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Electromagnetic Scattering from Slightly Rough
Surfaces with Inhomogeneous Dielectric Profiles
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Abstract—Remote sensing of soil moisture using microwave
sensors require accurate and realistic scattering models for rough
soil surfaces. In the past, much effort has been devoted to the
development of scattering models for either perfectly conducting
or homogeneous rough surfaces. In practice, however, the permit-
tivity of most soil surfaces is nonuniform, particularly in depth,
for which analytical solution does not exist. The variations in
the permittivity of a soil medium can easily be related to its soil
moisture profile and soil type using the existing empirical models.
In this paper, analytical expressions for the bistatic scattering
coefficients of soil surfaces with slightly rough interface and strat-
ified permittivity profile are derived. The scattering formulation
is based on a new approach where the perturbation expansion of
the volumetric polarization current instead of the tangential fields
is used to obtain the scattered field. Basically, the top rough layer
is replaced with an equivalent polarization current and, using
the volumetric integral equation in conjunction with the dyadic
Green’s function of the remaining stratified half-space medium,
the scattering problem is formulated. Closed-form analytical
expressions for the induced polarization currents to any desired
order are derived, which are then used to evaluate the bistatic
scattered fields up to and including the third order. The analytical
solutions for the scattered fields are used to derive the complete
second-order expressions for the backscattering coefficients as
well as the statistics of phase difference between the scattering
matrix elements. The theoretical results are shown to agree well
with the backscatter measurements of rough surfaces with known
dielectric profiles and roughness statistics.

Index Terms—Electromagnetic scattering, inhomogeneous me-
dia, rough surfaces.

I. INTRODUCTION

SOIL moisture, and its temporal and spatial variations are
influential parameters in both climatic and hydrologic

models. Soil dielectric constant at microwave frequencies
exhibits a strong dependence on the soil’s moisture content.
At band, for example, the real part of the dielectric constant
ranges from three for dry soil to about 25 for saturated soil.
This variation can result in a change on the order of 10 dB
in the magnitude of the radar backscatter coefficient [1]. With
the advent of the polarimetric synthetic aperture radar (SAR),
radar remote sensing of soil moisture has attained significant
prominence in the past decade. SAR systems are capable
of producing the backscatter map of the terrain with high
resolution from an airborne or space-borne platform. From the
electromagnetic point of view, remote sensing of soil moisture,
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in the absence of vegetation cover, can be modeled as an
inverse scattering problem, where the dielectric constant and
surface roughness statistics are to be determined from a set of
backscatter measurements.

The problem of wave scattering from random rough sur-
faces has been the subject of ongoing research over the
past several decades because of its applications in many
areas of science and engineering. Generally speaking, the
available electromagnetic scattering models can be categorized
into three major groups: 1) analytical; 2) empirical; and
3) numerical. The analytical scattering solutions for rough
surfaces apply when the roughness dimensions of the surface
are either much smaller or much larger than the wavelength.
For surfaces with small surface root mean square (rms) height
and slope, the small perturbation model (SPM) is the most
commonly used formalism [2], [3]. In this approach, the
surface fields are expanded in terms of a power series in the
small roughness parameter and, then, using either the Rayleigh
hypothesis or the extended boundary condition [4], the ex-
pansion coefficients are obtained recursively. The scattering
formulations based on SPM exist for dielectric and perfectly
conducting rough surfaces. For these surfaces, only first-order
expressions for the copolarized and second-order expressions
for the cross-polarized backscattering coefficients are reported
[5]. On the other hand, if the irregularities of the surface
have relatively small slopes and large radii of curvature,
the Kirchhoff approximation (KA) can be used [6]. In this
approach, the surface fields at a given point are approximated
by those of the local tangent plane. In the past two decades,
many attempts have been made to extend the validity region
of SPM and KA. Among these, the phase perturbation method
(PPM) [7] and the unified perturbation expansion (UPE) [8]
for extending the low-frequency techniques and the integral
equation method (IEM) [9] for extending the high-frequency
techniques can be mentioned. In the PPM, the perturbation
solution is obtained by expanding the phase of the field instead
of the field itself, whereas in the UPE method, the solution
is obtained by expanding the field in terms of a parameter
(momentum transfer) that remains small over a region larger
than the perturbation parameter used in SPM. Scattering
formulations based on PPM and UPM are reported only
for one-dimensional rough surfaces. The scattering solution
based on the integral equation (IE) method is obtained by
inserting the KA into the surface field integral equation. This
method is significant in that it reduces to the SPM solution,
thereby seemingly bridging the gap between the low- and
high-frequency solutions [10].
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In this paper, no attempt is made to extend the validity
region of the existing methods; instead another practical aspect
of the scattering problem is investigated. In most practical
situations, the soil moisture content as a function of depth
is nonuniform in depth. The soil moisture profile is usually
a complex function of soil type, temperature profile, surface
evaporation, and moisture content [14]. For radar remote
sensing of soil moisture, the effect of the inhomogeneity in the
complex permittivity of the soil surface on its backscatter must
be understood. For this purpose, analytical expressions for
the bistatic scattering coefficients of a slightly rough surface
with inhomogeneous dielectric profile are derived. Using the
classical perturbation expansion of the electric field, a new
volumetric integral equation approach is used to obtain the
iterative scattering solutions. In what follows, the theoreti-
cal formulation for the scattering problem is given and the
closed-form complete second-order solution for backscattering
coefficients and phase-difference statistics are derived. In
Section III, the theoretical solution will be compared with
experimental backscatter measurements collected using the
University of Michigan’s (Ann Arbor) bistatic indoor facilities.

II. THEORETICAL ANALYSIS

Consider an inhomogeneous half-space medium with a
rough interface as shown in Fig. 1. In the following derivation,
it is assumed that the medium is stratified, that is, the relative
permittivity is only a function of , and is given by

Suppose a plane wave is illuminating the rough interface
from the upper medium and, with a very high probability, the
surface height variation is small compared with the wavelength
of the incident wave. To make the solution tractable, the
permittivity of the top layer down to a depth ofis considered
to be uniform where surface profile. Denote the
surface height profile by the function where

is a zero-mean stationary random process with a
known autocorrelation function and is a small constant
known as the perturbation parameter. The incident wave can
be written as

where denotes the polarization of the incident wave,
is the free-space propagation constant, andis the unit

vector along the direction of propagation given by

In the absence of the top homogeneous rough layer (with thick-
ness ), the incident wave would be reflected at the smooth
interface between the free-space and the inhomogeneous half-
space soil medium. The reflected wave can be expressed by

where is the direction of propagation of the reflected wave
given by

and is the polarization vector of the reflected wave, which
can be obtained from

Here, and are the Fresnel reflection coefficients and the
horizontal and vertical unit vectors are given by

(1)

where the subscript can be or for the incident and
reflected waves. In presence of the homogeneous rough layer,
the incident and reflected waves induce a polarization current
within the top dielectric layer which is the source of the
scattered field. The polarization current in terms of the total
field and the permittivity of the layer is

(2)

where is the characteristic admittance of the
free-space and

The scattered field can in turn be expressed in terms of the
polarization current and is given by

(3)

where is the dyadic Green’s function of the half-
space inhomogeneous medium (in the absence of the top rough
layer). Substituting (3) into (1), the following integral equation
for the polarization current can be obtained:

(4)

An approximate solution for the integral equation can be
obtained using a perturbation technique. By breaking the
integral into two integrals, one with limits from zero toand
the other with limits from to and, noting

is a small quantity, up to the th order in , (4)
can be written as

(5)
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Fig. 1. An inhomogeneous half-space medium with a rough interface. Left
side of this figure shows the dielectric profile.

where . Taking the two-dimensional Fourier
transform of both sides of (5) and noting that the integrals in

and are of convolution type, it can be shown that

(6)

where is the convolution operator, is the Fourier
transform of , represents -fold self-convolution

( ), , and
is the Fourier transform of the Green’s function, given by (7),

shown at the bottom of the page. In (7), ,

, and and can be obtained
from (1) with .

Since the surface height variations are much smaller than
the wavelength ( ), the induced polarization current on
the top rough layer closely resembles that of a smooth layer
with the same dielectric constant and thickness. Under this
assumption, the polarization current may be expanded in terms
of a convergent perturbation series in, and is given by

where is the induced polarization current in the un-
perturbed layer. Then by substituting this expansion into (6)
and collecting terms of equal powers in, a recursive set of
equations for the components of the polarization current can

be obtained and is given by

(8)

(9)

Here, is the source function for the th-order integral
equation with a closed-form representation

The integral equations so obtained are Fredholm integral
equations of the second kind, for which analytical solutions
can be obtained. Note that the solution of the zeroth-order
equation is the source function for the first-order equation
and the th-order equation has an excitation function which
consists of lower order polarization currents. To solve
(8), let us first split the integral into two integrals: one over the
interval and the other over the interval . Extending
the integration limits of the second integral over the entire
interval by adding and subtracting an integral over the
interval and noting , (8) can be written
as

(10)

(7)
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Noting that the second integral in (10) is a constant function
of and that the first integral is of convolution type in,
(10) is recognized as a vector Volta integral equation that
can be solved analytically using the Laplace transformation
or Picard’s Process of successive approximation [15]. Since
the involved integral in (10) is explicit in terms of variable

, it can be shown that is of the form

The polarization current can be decomposed into its principal
components given by

where . Evaluating the inner product
of (10) with , , and , three uncoupled scalar
Volta integral equations are obtained. Solutions to the resulted
integral equations for the three components of current are of
the following form:

(11)

After a long algebraic manipulation, closed-form expressions
for the zeroth-order polarization current are obtained

where

The source function of (9) can be written as

(12)

where

Noted that the vector integral equation (9) and the source
function for the th-order polarization current are identical to
those of the zeroth-order polarization current and, therefore, a
similar solution can be easily obtained. By decomposing the

th-order polarization current in terms of its three principle
components, it can be shown that

A. Scattering Coefficients

Once the polarization current is obtained, the scattered field
in region can be obtained from (3). Assuming that
the surface perturbation is localized and the observation point

is far from
the scatterer, the far-field approximation can be used to find
the scattered fields. Using the stationary phase approximation
in the far-field region, the Green’s function is reduced to

(13)

Substituting (13) and the polarization currents into (3) and
expanding the integral similar to those used in (5), theth-
order scattered field is given by a power series in
[similar to (3)]. In this process, the th-order scattered field
components are found to be

(14)
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(15)

The polarimetric response of a target can be obtained from its
complex scattering matrix, defined by

The elements of the bistatic scattering matrix can simply
be computed by setting and in
(14) and (15). For distributed targets, such as rough surfaces,
the quantities of interest are the elements of the differential
covariance matrix, defined by

(16)

Here, denotes ensemble averaging. These elements are in
general complex quantities, except when and , in
which case the elements are the usual scattering coefficients.
In the perturbation analysis, each element of the scattering
matrix can be evaluated up to theth-order, that is

(17)

It turns out that simple expressions for the first-order elements
can be obtained and are given by

(18)

(19)

(20)

(21)

In these expressions is the only indeterministic
factor and, therefore, the elements of the differential covari-
ance matrix can easily be obtained by noting that

(22)

where is the power spectral density of the surface.
To examine the validity of the first-order results, a special

case is considered. In the case of backscattering ( )
and for a homogeneous profile where and ,
the first-order backscattering coefficients are given by

which are in agreement with the results reported in the
literature [5]. Before we proceed with the higher order scat-
tering solutions, the following observations are in order. The
analysis is simplified if we assume that the surface-height
profile is a Gaussian random field. There is some
evidence that this assumption is reasonable for some surfaces
of practical importance [1]. Since Fourier transformation is a
linear operation, is also Gaussian. It is well known that
the following identities hold for a zero-mean jointly Gaussian
random vector :

(23)

(24)

On the other hand, it can be shown that

(25)

(26)

(27)

where and are functions of polarization currents. For
the evaluation of the covariance matrix, we confine our interest
in perturbation terms up to . Substituting (25)–(27) in (17)
and then using (23), the elements of covariance matrix simplify
to

(28)

Noting that property (23) is valid for any odd number of
random variables, the elements of covariance matrix are only
functions of even power of . Therefore, the next higher order
of approximation in calculation of can be obtained
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by inclusion of products of the first and the fifth, the second
and the fourth, and the third-order scattering terms. However,
evaluation of high-order scattered fields such as fourth and fifth
order are rather complex and tedious. Noting thatis a small
quantity compared to the wavelength, the benefit of inclusion
of term is not significant. This argument cannot be used
for the second-order solution ( term) since this term is the
dominant factor for some important scattering parameters such
as cross-polarized backscattering coefficient and copolarized
degree of correlation.

The scattering matrix elements up to third order are derived.
These expressions are very lengthy and are not included in
this paper. Interested readers are referred to [11]. Using these
expressions in (28), the elements of the covariance matrix can
be obtained. The ensemble averaging process can be carried
out easily using (24) and

(29)

Using the above mentioned properties, and noting that in
backscatter direction ( , ) ,
the cross-polarized backscattering coefficients can be obtained
and are given by

(30)

which satisfies the reciprocity condition. To examine the
validity of (30), a homogeneous profile is considered having

and . In this case

(31)

which is in agreement with result reported in [5].

B. Phase Statistics

Traditionally, scattering models for rough surfaces provide
formulations for copolarized and cross-polarized scattering
coefficients. With the advances in the development of polari-
metric radar, the statistics of the phase difference of scattering
matrix elements can be measured and used in inversion al-
gorithms to retrieve the target parameters. In a polarimetric

backscatter measurement, apart from the backscattering coef-
ficients, the copolarized and cross-polarized phase differences,
defined by and , are two
additional independent parameters, which can be used in an
inversion process. In a recent paper [12], it was shown that
the statistics of the phase difference can be derived from
the elements of the target covariance matrix ( ) and
that the probability density function (pdf) of each phase-
difference can be fully determined in terms of two parameters:
1) coherent phase difference () and 2) degree of correlation
( ). The coherent phase difference is the phase difference at
which the pdf assumes its maximum. The degree of correlation
is a real number that can vary from zero to one and is
proportional to the spread of the pdf around, where
corresponds to a uniform distribution and corresponds
to a delta function. In terms of covariance matrix elements,
and are given by

(32)

where subscript for copolarized and or
for cross-polarized phase difference, respectively. Referring to
(18)–(21), it can easily be shown that and
for the first-order scattering solution. Hence, and do
not contain any information about the surface power spectral
density or the surface dielectric constant. Noting that to the
first-order solutions, elements of the covariance matrix are
linearly proportional to the power spectral density,is only
a function of the surface dielectric profile.

To characterize the dependency ofand on the surface
power spectral density, we have to resort to the second-order
scattering solution. Combining the first-order solution given
by (18)–(21) and the second-order and third-order solutions,
closed-form expressions for the parameters of phase-difference
statistics can be obtained. It is found thatvanishes when the
surface power spectral density is azimuthally symmetric; that

is, if . This is usually the case
for most practical situations, which implies the copolarized and
cross-polarized backscattered fields are mutually uncorrelated.

III. D ATA SIMULATION AND EXPERIMENTAL RESULTS

In the previous section, an analytical model for predict-
ing polarimetric scattering behavior of inhomogeneous rough
surfaces based on a perturbation expression of induced po-
larization current was obtained. Here, data simulation based
on the complete second-order analytical model is carried
out to investigate the sensitivity of the radar backscatter
measurements to physical parameters of the surface such as the
surface dielectric profile and surface power spectral density.
Also, polarimetric backscatter measurements were conducted
to examine the significance of the second-order solution on
the overall backscatter response as a function of surface
parameters and radar attributes.
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(a)

(b)

Fig. 2. Ratio of the first-order to the complete second-order solution of a
homogeneous rough surface withmv = 0:2 (� = 8:0 + i2:51 at 1.25 GHz)
as a function of incidence angle for different values ofks andkl.

Fig. 2(a) and (b) demonstrates the significance of the
second-order solution where the ratio of the first-order to the
complete copolarized second-order solutions [ ]
are plotted versus incidence angle. An exponential correlation
function given by

(33)

where is the rms height andis the surface correlation length,
is used in these simulations. In Fig. 2(a) and (b),and
are varied as free parameters and the soil surface is assumed
to be a homogeneous medium with . This
dielectric constant corresponds to a moist soil surface with
volumetric moisture content and is computed using
the empirical formula given in [13] at 1.25 GHz with
and . It is shown that the second-order scattering
term is more sensitive to variations in rms height () than
it is to the surface correlation length (). The sensitivity to

is higher at lower angles of incidence for unlike
. Fig. 3(a) and (b) shows the ratio of the first-order

to the complete copolarized second-order solutions of the
homogeneous rough surface as a function of soil moisture at

. Here it is shown that as the soil moisture increases

(a)

(b)

Fig. 3. Ratio of the first-order to the complete second-order solution of a
homogeneous rough surface as a function of moisture content for different
values ofks and kl at � = 45�.

from 0.01 ( ) to 0.4 ( ),
the contribution from the second-order scattering term to the
overall backscattering increases slightly. This effect is more
pronounced for . Figs. 2 and 3 demonstrate that the
inclusion of the second-order solution is more important for
calculation of than for . Figs. 4 and 5 show
the copolarized coherent phase differencecalculated from
the first-order and complete second-order solutions for the
homogeneous surface as a function of incidence angle and
soil moisture. To the first order, is independent of surface
roughness parameters, however, the second-order solution
shows a weak dependency on and . It is interesting to
note that the sensitivity to roughness parameters disappears
for incidence angles larger than 50. As shown in Fig. 5, is
relatively insensitive to moisture content for a homogeneous
surface.

As mentioned before, the second-order solution is the dom-
inant component for the cross-polarized backscattering coeffi-
cient. is directly proportional to the square of the rms
height, thus, the dependency tois not examined. Fig. 6 shows

of the homogeneous surface as a function of incidence
angle for different values of and while is kept
constant. Note that increases with increasing dielectric
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Fig. 4. Copolarized coherent phase difference of homogeneous rough surface
with mv = 0:2 (� = 8:0 + i2:51 at 1.25 GHz) as a function of incidence
angle for different values ofks and kl.

Fig. 5. Copolarized coherent phase difference of homogeneous rough surface
as a function of moisture content for different values ofks andkl at � = 45�.

constant and decreases with increasing surface correlation
length. The copolarized degree of correlation is another poten-
tial parameter that can be used in retrieval of surface physical
parameters. The first-order scattering solution predict
independent of the surface physical parameters. Figs. 7 and 8
show for the homogeneous rough surface as a function of
incidence angle and dielectric constant for different values of

and . Note that , in general, has a decreasing trend with
increasing incidence angle, rms height, and soil moisture. It is
also noted that increases when is decreased. The total
dynamic range of as a function of the surface parameters
is rather limited.

Next we examine the sensitivity of the polarimetric
backscatter data to the surface dielectric inhomogeneity.
Three dielectric profiles are considered here: 1) exponentially
increasing moisture with depth; 2) exponentially decreasing
moisture with depth; and 3) a two-layer step profile, as shown
in Fig. 9. The exponential profiles are chosen according to
[14] and are given by

Fig. 6. Variations of cross-polarized backscattering coefficient as a function
of incidence angle, moisture content (� = 4:89 + i0:92 for mv = 0:1 and
� = 14:68 + i7:5 for mv = 0:4 at 1.25 GHz) and correlation length for a
surface withks = 0:2.

Fig. 7. Sensitivity of copolarized degree of correlation to incidence angle for
different values ofks andkl and moisture contentmv = 0:2 (� = 8:0+i2:51

at 1.25 GHz).

Fig. 8. Sensitivity of copolarized degree of correlation to soil moisture
content for different values ofks and kl at � = 45�. �c does not show
much sensitivity tokl.

where is the surface moisture content and is the
increment of moisture at a depth below the surface. The
moisture content below depth is considered to be uniform.
In all cases the backscatter parameters are compared with a
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Fig. 9. Three different moisture profiles used in the backscattering simu-
lations: increasing exponential with� = 20, decreasing exponential with
� = 10, and step.

Fig. 10. Comparison of backscattering coefficients calculated for the homo-
geneous and increasing exponential moisture profiles for a rough surface with
ks = 0:2 and kl = 2.

homogeneous profile having a dielectric constant equal to that
of the inhomogeneous profile at the interface. Figs. 10 and
11 show the backscattering coefficients for a surface with
the increasing and decreasing exponential dielectric profiles
and having , . Note that the backscatter-
ing coefficients are insensitive to moisture profiles and the
backscattering coefficients are basically indistinguishable from
those of the homogeneous profile having the same dielectric
constant as that of the inhomogeneous profile at the interface.
This is due to the tapered impedance matching nature of the
profile. However, this is not the case for the step profile as
shown in Fig. 12. The difference in , depending on the
incidence angle, can be as high as 10 dB. The only sensitive
parameter to moisture variations in depth for continuous
profiles is the co-polarized coherent phase difference as is
shown in Fig. 13, where for the homogeneous, increasing,
and step moisture profiles are shown.does not show any
sensitivity for decreasing profiles. It should be pointed out
that the calculation of the complete second-order solution
involves numerical evaluation of twofold integrals. To provide
a feeling for the required computation time, the calculation of
backscattering coefficients and phase difference statistics for
one incidence angle would take about one minute on a Sun
workstation Ultra 2.

Fig. 11. Comparison of backscattering coefficients calculated for the ho-
mogeneous and decreasing exponential moisture profiles for a rough surface
with ks = 0:2 and kl = 2.

Fig. 12. Comparison of backscattering coefficients calculated for the homo-
geneous and step moisture profiles for a rough surface withks = 0:2 and
kl = 2.

Fig. 13. Copolarized coherent phase difference calculated for the homoge-
neous, increasing exponential, and step moisture profiles for a rough surface
with ks = 0:2 and kl = 2.

The validity of the analytical results are also examined by
conducting backscatter measurements. The backscatter mea-
surements were performed polarimetrically using the indoor
bistatic facilities of the Radiation Laboratory, University of
Michigan, Ann Arbor [16]. The backscatter data were collected
from a rough layer of sand above a perfectly conducting
ground plane at center frequency 9.25 GHz with a bandwidth



1428 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 9, SEPTEMBER 1997

Fig. 14. Simplified block diagram of the experimental setup.

(a)

(b)

Fig. 15. Comparison of the measured and the complete second-order simu-
lated backscatter for a sand layer of thickness (a) 2.52 cm and (b) 3.53 cm
above a perfectly conducting ground plane at 9.25 GHz. Symbols represent
the measured quantities and the lines are the theoretical calculations.

of 1.5 GHz. A 6′ 6′ sand-box on top of a computer-
controlled turntable was used to contain the sand layer. The
antenna footprint covered an area of about 0.27 s on the
sandbox and collection of independent backscatter data was
facilitated by rotating the sandbox at steps of 5. The wide
bandwidth of the radar system was used to “range-gate” the
possible unwanted radar backscatter from the sandbox walls
and edges. A simplified block diagram of the measurement
system is shown in Fig. 14.

(a)

(b)

Fig. 16. Comparison of the measured and calculated copolarized coherent
phase difference for a sand layer of thickness (a) 2.52 cm and (b) 3.53 cm
above a perfectly conducting ground plane at 9.25 GHz.

A uniform sand with maximum particle dimension of 0.15
mm was chosen to minimize the effect of volume scattering
from the sand layer. The effective dielectric constant of the
sand medium was measured to be . The
radar was calibrated polarimetrically using STCT [17]. To
generate a desired roughness over the sand surface repeatedly,
a template was made. The imprint of the template on the
surface generated a rough surface with almost an exponential
autocorrelation function with and .
The surface roughness statistics were measured using a laser
ranging system with a range resolution of 0.1 mm. The
backscatter measurements conducted for two layers having
thicknesses cm and cm over the angular
range 20–50.

Fig. 15(a) and (b) shows the measured and simulated
versus incidence angle. All the measured results are shown to
be in a very good agreement with the complete second-order
solution except for the cross-polarized responses at .
For these cases we were limited by the system noise floor.
Fig. 16(a) and (b) shows the response of the copolarized
coherent phase difference as a function of incidence angle.
Both the first-order and second-order solutions are shown and
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(a)

(b)

Fig. 17. Comparison of the measured and the calculated�
o

hhhh
=�

o
vvvv for

a sand layer of thickness (a) 2.52 cm and (b) 3.53 cm above a perfectly
conducting ground plane at 9.25 GHz.

it is obvious that the second-order contribution is insignificant
at angles below 40.

Fig. 17(a) and (b) compare the measured and theoretical
ratio of versus incidence angle. Here it is shown
that at high-incidence angles first-order results are incapable of
accurate prediction of backscattering coefficients whereas the
second-order solution provide satisfactory results. Fig. 18(a)
and (b) shows the measured and calculated copolarized degree
of correlation versus incidence angle where a relatively good
agreement has been obtained considering the difficulties in the
accurate measurement of [18].

IV. CONCLUSIONS

In this paper, a bistatic polarimetric scattering model for
random dielectric surfaces with inhomogeneous permittivity
profiles and small surface roughnesses is developed using
a perturbation expansion of volumetric polarization current.
A complete second-order solution for the backscattering co-
efficients and the statistics of the phase difference between
the elements of scattering matrix is obtained. The validity
of the model is verified in a limiting case, where it is
shown that the formulation for surface with inhomogeneous
permittivity profile reduces to the known formulation for

(a)

(b)

Fig. 18. Comparison of the measured and the calculated copolarized degree
of correlation for a sand layer of thickness (a) 2.52 cm and (b) 3.53 cm above
a perfectly conducting ground plane at 9.25 GHz.

homogeneous rough surfaces. Also, polarimetric backscatter
measurements from rough surfaces with known dielectric pro-
files and roughness statistics were collected and compared with
the theoretical calculations. Comparisons with the measured
data show excellent agreement. The sensitivity analysis in
terms of the surface physical parameters is also performed.
It is shown that, in general, the backscatter parameters such as
backscattering coefficients and phase-difference statistics, are
more sensitive to than . The contribution of the second-
order solution for calculation of is more significant
than that for the calculation of . The contribution of the
second-order solution to overall can be as high as 2 dB
for . It is shown that for continuous inhomogeneous
profiles, the backscattering coefficients are insensitive to the
variations of moisture content as a function of depth. In
other words, the backscattering coefficients of a surface with
a continuous soil moisture profile are equal to those of a
homogeneous surface having a moisture content equivalent
to that of the inhomogeneous profile at the interface. The
only backscatter parameter sensitive to moisture profile is the
copolarized coherent phase difference (). However, both the
backscattering coefficients and phase-difference statistics are
very sensitive to step discontinuities in moisture profile.
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