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Characterization of Optimum Polarization
for Multiple Target Discrimination
Using Genetic Algorithms

Kamal SarabandiSenior Member, IEEEand Eric S. Li

Abstract—in this paper, a stochastic optimization algorithm is  of polarimetric backscatter responses of distributed targets and
used to characterize the polarization states of a nonpolarimetric their relationship with the target physical parameters have been
radar transmitter and receiver antennas for optimal target clas- investigated intensively [8]-[11].

sification. Specifically, the optimized solution is sought when a In thi fi int t to th bl f
multitude of targets are to be categorized. It is shown that the n this paper, we connine our interest 1o the problem o

objective function of the optimization problem is highly nonlinear ~ characterizing polarization combination of the receiyg a.nd
and discontinuous, hence, classical optimization algorithms fail transmit antennas of a radar system for target classification.

to provide satisfactory results. The stochastic optimization algo- Reported polarimetric techniques for target discrimination
rithm used in this paper is based on a genetic algorithm (GA) 5ve peen limited to the special case of two targets because of

which operates on a discretized form of the parameter space T
and searches globally for the optimum point. In this process, the complex nature of the optimization problem. For example,

it is assumed that the polarimetric responses of the targets are in the method proposed by loannidis and Hammers [12]
known a priori. The optimization algorithm is applied to two sets the optimum polarizations are obtained from a constrained

of data: 1) a synthetic backscatter data for four point targets with  maximization of two bilinear forms representing the signal-
similar radar cross sections (RCS's) and 2) a set of polarimetric ,_cjiter backscatter ratio. In another method suggested by
backscatter measurements of asphalt surfaces under different . -
physical conditions at 94 GHz. The purpose of the latter study is V3" Zyletal.[13], a comparison based on the normalized root
to come up with the optimal design for polarization states of an Mean square (rms) of difference in the received powers for two
affordable millimeter-wave radar sensor that can assess traction targets has been suggested. In this method, the received powers
of road surfaces. are calculated forV polarization configurationsN points on

Index Terms—Genetic algorithms, object detection. the Poincare sphere) to obtain the rms of power difference.
The motivation for considering the problem at hand stems
from the fact that in many cases of practical importance, target
classification, when there are more than two possible targets,

N radar scattering problems in which target discriminatiois of interest. The complex optimization problem in finding the

cannot be accomplished on the basis of a difference rieceive and transmit polarizations of a nonpolarimetric radar
range, the polarization spectrum (signature) may be the appnol be addressed using a stochastic optimization method.
priate tool to differentiate between different targets or targets Stochastic algorithms such as simulated annealing [14] and
and clutter. This idea stems from the fact that the polarizatigenetic algorithms (GA’s) [15], [16] offer an alternative for
for which the radar receives the maximum or minimurthe traditional gradient-based optimization methods where the
scattered power (optimum polarization) from a target may lsmension of parameter space is large and/or the objective
different from the optimum polarizations of the other targets dunction is nondifferentiable. In recent years, applications
its surrounding clutter. The literature concerning application of GA's to a variety of optimization problems in electro-
wave polarization for enhancing target detection dates backnhagnetics have been successfully demonstrated [17]-[19].
about five decades ago with the pioneering work of Kennau@he fundamental concept of GA’s is based on natural se-
and Huynen [1], [2]. The concept of optimal polarization halgction in the evolution process, which is accomplished by
long been used by radar engineers to reduce the effectgehetic recombination and mutation. In this approach, the
clutter such as hydrometeors in reconnaissance radars E3itire parameter space is discretized and using a Monte Carlo
[4]. Since the early work of Kennaugh, much effort hasimulation of the evolution process on a randomly selected
been devoted to utilize the polarimetric responses of targstsbset of the discretized parameter space, the desired objective
in inverse problems [5] and in a variety of remote sensirfgnction is optimized. GA’s offer certain advantages over the
problems [6], [7]. Also, procedures for evaluating the statisti¢gaditional gradient-based (TGB) optimization algorithms. The

_ , _ _ most important feature of GA’s is that the optimization is
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millimeter-wave (MMW) radar-based sensors for a myriad of
civilian and defense applications has become economically
viable [20]. For example, a simple MMW continuous-wave
radar system can be designed to be mounted on a vehicle
to assess the road condition such as determining the surface
roughness, surface wetness, and detecting the existence of
an ice or snow layer on the road surface. This information
can then be linked to the anti-lock brake or traction control
systems of the vehicle. In Section IV, this specific example
accompanied by experimental results is described in detail.

Let us consider a nonpolarimetric radar system. This radar
is to measure the radar cross section (RCS) or backscattering
coefficient of a point or a distributed target chosen frofm
different types of targets and then to identify the target. Since
the target identification has to be accomplished based on a
single measured data point, it is desired that the backscatter
power from different targets be as distinct as possible. To
accomplish this task, we are free to choose the polarization
configurations of the transmit and receive antennas which re-
sult in RCS’s or backscattering coefficients for different targets
that are most distinct. Success of a target discriminator based
on the optimal polarization relies on tlaeriori knowledge of

function’s smoothness condition and after convergence provithé Polarimetric responses of the desired targets. Knowing the

a list of high-quality solutions, which can further be assessé

gattering matrices of point targets or the covariance matrices

according to criteria not included in the objective functior®! the distributed targets, the RCS’s or the backscattering

On the other hand, there are certain disadvantages associ

gpgfficients of the targets for a given pair of transmit and

with the GA’s. A major drawback of the GA's is their lack off€ceive polarizations can be determined analytically using

computational efficiency. Basically, far more calculation of th
objective function is required to achieve a convergence when
compared with TGB’s. Another shortcoming of the GA’s is

that they do not provide any insight as to the character
the objective function during the course of the optimizatio
process. It should also be noted that after convergence

gn(z/}ervz/}hXt)
:47TB(P7,Pt)CnB*(ﬁ)7,Pt) ne {1,"',Nt} (1)

\?/fherez/;i and y; are the tilt and ellipticity angles of polariza-
[E)n ellipse for transmi(i = ¢) and receivgi = r) antennas.
F e(1), C,, is the covariance matrix of theth target given by

solution may not necessarily be the true extremum of the

objective function.

(SvwSt)  (SwwSin)  (SewSi,)  (SwwSin)
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In this paper, application of GA’s for characterization of | SunSE) (SenSER)y (SunShyy (SurSip)
optimum antenna polarizations of a nonpolarimetric radar ~" | (SpuS5,)  (SheSEL)  (SheSE.)  (SheShn)
is considered to achieve multiple target classification with (SunSe)  (SwaSin) (SeaSi.) (SknSin)
least-error probability. The objective function is defined so (2

that the solution will directly specify the threshold levels for oA o )
target classification. In this procedure, it is assumed that tABAB(£, F) is the polarization cross-product vector given by

polarimetric responses of the targets are known. The paper is prpt
organized as follows. First the objective function of the op- o prpt
timization problem is described. In Section Ill, the procedure B(P., P) = I:,’”,lﬁfi . 3
for implementing a GA for the problem at hand is provided. P;’LP}

In Section IV, performance of GA’s in characterizing the

optimum polarizations is presented. In this section, both poipf (3), the polarization unit vectaP; is calculated from
targets and distributed targets are considered.

Il. PROBLEM FORMULATION

R i
p U+ a;e%h

T V1+ad?

As mentioned earlier, the objective of the optimizatiowherea; andé; in terms of the ellipticity and tilt angles can
problem is characterization of the optimum polarizations dfe obtained from [21]

a nonpolarimetric radar for target classification. Apart from

the classical problem of target detection in different clutter tan é; = r_m2Xf
backgrounds, other practical applications for the problem sin 2
under consideration can be mentioned. Due to recent ad- a; = tan ECOS—I(COSQXicosgwi) ) (4)

vances in technology, development of light-weight small-size
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10.0 T v , wheref(-) is a user defined function. The problem in this case
is well defined and an analytical solution for the constrained
maximization problem can be obtained [12]. However, for
=TT more than two targets a definition for the objective function
___________ is not straightforward and the optimization problem becomes
very complex. Noting that the objective function defined by
(5) is a subset of (6), we adopt functional (6) as a measure
1st rial of distance between two functions. The difficulty arises from
______ 2nd trial the fact that a set of input parameters that maximizes the
e~ 3dtdal distance between thath andnth targetyd,,,,,) may minimize
the distance between two other targets. In this case, even
0. E— T —_— L expressing the objective function mathematically seems rather
0 10 20 30 40 50 difficult. Using an analogy between the backscatter functions
Number of Iterations and point_s confi_ne_:q within a plgnar geomeftrica_l bou_ndary,
the following definition for the objective function is derived.
@ Basically, the optimum point in the 4-D vector space is a point
10.0 T , r r such that the minimum distance among all possible pairs of
functions is maximized. Mathematically, the objective function
can be expressed as

5.00

Min(Ao)

——— Isttrial
—————— 2nd trial Maximize{Min{dmn(¥r, Xr: ¥, xt)}
——=~ 3rdtrial e Ym,n € {1,---,Ny;m #n}} (7

5.00

subject to
Vo € [=7/2,7/2] xoyx0 € [=/4,7/4].

Noting that for N, targets there aréV,(NV;, — 1)/2 distance
0. ' ' ' ' functions to be computed, analytical determination of the
0 10 20 30 40 50 . L . o .
optimum point in the 4-D vector space is very difficult—if
Number of Tterations not impossible. In this case, the objective function is piecewise
() continuous with unknown discontinuity points. The optimiza-
Fig. 2. The convergence performance of the GA in characterizing trglﬁon problem is similar to. thmm_mammblem. [22] for which .
optimum polarization for classification of the four-point targets. the standard apprO_aCh IS to trans'fer the original problem into
a smooth but nonlinearly constrained problem. For example,

o ) by introducing a new variabl®, which is a lower bound on
It should be noted that determination &f from (4) is not 5| the distance functiond,,,,’s, we need to

unique and often leads to confusion. The following constraints

Average Min(Ao)

remove the ambiguity in determination 6f Maximize{D}
ifx; <0=6<0 D € (0,00); by, € [-m/2,7/2]
ify; >0=68,>0 Xr, Xt € [—7/4,7/4]. (8)
ifeh; >0 = |6 <m/2 Subject t0 dyy (Pr, Xri e, xe) > D,¥m,n € 1,---,N,.
ifyy; <0 = |6 > /2. Systematic solutions to this problem exist when the distance

functions are linear. Other than the special case of linear
The search in the optimization problem has to be performéénctions, hybrid optimization methods based anpriori

for pairs of (1, x¢) and (¢, x») in a four-dimensional (4-D) knowledge of the function’s discontinuity points and assump-
vector space bounded by-a90 < v; < 4+90,—45 < y; < tions on the smoothness of the objective function must be tried.
+45(i € {r,t}) so thates,’s for n = 1,..-,N, are most In this paper, instead of approaching the optimization problem
distinct. Before the optimization problem can be formulatedom a classical point of view, a discrete numerical approach
this objective function must be expressed in a mathematid@sed on GA’s will be used.
form. In the problem of two-target classificati¢y; = 2), the Another important issue in the optimization problem is the

objective function is maximization of the ratio selection of an appropriate functiofi used in the distance
function given by (6). The function can be chosen to be
T(Ppy Xy Pty X2) = 2 (5) linear, compressor, or expander. A linear function preserves
71 the significance of distance between two RCS’s independent
or difference of the absolute values of the RCS’s, whereas a compressor or

an expander function puts more emphasis on the difference
12 (Vs Xy Pty xt) = | fo2) — flo1)] (6) when the absolute values of the RCS'’s are relatively small
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TABLE |
UNIFORM DISCRETIZATION SCHEME OF POINCARE SPHERE, WHERE k() |s THE NUMBER POINTS ON CIRCLES OF CONSTANT Y

X | +45 +£44 £43 +42 41 +40 39 +38 437 +36 +35 +34
Ex)| 1 3 6 10 20 26 30 36 40 44 48 54

X +33 +32 31 £30 +£29 28 £27 26 £25 +24 £23 +£22
k(x)| 58 64 68 72 76 8 86 90 92 96 100 104

X +21 +20 +£19 +£18 +£17 £16 =£15 +£14 13 +£12 +£11 =10
k(x)| 106 106 112 112 118 118 120 124 126 128 128 130

X +9 £8 £7 6 £5 4 £3 £2 1 0
k(x) | 132 134 137 140 142 144 148 152 154 158

or large, respectively. In dealing with distributed target@erformance parameters according to the objective function
the quantity of interest is the backscattering coefficigrft) known as natural selection; 5) mating and mutation; and 6)
which is proportional to the mean of the backscattered powegcursion of 4) and 5) until a convergence is reached. Consider
The probability density function describing the statistics ain N-dimensional optimization problem wheré parameters
backscatter power for most practical cases is exponential.afe to be chosen so that the objective functidis extremized.
feature of the exponential distribution is that its mean t@ implementation of GA’s each parameter is represented by a
standard deviation ratio is unity. Therefore, the uncertaingene that is simply the binary representation of the parameter.
in estimation of s of a target increases for targets witha trial solution comprised ofN genes is referred to as a
larges®’s. This property requires that the differences betweeihromosome. The objective is to find the most-fit chromosome
backscattering coefficients of targets with largiés be larger according to the objective function.

than those of targets with smali’s. In other words, a  The first step in implementing a GA is to discretize the
compressor function must be used. A logarithmic functioparameter space so that the quantization error in calculation
is an excellent choice for this application [23]. This cagf the objective function is below a tolerable threshold. Over-
be demonstrated by considering estimationoGf using N sampling of the parameter space would result in an inefficient

independent samples. In th_isocase, the standard deviationygfimization procedure. The binary transformation of the dis-
the estimate of the mean is°/v'N. A confidence region cyetized parameters can be arbitrary; however, it must be

for the estimate deflngd b.y peak-to—peak_ variation around tfe-to-one and onto. This ensures that for every binary string
mean fc_>r alinear function Bs°/ (N)’_Wh'Ch Incréases with of sayn,, digits, there is a parametgrin the discrete space.
mcre_asmga". I-_|owev_er, for logarithmic functions, the same The optimization procedure starts with initialization of the
confidence region will be mapped to population. The population size is provided by the user and

CR:lOlOg(aoJFUO/\/N) — 10log(c® _ao/\/ﬁ) a popglation of the given si_ze is gengratgd randomly. A
simplified flow chart of a GA is shown in Fig. 1. Once the

=10log VN +1 initial population is created, their performance (fitness) is

VN -1 calculated according to the objective function. Chromosomes

o ) then go through a selection operation where only the most
which is a constant independent of. Therefore, by max- i chromosomes are preserved. The selection operator can
imizing the minimum distance between the backscatteringer pe stochastic or deterministic. In the stochastic approach
coefficients in o!embel scale, the separation between the copfi\vn as “roulette wheel selection method” [25], a portion
dence boundaries of the targets is maximized as well. ¢ yhe original chromosomes survive with a probability den-

sity function directly proportional to the objective function
[ll. OPTIMIZATION PROCEDURE values associated with the chromosomes. In the deterministic
USING A GENETIC ALGORITHM approach, the chromosomes are ranked according to their

In this section, a brief overview of GA’s is provided. Theobjective function values and the top 50% or high ranked
interested reader is referred to an excellent tutorial artidi@bove certain threshold) chromosomes are kept [24]. In this
by Haupt [24]. GA’s are probabilistic optimization method$aper, we adopted the deterministic selection approach.
that use an iterative search technique based on ideas fromfhe next step in the optimization procedure is the mating
evolutionary principles. The algorithm is based on a numbef the survived chromosomes, which will be referred to as
of ad hocsteps including: 1) discretization of the parametgrarents. This step is accomplished using an operator known
space; 2) development of an arbitrary encoding algorithm &s crossover operator. The crossover operator acts on parent
establish a one-to-one relationship between each code anddh®mosomes and generates offsprings by swapping portions
discrete points of the parameter space; 3) random generatidrithe genetic codes of the parents. In this algorithm, a single
of a trial set known as initial population; 4) selection of higherossover point is selected randomly and two offsprings are
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TABLE I
THE OPTIMUM POLARIZATION STATES DERIVED BY THE GA USING THREE INDEPENDENT INITIAL POPULATION SETS FOR
DISCRIMINATING FOUR-POINT TARGETS AND THEIR RADAR CROSS SECTIONS AT THE OPTIMUM POLARIZATIONS

Py Xr 1y Xt [ o o4 g, Min(Ao)
1st | 47.1 -10.0 -44.33 -8.0 -16.55 -1.59 109 4.76 6.2
2nd | -46.3 9.0 540 6.0 -3.84 -10.73 1090 3.21 6.9
3rd | -47.5 4.0 52.1 20 -443 -14.30 10.96 3.36 7.6

TABLE I
THE OPTIMUM POLARIZATION STATES DERIVED BY THE GA USING THREE INDEPENDENT INITIAL POPULATION SETS FOR
DISCRIMINATING FOUR DISTRIBUTED TARGETS AND THEIR RADAR CROSS SECTIONS AT THE OPTIMUM POLARIZATIONS

o o o o

Yr Xr Pt Xt 04 Ty 7; 9s Min(Ac)
1st |-87.3 9.0 -56 32.0 -21.2 -33.45 -27.25 -15.25 5.98
2nd | 16.8 170 -86.2 4.0 -22.10 -34.43 -2820 -15.92 6.10
3rd {-86.2 5.0 156 22.0 -21.88 -34.25 -27.94 -15.64 6.06

generated. The binary codes of the children to the left of tiRequiring equal pixel area independentipfand y, the total
crossover point are the same as those of their parents aehber of pixels are obtained from
their remaining codes are obtained by swapping the binary -
codes of the parents. The purpose of mating is to construct Ny = m-
new chromosomes with higher fithess values. The last step
before fitness evaluation of the new chromosomes is mutatidi. establish a one-to-one correspondence between the discrete
The mutation process is carried out on a chromosome B@ints on the surface of a Poincare sphere and a complete set
changing a bit from zero to one or vice versa. The purpo8é binary codesN, must be equal to’2for some integen.
of mutation process is to keep population diversity among tle0osing a fixed resolution faty = 1°, the resolution for
new generations, which, in effect, provides new search regidiitangle as a function of can be obtained from
for the optimization algorithm. Probability of bit mutation per 10314 x 27
iteration should be kept low enough so that the highly fit Ap = ——— (deg.) 9)
chromosomes are not destroyed. Bit mutation with probability cos 2x
of less than 1% is recommended. After mutation performanceln order to achieve almost equally spaced points on the
of the new chromosomes are evaluated and the processphere surfacep = 13 can be chosen. Guided by (9) and
repeated until a convergence is reached. after some inspections the number of discrete paifijs) on

An encoding procedure must be established to providecicles of constank is obtained and reported in Table I. Note
one-to-one mapping between the discretized parameter spiwee according to this discretization scheme
and a binary code. First, let us consider the discretization of 45
the parameter space. Qne important issue in a discretization Z k(m) = 8192
process is the resolution. A fine resolution increases the
accuracy at the expense of increasing the search domain. It is
noted that the radar backscatter cross sections for point targgggxpected. Simply by numbering the points from zero (south
and backscattering coefficients for distributed targets are vdi§le) to 8191 (north pole), each polarization can be assigned to
smooth functions of the transmitter and receiver polarizatighdecimal number. The relationship between the polarization
angles (¢, x). Thus, an angular resolution on the order oftate(s, x) and its decimal representatignis given by
1° is sufficient for most practical applications. Another issue
is the discretization scheme. Noting that for almost circular
polarizations the sensitivity of the RCS or the backscattering X=m

m=—45

For m =—45 to45

coefficient to variations in the tilt angle is very low, a uniform _ 180¢
) N L P =—, 0,---,k(m) -1
discretization of the parameter space seems illogical. There k(m)
is a one-to-one correspondence between the polarization state m—1
of the receiver or transmitter and a point on the surface of p= Y k(m)+¢
Poincare sphere, which suggests a uniform discretization of m=—45

the sphere surface. The area of a pixel on the surface of

. S ei\low, expressing in terms of a 13-bit binary code, we have
Poincare sphere is given by

established a one-to-one correspondence between a polariza-
tion state and a binary code. Combining the binary codes for
AA = 472 cos 2y Ax A, the transmit and receive polarization states, a 26-bit binary
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code is obtained, which represents a discrete point within—
the domain of the input parameter space. According to ours
discretization scheme there are a total of 67 108 864 possiblg 3
chromosomes in the discretized parameter space. °

IV. RESULTS AND DISCUSSIONS

In this section, performance of the GA in characterization up
of optimum radar polarizations is studied by considering two'g
examples. In the first example, the optimization problem for %
four-point targets based on synthetic data is examined. Thg:;Q
second example is concerned with a practical application of§
millimeter-wave radar sensors for characterization of road sur-
face conditions. The GA is used to determine the polarization
states of the transmitter and receiver of a nonpolarimetric
millimeter-wave radar for the purpose of classifying the road
surface into four categories: 1) dry asphalt; 2) wet asphalt;
3) ice-covered asphalt; and 4) snow-covered asphalt. For thé
point target classification example, we chose four targets with~
similar RCS’s. These include a metallic sphere, a composité;
target made up of two thin cylinders/8 apart oriented 45
with respect to the reference vertical direction, a dihedral,
corner reflector, and a thin vertical cylinder whose scattering
matrices are, respectively, given by

(10 V21—
SS_(O 1)’ SC_T(—j 1)
1 0 10
Sd_(o —1)’ S’”‘(o 0)'

The GA developed in this paper allows the user to choose
the number of population and to initiate the algorithm with
different sets of initial population. The population number
must be chosen according to the size of discretized parameteg
space (in this case€??). If the population number is chosen too =
small, the algorithm may converge to a weak local maximae *
On the other hand, the algorithm becomes numerically veryg
inefficient if a large population number is chosen. For this-&
problem it was found that a population number on the order&
of 70-100 provides satisfactory results. Fig. 2(a) shows th%
convergence rate of the GA for the four-point target problem g
with three statistically independent initial population sets.
In this figure, the performance measure, which is simply §
the minimum RCS difference (in decibels) between any two%
targets among the aforementioned four targets, is displayedg
The solutions(¢,., xr, ¥+, x¢) for the three different initial
population sets together with the RCS’s of the targets and
the maximized minimum RCS differend@lin(Ac)) at the
optimum polarizations are reported in Table Il. Although at

ring Coefficient

1cient

eff’

Q

Backscattering C

tterin,
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the third trial a better solution is obtained it can be seey. 3. The measured backscattering coefficientso(a), (b) o715, and (c)

that in all three cases the algorithm finds comparable afia. of dry asphalt, wet asphalt, ice-covered asphalt, and snow-covered asphalt
R at 5%4 GHz, as a function of incidence angle.

reasonable results. The results clearly indicate that there exis

polarizations for optimal multiple target classification even

for targets with comparable RCS’s. To examine whether tifier the average of the performance measure as the algorithm

algorithm is converging to a maximum or it is randomlconverges.

searching the parameter space, the average of the performandéext we considered a radar classification problem for four
measure of all chromosomes for each generation as the proaissibuted targets. In this example a practical application is
evolves can be studied. Fig. 2(b) shows an increasing treindmind. Basically, we are seeking the optimal design of
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10.0 T T . . covariance matrices of the asphalt surfaces &t wdre fed
to the GA and the results are reported in Table Ill for three
different initial population sets. For each case, the approximate
computer time to arrive at an optimal solution using this
e algorithm (GA) is less than 1 min on a SPARC 20 workstation.
e In this table, the subscript w, ¢, ands denote dry, wet, ice,
500 7 and snow, respectively. Similar performances are obtained in
——— strial all three cases, although three different solutions are obtained.
________ Ind trial A minimum ¢° difference of 6 dB among different surface
______ 3rd trial road conditions is obtained that allows for a reliable target
classification. Fig. 4(a) and (b) shows the convergence behav-
0. L L ! L ior of the algorithm in this case. As expected, the average
0 10 20 30 40 50 of performance measure for each generation improves as the
algorithm approaches the convergence point.

Min(Ac)

Number of Iterations
@
10.0 T r ; . V. CONCLUSIONS

Determination of polarization states of the transmitter and
receiver antennas of a nonpolarimetric radar for optimal target
classification was considered in this paper. Assuming that
the polarimetric responses of the targets under consideration
are knowna priori, the optimization problem was formulated
to search for a pair of polarization configurations so that at
these polarizations the minimum separation of the backscatter
power between any two targets among all possible targets
is maximized. To achieve this goal a global search routine
based on a GA was used. The success of the GA was
0. ! : . : demonstrated by applying the algorithm to two cases of point

0 10 20 30 40 50 and distributed targets. The issues regarding the user defined

Number of Iterations parameters of the algorithm such as the population size and
) probability of mutationj as well as thg convergence property o_f
Fig. 4. The convergence performance of the GA in characterizin tthe algorithm -Were- dIS.CL.JSSEd. Optimal polarization syntheS|s
og)gltimﬁm polarizationgfor cla§sification of the four distributed targets. ’ tPSI’ a nonpqlarlmetn.c millimeter-wave radar SyStem considered
for assessing traction of road surfaces was carried on based
on a set of polarimetric backscatter measurements of asphalt
an affordable millimeter-wave radar sensor for automotivsurfaces under different physical conditions at 94 GHz.
applications that can assess traction of road surfaces. For this
purpose, a relatively smooth asphalt surface with rms height
of about 0.34 mm was chosen. The same asphalt surface for
four different conditions were considered. These include: 1t E. M. Kennaugh, “Effect of type of polarization on echo characteristics,”
dry asphalt; 2) a wet surface condition with water contenty ﬁngnﬂiyl_naebri: Igﬁegg;\?eﬁgﬁé%igaw\iﬁe?ﬁ 'o?iargasérstgfg;'etls??%h.D. dis-
0.8 kg/m?; 3) the asphalt surface covered by an ice layer sertation, DrukkerijBonder-Offset, N.V., Rotterdam, The Netherlands,
with thickness 1.4 mm; a.”d 4) the asphalt surface C.Overe ] %\?L%ndry and G. C. McCormick, “Deterioration of circular polarization
by a snow layer with thickness 6.4 mm and density 68" cjytter cancellation anisotropic precipitation mediglectron. Lett. vol.
kg/m?. The University of Michigan’s fully polarimetric 94- 10, pp. 165-166, 1974. ) o
GHz scatterometer was used to characterize the polarimetrit gin(::'M'\gg(s:grré“n'q‘;knf‘sngbgi:'e‘fjng;ﬁa dgg:é”g'gf‘yg‘f"?ff’pgf‘%?_eajaf°r
responses of the asphalt surfaces. This system operates ataug./sept. 1976.
93.5 GHz with a bandwidth of 0.5 GHz. The backscattef5] W. M. Boemer, M. B. El-Arini, C. Y. Chan, and P. M. Mastoris,
measurements were conducted over the incidence angular T'?grlgr_'f‘:t%?]ndaespg?gsgggw'gl'ezl‘;?t;%r_ngggftz";l"n\g;el%g)fllemﬂg
range 70—-88°. To characterize the statistics of the backscattepg] J. J. van zyl, “On the importance of polarization in radar scattering
responses, more than 80 independent spatial samples for eachproblems,” Ph.D. dissertation, California Inst. Technol., Pasadena, CA,
target were collected. Systematic measurement errors such@se. 1. Ulaby and C. Elachi, EdsRadar Polarimetry for Geoscience
channel imbalances, antenna cross talks, polarization switches Applications Dedham, MA: Artech House, 1990. 5
distortions, and radiometric calibration constant are accounted 'aeﬁéiéofugnr!génz'fg' n\?ﬂﬂflgfg‘g%ﬁér?rggtr% s?énztleé‘;gEEP;?:ﬁg"'ty
for by using an external calibration procedure [26]. The Geosci. Remote Sensingol. 32, pp. 562-574, May 1994.
backscattering coefficients of the four asphalt surfaces as[@ K. Sarabandi, “D_erfyvatio'n of phase statistics of distributed targets from
function of incidence angle are shown in Fig. 3@),), the Mueller matrix,”"Radio Sci.vol. 27, no. 5, pp. 553-560, 1992.

) . [10] D. Eliyahu, “Vector statistics of correlated Gaussian field®ys. Rev.
(b) (o3;,), and (c)(og,). After the calibration procedure, the vol. 74, no. 4, pp. 2881-2892, Apr. 1993.
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