aspect
angle and the other one obtained from a small change in the
frequency of operation, be identical for both approaches we
have

(5)

Noting that it can easily be shown that
is rather insensitive to variations in incidence angle over the
angular range 30–60 . For example, a C-band (5.3 GHz)
interferometer with a horizontal baseline distance 2.4 m at
an altitude 6 Km is equivalent to a C-band -radar with

530 KHz.
The equivalence relation given by (5) is derived based on

a single target. In regard to this relationship there are two
subtle issues that require clarification. In almost all practical
situations the scatterers are located above a ground plane
which give rise to three significant scattering terms besides
the direct backscatter. These include the bistatic scattering
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Fig. 2. Ray path configuration of the single-bounce ground-target scattering
mechanism for a two-antenna interferometer.

from the target reflected from the ground plane, the bistatic
scattering from the target when illuminated by the reflected
wave, and the backscatter reflected by the ground plane when
the target is illuminated by the reflected wave. The last term
can be regarded as the direct backscatter of the incident wave
from the image target and therefore the equivalent-radar
can accurately predict the interferometric phase associated
with this term. However, for the other two scattering terms
(single-bounce terms), the validity of the equivalence relation-
ship is not obvious. Suppose a two-antenna interferometer, as
shown in Fig. 2, is illuminating a target at point above the
ground plane. For the equivalent -radar located at the
interferometric phases of the two single-bounce terms
are identical and are given by

(6)

Equation (6) indicates that the location of the scattering phase
center for the ground-bounce terms appears at the ground
interface for the -radar. The interferometric phase of the
two single-bounce terms for the two-antenna system can be
obtained from

Noting that and after some
simple algebraic manipulation, it can be shown that

Referring to Fig. 2, it can easily be shown that
and therefore Similarly, it can be
shown that thus

which indicates that the location of scattering phase center for
the two single-bounce terms is at Therefore the equivalence
relation (5) guarantees that

The second issue pertains to the validity of the equivalence
relation with regard to multiple scattering terms. As mentioned
earlier the equivalence relationship is derived based on a single
target and therefore it would be valid for a random medium,

if the overall backscatter is dominated by the first-order
scattering mechanisms. To demonstrate that the equivalent

-radar provides the location of the scattering phase center
accurately even in the presence of multiple scattering, consider
two scatterers located at two arbitrary pointsand within a
resolution cell. For an INSAR whose antennas are at points
and the interferometric phase associated with the second
order scattering terms is calculated from

In derivation of the above equation, the reciprocity theo-
rem is used which indicates that the second-order scattering
amplitude obtained from the interaction between particle
and particle is equal to that obtained from the interaction
between particle and particle As before it can easily be
shown that

Let us define as point in the middle of line. Since
the distance between the antennas and the scatterers are much
larger than the distance between the scatterers, we have

which indicates that the phase center of the second order term
apperas at the midpoint between the two scatterers. For a

-radar at the same second order phase term is given
by:

Noting that and the
above expression reduces to

(7)

Equation (7) shows that the location of scattering phase center
measured by a -k radar is at as well.

What remains to be shown is the algorithm by which the
target height can be extracted from an equivalent-radar. Let
us consider a random collection of scatterers within a range
and azimuth resolution cell illuminated by a plane wave as
shown in Fig. 3. The height of the scattering phase center for
this collection can be considered to be the algebraic sum of
the physical height of the pixel center and a residual apparent
height of the scatterers which is a complex function of particles
and radar attributes. Suppose there arescatterers within
a resolution cell. Let denote the scattering amplitude of
the th scattering component of the ensemble which can
represent the direct backscattering from a particle, a multiple
scattering term between a number of the scatterers in the
ensemble, or a bistatic scattering term reflected from the
ground plane. Without loss of generality let us assume that
the phase reference is on the reference plane just below the
pixel center (see Fig. 3). The total backscattered field is the
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coherent sum of all the scattering components which can be
obtained from

(8)

where is the distance from the origin to the observation point,
is the total round trip path length difference between a ray

traveled to the origin and the ray corresponding to theth
scattering component. Note that a time convention of
has been assumed and suppressed. The equivalent problem
is to replace the collection of the random particles and the
underlying ground plane with an equivalent scatterer placed at
the scattering phase center whose backscattering amplitude is
denoted by In this case the backscattered
field is given by

Computing the phase of the backscattered field from (8)
and noting that the phase calculation is modulo the height
of the scattering phase center can be obtained from

(9)

However, in computation of from (9) two important param-
eters, namely and are missing. This problem could be
rectified, if a radar measurement from the same collection of
particles and the same viewing angle but at a slightly different
frequency were available. Suppose the change in frequency is
small enough so that the change in the phase of the scattering
amplitudes is negligible. In this case the change in the phase
of the scattered field due to the change in the
wavenumber is basically dominated by the
path length differences and it can easily be shown that

(10)

Equation (10) is the fundamental basis for extraction of
height information from a two-frequency radar. It should be
emphasized that in this process the incidence angle must be
known which is the case in a numerical simulation or in a
measurement using a narrow beam scatterometer system. Since
the shift in frequency is very small (less than 0.1% of center
frequency), the scattering amplitude terms do not change
when the frequency is changed from to and therefore
they need not be computed twice in a numerical simulation.
However, the phase terms associated with the path length
differences must be modified by replacing with

Expressing the measured phase in degrees, the difference in
slant range in meters, and the difference in
frequency in MHz, (8) can be rewritten as

(11)

Therefore if the uncertainty in the phase calcula-
tion/measurement is 1 and a distance resolution of 1
m is required, a minimum frequency shift of 416.66
KHz is needed assuming that the uncertainty in phase
calculation/measurement is independent of frequency shift

Fig. 3. A random collection of M scatterers above a ground plane and its
equivalent scatterer.

(a wrong assumption). Using this frequency shift the
unambiguous range of 360 m can be achieved noting that the
phase is measured modulo 360. The uncertainties in height
estimation using a -radar can easily be obtained as the
relationship between and is explicitly expressed by (10).
It can easily be shown that the uncertainty in height due
to the lack of accuracy in the knowledge of the incidence
angle is given by:

For uncertainties in incidence angle as high as 3, the error in
height is 5% of at 45 .

Through the combination of two or more frequency shifts,
an unambiguous height profile with fine resolution can be
achieved. The resolution in height estimation using-radar
is characterized by the frequency correlation function of the
target as will be discussed next. Equation (10) indicates that
accuracy in the height measurement increases as the frequency
shift increases. On the other hand as the frequency shift
(baseline distance) increases the phase shift caused by the
path length differences will change in a nonlinear and random
fashion which causes an uncertainty in the measurement of dis-
tance (height). Hence there may exist a critical frequency shift
for which the finest height resolution for a given distributed
target can be achieved. This critical frequency shift is the
counterpart of a critical baseline distance in an interferometer
for which the finest height resolution for the same distributed
target is achievable.

III. STATISTICAL ANALYSIS

In estimating the height of the scattering phase center of
a distributed target using (11), random fluctuations of the
calculated/measured phase as a function of frequency due to
fading must be considered. In this section the effect of random
position of the scatterers on the height estimation is studied.
Also a procedure for calculation of the critical frequency shift
(baseline distance) in terms the statistical properties of the
distributed target is outlined. Phase statistics of polarimetric
backscatter response of kdistributed targets for single- and
multi-look can be found in literature [14]–[16]. The statistical
analysis of interferometric phase given here parallels the
method given in [14]. For a random collection of particles
the scattered field given by (8) is a complex random variable.
Since the location of the scatterers in the illuminated volume is
random, the process describing the scattered field is a Wiener
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process [13]. If the number of scattering componentsis
large, the central limit theorem mandates that the process is
Gaussian. Let us denote the scattered field atand by

and respectively, where
denotes the real or imaginary part of the scattered fields.

These quantities are jointly Gaussian and can be represented
by a four-component random vector The joint probability
density function (pdf) of the random vector can be fully
characterized from a symmetric positive definite matrix
known as the covariance matrix whose entries are given by

It has been shown that the entries of the covariance matrix for
the Wiener process satisfy the following conditions [14]:

(12)

(13)

(14)

(15)

(16)

(17)

In the same paper [14] it is also shown that the pdf for the
difference between phases of and (for a single-look
case) is related to the elements of the covariance matrix and
is given by

(18)

where

The parameter is known as the degree of correlation and
can vary from 0 to 1. When the scattered fields are completely
correlated and the pdf of is a delta function. In
this case the calculation of the height from (10) has no error
in principle when the effect of thermal noise is ignored. The
parameter is known as the coherent phase difference and
can vary from to For the pdf assumes its
maximum and this point corresponds to the average height
of the scattering phase center for a uniform distributed target
over a flat ground plane.

In this analysis the objective is to establish a relationship
between a desired height resolution and the corresponding
required frequency shift for a given error probability criterion.
The Wiener processes considered in this problem satisfy
one more condition beyond those given by (12)–(17). This
condition can be derived by noting that the required frequency
shift for the height estimation is much smaller than the
operating center frequency of the radar, therefore it is expected

that backscattered power carried by the two processes be equal.
This requirement renders the following condition:

(19)

Let us define the normalized correlation function of the process
by

(20)

which is also known as the frequency correlation function [17].
Using (16), (17), and (19), it can easily be shown that

(21)

It is interesting to note that the maximum of the nor-
malized frequency correlation function occurs at

hence to the first order in
In other words for small variation of frequency the pdf

of the phase difference is very narrow which ensures accurate
estimation of the height. As expected, when increases,

approaches zero which corresponds to a uniform
distribution for the phase difference. In this case the probability
of error in the height estimation is close to unity.

To quantify the accuracy of the height estimation for a given
distributed target, let us assume that the normalized frequency
correlation function of the target is known. In this case only the
coherent phase difference is missing to fully characterize
the pdf of the phase difference. The objective is to estimate
from which the mean height can be obtained from

(22)

However, the difficulty in calculation of is that only one
measurement of the phase for each pixel is available. Suppose

represents the deviation in the phase measurement
which corresponds to an error in height measurement given by

(23)

where is in meters, is in degrees, and is in
megahertz. The uncertainty in the estimation of height can be
quantified according to a prescribed error probability criterion.
For example, can be chosen such that the probability
of measuring the phase within the neighborhood of the
coherent phase difference to be 90%, that is

Hence, using this criterion the estimate of the height is

with a probability of 0.9.
The uncertainty in the height measurement defined by this

criterion is a complex function of noting that is a
function of which is related to through the correlation
function. Referring to (23), it seems that the height uncertainty
decreases when is increased; however, it should also
be noted that increases when is increased. This
behavior suggests that there may exist a frequency shift
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Fig. 4. Cumulative distribution function of the phase error for different
values of�:

Fig. 5. The phase uncertainty for 80% and 90% percent error probability
criteria as a function of�:

for which is minimized. This particular frequency shift
will be referred to as the critical frequency shift. In order
to investigate the possibility of finding the critical frequency
shift, the relationship between the height uncertainty and the
frequency shift must be obtained. The relationship between
and can be directly obtained from the cumulative distribution
function (cdf) of Unfortunately, a close form for
the cdf of does not exist and the relationship between
and must be obtained numerically. Fig. 4 shows the cdf of

for different values of and the corresponding for the
90% probability criterion. Note that for most practical cases

(baseline distance or equivalently the frequency shift
is rather small). The relationship between and is shown
in Fig. 5 for the 80% and 90% probability criteria.

Assuming a Gaussian form for the normalized frequency
correlation function the uncertainty in height estimation can
easily be related to the frequency shift. Suppose the normalized
frequency decorrelation function is given by

where is the decorrelation bandwidth defined as the fre-
quency shift for which Using (21) the fre-

Fig. 6. Product of the height uncertainty and decorrelation bandwidth versus
frequency shift normalized to the decorrelation bandwidth for a Gaussian
correlation function.

quency shift can be related to the degree of correlation through

For values of close to unity the right-hand side of the
above equation is approximately equal to Referring
to Fig. 5, it can also be observed that

where is a constant proportional to the probability criterion.
Therefore is linearly proportional to where upon
substituting in (23) it can be shown that the height uncertainty
is independent of the frequency shift and the critical frequency
shift is not well defined. This result may be generalized to
all frequency correlation functions because for small values
frequency shift, the frequency correlation function of all targets
can be approximated by

(24)

where is a free parameter equal to the frequency decorrela-
tion bandwidth of an equivalent Gaussian correlation function.
Fig. 6 shows the product of the height uncertainty and the
equivalent decorrelation bandwidth versus frequency shift nor-
malized to the decorrelation bandwidth for both the 80% and
90% criteria. Thus the uncertainty in height measurement
for a distributed target with known equivalent decorrelation
bandwidth is independent of frequency shift or equivalently the
baseline distance. In other words, the frequency decorrelation
bandwidth of the target is the determining factor in the height
measurement error.

IV. FREQUENCY CORRELATION

FUNCTION OF DISTRIBUTED TARGETS

As was shown in the previous section the frequency corre-
lation function of a distributed target is the most important
parameter in estimating its scattering phase center height.
The literature concerning the frequency correlation function
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Fig. 7. Geometry of a homogeneous layer of random particles above a ground plane.

of distributed targets is rather scarce. Analytical expressions
for the frequency correlation function of simple targets such
as uniform independent scatterers and rough surfaces using
Kirchhoff approximation have been obtained for simple uni-
form plane wave illuminations [18], [19]. For the uniform
distribution of scatterers illuminated by a uniform plane wave
the frequency correlation function is given by

where is the slant range in meters and is in megahertz.
The corresponding Gaussian equivalent decorrelation band-
width for this function is MHz. Since product
of and is independent of the uncertainty in
height measurement can be improved by decreasing the slant
range resolution.

In a recent study [17] it was shown that the frequency
correlation function, in general, depends on two sets of param-
eters: 1) radar parameters such as incidence angle, frequency,
polarization, and footprint size, and 2) target parameters such
as penetration depth and albedo. It is also shown that when
the scattering is localized, that is, the field correlation dis-
tance in the random media is relatively small, the frequency
correlation function can be expressed in terms of product of
two expressions, one depending only on the radar parameters
and the second one depending only on the target attributes.
For example an expression for the frequency cross correlation
of backscatter from a homogeneous layer of random particles
such as leaves and stems above a smooth ground plane is found
to be [17] where is the incident angle, is the layer thickness,
and is the Fresnel reflection coefficient for-polarized
incident wave The first term in (25), shown at
the bottom of the page, is the system dependent component in
which is the antenna gain or the SAR point-target response

(ambiguity function), is the radar distance, and the limits
of the integrals represents the antenna footprint or the pixel
area. The curly bracket in equation (25) represents the target
dependent component in whichdenotes the layer extinction
and and are the copolarized components of the
phase matrix in the backscatter and specular (with respect to
the vertical axis) directions which are defined by

where represents a scattering matrix element of a small
volume of the random medium. In the expression given
by (25) the reference phase plane is assumed to be at the top
of the layer, i.e., the ground plane is assumed to be at
as shown in Fig. 7.

The decorrelation caused by the system-dependent com-
ponent for an imaging radar is directly proportional to the
system slant range resolution. Also for conventional radars
the decorrelation caused by the system component is inversely
proportional to antenna beamwidth and directly proportional
to range and incidence angle. In most existing INSAR sys-
tems the measured decorrelation is dominated by the system
component. As discussed before the uncertainty in height
estimation increases as the correlation bandwidth increases.
Fortunately the decorrelation caused by the system parameters
can be calibrated out since its effect appears as a simple
multiplicative factor. If the system ambiguity function or the
antenna pattern is known, the system component of frequency
correlation function can easily be computed and removed from
the measured data. In cases where the ambiguity function or
the antenna pattern is not well characterized the correlation
over a rough surface (a distributed target with no vertical
extent) approximately represents the system component of the
decorrelation and can be used for calibration. Once the target

(25)
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Fig. 8. Frequency correlation function of a 2-m thick random layer of flat
leaves with average area 50 cm2; thickness 1.3 mm, and dielectric constant
�l = 19 + i6:3 above a ground plane with�g = 15 + j2 at 5.3 GHz and
� = 30� (note for INSAR case�f < 1 MHz).

dependent component of the correlation function is obtained,
the equivalent frequency decorrelation bandwidth can be com-
puted from which the uncertainty in height estimation can be
evaluated. As shown in the simple model described by (25)
the target decorrelation contains information about its physical
parameters.

Fig. 8 shows the frequency correlation function of a uniform
random layer of flat leaves with average area 50 cmthickness
1.3 mm, and dielectric constant above a
ground plane with dielectric constant at 5.3
GHz and incidence angle 30 . In this simulation the
layer thickness was chosen to be and leaf number
density was varied as a parameter. It is shown that as
the leaf number density, and as a direct result the extinction,
increases the frequency decorrelation bandwidth increases.
Scattering contributions from the ground bounce mechanisms
are manifested in terms of oscillations on the frequency
correlation function due to constructive and destructive inter-
ferences among the different scattering mechanisms. Existence
of contribution from ground bounce scattering mechanisms
significantly reduce the frequency decorrelation bandwidth.
For interferometric SAR’s the equivalent frequency shift is
rather small ( 1 MHz) and the approximate form of the
frequency correlation function given by (24) seems to be
adequate for all cases. Fig. 9 shows of the layer as a
function of depth for different values of particle number
density. As the vegetation depth decreasesshould approach
infinity and when the vegetation depth increasesreaches
its asymptotic value for the corresponding to a semi-infinite
medium.

The theoretical expression for the frequency cross cor-
relation function given by (25) can be used to calculate

Fig. 9. Gaussian equivalent decorrelation bandwidth of the layer as a func-
tion of depth for different values of particle number density atf = 5.3 GHz
and � = 30�.

the height of the scattering phase center above the ground
plane. Substituting the phase of the target dependent term
of (25) in (22), the mean height of the scattering phase
center of the medium can be computed. Fig. 10(a) and (b)
show the height of the scattering phase center of the uniform
medium as a function of layer thickness and extinction for
30 and 60 incidence angles respectively. It is shown that
depending on the layer thickness, extinction, and incidence
angle the scattering phase center may appear below or above
the ground plane, but always below the canopy top. Note that
when the double-bounce scattering mechanism (ground-target-
ground) is dominant, the scattering phase center appears below
the ground plane. Other numerical simulations showed that
particle orientation distribution can significantly influence the
location of the scattering phase center as well. This is due to
the fact that the relative contribution of the direct backscatter
mechanism with respect to that of the double-bounce scattering
mechanism is a function of particle orientation distribution.

To illustrate the ability of INSAR in retrieving vegetation
parameters, let us consider a simple case of semi-infinite
uniform medium. Vegetation canopy can be regarded as a
semi-infinite medium, when canopy transmissivity is below
0.1. In this case an analytical expression for frequency correla-
tion function and the phase of the frequency cross correlation
(mean phase) can be obtained directly from (25) by settin

The expression for the frequency correlation
function and the mean phase are, respectively, given by

(26)

(27)

Using (26) the extinction coefficient of a thick vegetation layer
can be obtained as follows. For a system with a known baseline



SARABANDI: THEORETICAL STUDY FOR DETERMINATION OF VEGETATION HEIGHT 1275

(a)

(b)

Fig. 10. Height of the scattering phase center of the layer above the ground as a function of layer thickness for different values of particle density at
f = 5.3 GHz. (a) � = 30� and (b) � = 60�.

distance the equivalent can be calculated from (5) which
together with the measured decorrelation can be substituted in
(26) to calculate Having found (27) can be substituted
in (22) to calculate the location of the scattering phase center
from the canopy top which is given by

(28)

It should be noted that for forest stands where particle
size orientation and distribution are highly nonuniform the
simple uniform and homogeneous model described above
may not provide satisfactory results. More accurate models
that preserve the effect of tree structure are needed for this
purpose. A coherent scattering model based on Monte Carlo
simulation of fractal generated trees is under development
which allows efficient and accurate computation of frequency
cross correlation statistics.

V. CONCLUSIONS

In this paper theoretical and statistical relationships between
the measured parameters obtained from an interferometric
SAR, namely the phase and correlation coefficient of in-
terferogram, and target parameters are obtained. First an
equivalent relationship between an INSAR and a radar
is established. It is shown that the knowledge of the fre-
quency correlation behavior of radar backscatter is sufficient
to derive the desired statistics of height estimation using an
interferometric SAR. The equivalence relationship allows for
conducting controlled experiments, using a scatterometer, to
characterize the response of a distributed target when imaged
by an INSAR. Similarly efficient numerical codes can be
developed to simulate the results. Statistical analysis shows
that the uncertainty in the height estimation of a distributed
target is a function of equivalent frequency decorrelation
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bandwidth and is independent of the baseline distance. It was
also shown that how the INSAR measured parameters can be
used to evaluate the extinction, the physical height, and the
height of the scattering phase center of a closed and uniform
semi-infinite canopy.
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