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Characterization of Optimum Polarization
for Multiple Target Discrimination

Using Genetic Algorithms
Kamal Sarabandi,Senior Member, IEEE, and Eric S. Li

Abstract—In this paper, a stochastic optimization algorithm is
used to characterize the polarization states of a nonpolarimetric
radar transmitter and receiver antennas for optimal target clas-
sification. Specifically, the optimized solution is sought when a
multitude of targets are to be categorized. It is shown that the
objective function of the optimization problem is highly nonlinear
and discontinuous, hence, classical optimization algorithms fail
to provide satisfactory results. The stochastic optimization algo-
rithm used in this paper is based on a genetic algorithm (GA)
which operates on a discretized form of the parameter space
and searches globally for the optimum point. In this process,
it is assumed that the polarimetric responses of the targets are
known a priori. The optimization algorithm is applied to two sets
of data: 1) a synthetic backscatter data for four point targets with
similar radar cross sections (RCS’s) and 2) a set of polarimetric
backscatter measurements of asphalt surfaces under different
physical conditions at 94 GHz. The purpose of the latter study is
to come up with the optimal design for polarization states of an
affordable millimeter-wave radar sensor that can assess traction
of road surfaces.

Index Terms—Genetic algorithms, object detection.

I. INTRODUCTION

I N radar scattering problems in which target discrimination
cannot be accomplished on the basis of a difference in

range, the polarization spectrum (signature) may be the appro-
priate tool to differentiate between different targets or targets
and clutter. This idea stems from the fact that the polarization
for which the radar receives the maximum or minimum
scattered power (optimum polarization) from a target may be
different from the optimum polarizations of the other targets or
its surrounding clutter. The literature concerning application of
wave polarization for enhancing target detection dates back to
about five decades ago with the pioneering work of Kennaugh
and Huynen [1], [2]. The concept of optimal polarization has
long been used by radar engineers to reduce the effect of
clutter such as hydrometeors in reconnaissance radars [3],
[4]. Since the early work of Kennaugh, much effort has
been devoted to utilize the polarimetric responses of targets
in inverse problems [5] and in a variety of remote sensing
problems [6], [7]. Also, procedures for evaluating the statistics
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of polarimetric backscatter responses of distributed targets and
their relationship with the target physical parameters have been
investigated intensively [8]–[11].

In this paper, we confine our interest to the problem of
characterizing polarization combination of the receive and
transmit antennas of a radar system for target classification.
Reported polarimetric techniques for target discrimination
have been limited to the special case of two targets because of
the complex nature of the optimization problem. For example,
in the method proposed by Ioannidis and Hammers [12]
the optimum polarizations are obtained from a constrained
maximization of two bilinear forms representing the signal-
to-clutter backscatter ratio. In another method suggested by
van Zyl et al. [13], a comparison based on the normalized root
mean square (rms) of difference in the received powers for two
targets has been suggested. In this method, the received powers
are calculated for polarization configurations ( points on
the Poincare sphere) to obtain the rms of power difference.
The motivation for considering the problem at hand stems
from the fact that in many cases of practical importance, target
classification, when there are more than two possible targets,
is of interest. The complex optimization problem in finding the
receive and transmit polarizations of a nonpolarimetric radar
will be addressed using a stochastic optimization method.

Stochastic algorithms such as simulated annealing [14] and
genetic algorithms (GA’s) [15], [16] offer an alternative for
the traditional gradient-based optimization methods where the
dimension of parameter space is large and/or the objective
function is nondifferentiable. In recent years, applications
of GA’s to a variety of optimization problems in electro-
magnetics have been successfully demonstrated [17]–[19].
The fundamental concept of GA’s is based on natural se-
lection in the evolution process, which is accomplished by
genetic recombination and mutation. In this approach, the
entire parameter space is discretized and using a Monte Carlo
simulation of the evolution process on a randomly selected
subset of the discretized parameter space, the desired objective
function is optimized. GA’s offer certain advantages over the
traditional gradient-based (TGB) optimization algorithms. The
most important feature of GA’s is that the optimization is
accomplished globally; that is, the probability of converging to
a weak local minimum is very low unlike the TGB algorithms.
This is particularly the case when the objective function is
highly nonlinear and the dimension of the parameter space is
large. GA’s perform equally well independent of the objective
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Fig. 1. Flow chart of the GA.

function’s smoothness condition and after convergence provide
a list of high-quality solutions, which can further be assessed
according to criteria not included in the objective function.
On the other hand, there are certain disadvantages associated
with the GA’s. A major drawback of the GA’s is their lack of
computational efficiency. Basically, far more calculation of the
objective function is required to achieve a convergence when
compared with TGB’s. Another shortcoming of the GA’s is
that they do not provide any insight as to the character of
the objective function during the course of the optimization
process. It should also be noted that after convergence the
solution may not necessarily be the true extremum of the
objective function.

In this paper, application of GA’s for characterization of
optimum antenna polarizations of a nonpolarimetric radar
is considered to achieve multiple target classification with
least-error probability. The objective function is defined so
that the solution will directly specify the threshold levels for
target classification. In this procedure, it is assumed that the
polarimetric responses of the targets are known. The paper is
organized as follows. First the objective function of the op-
timization problem is described. In Section III, the procedure
for implementing a GA for the problem at hand is provided.
In Section IV, performance of GA’s in characterizing the
optimum polarizations is presented. In this section, both point
targets and distributed targets are considered.

II. PROBLEM FORMULATION

As mentioned earlier, the objective of the optimization
problem is characterization of the optimum polarizations of
a nonpolarimetric radar for target classification. Apart from
the classical problem of target detection in different clutter
backgrounds, other practical applications for the problem
under consideration can be mentioned. Due to recent ad-
vances in technology, development of light-weight small-size

millimeter-wave (MMW) radar-based sensors for a myriad of
civilian and defense applications has become economically
viable [20]. For example, a simple MMW continuous-wave
radar system can be designed to be mounted on a vehicle
to assess the road condition such as determining the surface
roughness, surface wetness, and detecting the existence of
an ice or snow layer on the road surface. This information
can then be linked to the anti-lock brake or traction control
systems of the vehicle. In Section IV, this specific example
accompanied by experimental results is described in detail.

Let us consider a nonpolarimetric radar system. This radar
is to measure the radar cross section (RCS) or backscattering
coefficient of a point or a distributed target chosen from
different types of targets and then to identify the target. Since
the target identification has to be accomplished based on a
single measured data point, it is desired that the backscatter
power from different targets be as distinct as possible. To
accomplish this task, we are free to choose the polarization
configurations of the transmit and receive antennas which re-
sult in RCS’s or backscattering coefficients for different targets
that are most distinct. Success of a target discriminator based
on the optimal polarization relies on thea priori knowledge of
the polarimetric responses of the desired targets. Knowing the
scattering matrices of point targets or the covariance matrices
of the distributed targets, the RCS’s or the backscattering
coefficients of the targets for a given pair of transmit and
receive polarizations can be determined analytically using

(1)

where and are the tilt and ellipticity angles of polariza-
tion ellipse for transmit and receive antennas.
In (1), is the covariance matrix of theth target given by

(2)

and is the polarization cross-product vector given by

(3)

In (3), the polarization unit vector is calculated from

where and in terms of the ellipticity and tilt angles can
be obtained from [21]

(4)
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(a)

(b)

Fig. 2. The convergence performance of the GA in characterizing the
optimum polarization for classification of the four-point targets.

It should be noted that determination of from (4) is not
unique and often leads to confusion. The following constraints
remove the ambiguity in determination of

The search in the optimization problem has to be performed
for pairs of and in a four-dimensional (4-D)
vector space bounded by a

so that ’s for are most
distinct. Before the optimization problem can be formulated,
this objective function must be expressed in a mathematical
form. In the problem of two-target classification , the
objective function is maximization of the ratio

(5)

or difference

(6)

where is a user defined function. The problem in this case
is well defined and an analytical solution for the constrained
maximization problem can be obtained [12]. However, for
more than two targets a definition for the objective function
is not straightforward and the optimization problem becomes
very complex. Noting that the objective function defined by
(5) is a subset of (6), we adopt functional (6) as a measure
of distance between two functions. The difficulty arises from
the fact that a set of input parameters that maximizes the
distance between theth and th targets may minimize
the distance between two other targets. In this case, even
expressing the objective function mathematically seems rather
difficult. Using an analogy between the backscatter functions
and points confined within a planar geometrical boundary,
the following definition for the objective function is derived.
Basically, the optimum point in the 4-D vector space is a point
such that the minimum distance among all possible pairs of
functions is maximized. Mathematically, the objective function
can be expressed as

(7)

subject to

Noting that for targets there are distance
functions to be computed, analytical determination of the
optimum point in the 4-D vector space is very difficult—if
not impossible. In this case, the objective function is piecewise
continuous with unknown discontinuity points. The optimiza-
tion problem is similar to themin–maxproblem [22] for which
the standard approach is to transfer the original problem into
a smooth but nonlinearly constrained problem. For example,
by introducing a new variable , which is a lower bound on
all the distance functions ’s, we need to

(8)

Subject to .
Systematic solutions to this problem exist when the distance
functions are linear. Other than the special case of linear
functions, hybrid optimization methods based ona priori
knowledge of the function’s discontinuity points and assump-
tions on the smoothness of the objective function must be tried.
In this paper, instead of approaching the optimization problem
from a classical point of view, a discrete numerical approach
based on GA’s will be used.

Another important issue in the optimization problem is the
selection of an appropriate function used in the distance
function given by (6). The function can be chosen to be
linear, compressor, or expander. A linear function preserves
the significance of distance between two RCS’s independent
of the absolute values of the RCS’s, whereas a compressor or
an expander function puts more emphasis on the difference
when the absolute values of the RCS’s are relatively small
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TABLE I
UNIFORM DISCRETIZATION SCHEME OF POINCARE SPHERE, WHERE k(�) IS THE NUMBER POINTS ON CIRCLES OF CONSTANT �

or large, respectively. In dealing with distributed targets,
the quantity of interest is the backscattering coefficient
which is proportional to the mean of the backscattered power.
The probability density function describing the statistics of
backscatter power for most practical cases is exponential. A
feature of the exponential distribution is that its mean to
standard deviation ratio is unity. Therefore, the uncertainty
in estimation of of a target increases for targets with
large ’s. This property requires that the differences between
backscattering coefficients of targets with large’s be larger
than those of targets with small ’s. In other words, a
compressor function must be used. A logarithmic function
is an excellent choice for this application [23]. This can
be demonstrated by considering estimation of using
independent samples. In this case, the standard deviation of
the estimate of the mean is . A confidence region
for the estimate defined by peak-to-peak variation around the
mean for a linear function is , which increases with
increasing . However, for logarithmic functions, the same
confidence region will be mapped to

which is a constant independent of . Therefore, by max-
imizing the minimum distance between the backscattering
coefficients in decibel scale, the separation between the confi-
dence boundaries of the targets is maximized as well.

III. OPTIMIZATION PROCEDURE

USING A GENETIC ALGORITHM

In this section, a brief overview of GA’s is provided. The
interested reader is referred to an excellent tutorial article
by Haupt [24]. GA’s are probabilistic optimization methods
that use an iterative search technique based on ideas from
evolutionary principles. The algorithm is based on a number
of ad hocsteps including: 1) discretization of the parameter
space; 2) development of an arbitrary encoding algorithm to
establish a one-to-one relationship between each code and the
discrete points of the parameter space; 3) random generation
of a trial set known as initial population; 4) selection of high-

performance parameters according to the objective function
known as natural selection; 5) mating and mutation; and 6)
recursion of 4) and 5) until a convergence is reached. Consider
an -dimensional optimization problem where parameters
are to be chosen so that the objective functionis extremized.
In implementation of GA’s each parameter is represented by a
gene that is simply the binary representation of the parameter.
A trial solution comprised of genes is referred to as a
chromosome. The objective is to find the most-fit chromosome
according to the objective function.

The first step in implementing a GA is to discretize the
parameter space so that the quantization error in calculation
of the objective function is below a tolerable threshold. Over-
sampling of the parameter space would result in an inefficient
optimization procedure. The binary transformation of the dis-
cretized parameters can be arbitrary; however, it must be
one-to-one and onto. This ensures that for every binary string
of say digits, there is a parameterin the discrete space.

The optimization procedure starts with initialization of the
population. The population size is provided by the user and
a population of the given size is generated randomly. A
simplified flow chart of a GA is shown in Fig. 1. Once the
initial population is created, their performance (fitness) is
calculated according to the objective function. Chromosomes
then go through a selection operation where only the most
fit chromosomes are preserved. The selection operator can
either be stochastic or deterministic. In the stochastic approach
known as “roulette wheel selection method” [25], a portion
of the original chromosomes survive with a probability den-
sity function directly proportional to the objective function
values associated with the chromosomes. In the deterministic
approach, the chromosomes are ranked according to their
objective function values and the top 50% or high ranked
(above certain threshold) chromosomes are kept [24]. In this
paper, we adopted the deterministic selection approach.

The next step in the optimization procedure is the mating
of the survived chromosomes, which will be referred to as
parents. This step is accomplished using an operator known
as crossover operator. The crossover operator acts on parent
chromosomes and generates offsprings by swapping portions
of the genetic codes of the parents. In this algorithm, a single
crossover point is selected randomly and two offsprings are
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TABLE II
THE OPTIMUM POLARIZATION STATES DERIVED BY THE GA USING THREE INDEPENDENT INITIAL POPULATION SETS FOR

DISCRIMINATING FOUR-POINT TARGETS AND THEIR RADAR CROSS SECTIONS AT THE OPTIMUM POLARIZATIONS

TABLE III
THE OPTIMUM POLARIZATION STATES DERIVED BY THE GA USING THREE INDEPENDENT INITIAL POPULATION SETS FOR

DISCRIMINATING FOUR DISTRIBUTED TARGETS AND THEIR RADAR CROSS SECTIONS AT THE OPTIMUM POLARIZATIONS

generated. The binary codes of the children to the left of the
crossover point are the same as those of their parents and
their remaining codes are obtained by swapping the binary
codes of the parents. The purpose of mating is to construct
new chromosomes with higher fitness values. The last step
before fitness evaluation of the new chromosomes is mutation.
The mutation process is carried out on a chromosome by
changing a bit from zero to one or vice versa. The purpose
of mutation process is to keep population diversity among the
new generations, which, in effect, provides new search regions
for the optimization algorithm. Probability of bit mutation per
iteration should be kept low enough so that the highly fit
chromosomes are not destroyed. Bit mutation with probability
of less than 1% is recommended. After mutation performance
of the new chromosomes are evaluated and the process is
repeated until a convergence is reached.

An encoding procedure must be established to provide a
one-to-one mapping between the discretized parameter space
and a binary code. First, let us consider the discretization of
the parameter space. One important issue in a discretization
process is the resolution. A fine resolution increases the
accuracy at the expense of increasing the search domain. It is
noted that the radar backscatter cross sections for point targets
and backscattering coefficients for distributed targets are very
smooth functions of the transmitter and receiver polarization
angles . Thus, an angular resolution on the order of
1 is sufficient for most practical applications. Another issue
is the discretization scheme. Noting that for almost circular
polarizations the sensitivity of the RCS or the backscattering
coefficient to variations in the tilt angle is very low, a uniform
discretization of the parameter space seems illogical. There
is a one-to-one correspondence between the polarization state
of the receiver or transmitter and a point on the surface of
Poincare sphere, which suggests a uniform discretization of
the sphere surface. The area of a pixel on the surface of a
Poincare sphere is given by

Requiring equal pixel area independent ofand , the total
number of pixels are obtained from

To establish a one-to-one correspondence between the discrete
points on the surface of a Poincare sphere and a complete set
of binary codes, must be equal to 2for some integer .
Choosing a fixed resolution for , the resolution for
tilt angle as a function of can be obtained from

(9)

In order to achieve almost equally spaced points on the
sphere surface, can be chosen. Guided by (9) and
after some inspections the number of discrete points on
circles of constant is obtained and reported in Table I. Note
that according to this discretization scheme

as expected. Simply by numbering the points from zero (south
pole) to 8191 (north pole), each polarization can be assigned to
a decimal number. The relationship between the polarization
state and its decimal representationis given by

Now, expressing in terms of a 13-bit binary code, we have
established a one-to-one correspondence between a polariza-
tion state and a binary code. Combining the binary codes for
the transmit and receive polarization states, a 26-bit binary
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code is obtained, which represents a discrete point within
the domain of the input parameter space. According to our
discretization scheme there are a total of 67 108 864 possible
chromosomes in the discretized parameter space.

IV. RESULTS AND DISCUSSIONS

In this section, performance of the GA in characterization
of optimum radar polarizations is studied by considering two
examples. In the first example, the optimization problem for
four-point targets based on synthetic data is examined. The
second example is concerned with a practical application of
millimeter-wave radar sensors for characterization of road sur-
face conditions. The GA is used to determine the polarization
states of the transmitter and receiver of a nonpolarimetric
millimeter-wave radar for the purpose of classifying the road
surface into four categories: 1) dry asphalt; 2) wet asphalt;
3) ice-covered asphalt; and 4) snow-covered asphalt. For the
point target classification example, we chose four targets with
similar RCS’s. These include a metallic sphere, a composite
target made up of two thin cylinders apart oriented 45
with respect to the reference vertical direction, a dihedral
corner reflector, and a thin vertical cylinder whose scattering
matrices are, respectively, given by

The GA developed in this paper allows the user to choose
the number of population and to initiate the algorithm with
different sets of initial population. The population number
must be chosen according to the size of discretized parameter
space (in this case 2). If the population number is chosen too
small, the algorithm may converge to a weak local maxima.
On the other hand, the algorithm becomes numerically very
inefficient if a large population number is chosen. For this
problem it was found that a population number on the order
of 70–100 provides satisfactory results. Fig. 2(a) shows the
convergence rate of the GA for the four-point target problem
with three statistically independent initial population sets.
In this figure, the performance measure, which is simply
the minimum RCS difference (in decibels) between any two
targets among the aforementioned four targets, is displayed.
The solutions for the three different initial
population sets together with the RCS’s of the targets and
the maximized minimum RCS difference at the
optimum polarizations are reported in Table II. Although at
the third trial a better solution is obtained it can be seen
that in all three cases the algorithm finds comparable and
reasonable results. The results clearly indicate that there exist
polarizations for optimal multiple target classification even
for targets with comparable RCS’s. To examine whether the
algorithm is converging to a maximum or it is randomly
searching the parameter space, the average of the performance
measure of all chromosomes for each generation as the process
evolves can be studied. Fig. 2(b) shows an increasing trend

(a)

(b)

(c)

Fig. 3. The measured backscattering coefficients. (a)�vv , (b) �hh, and (c)
�vh of dry asphalt, wet asphalt, ice-covered asphalt, and snow-covered asphalt
at 94 GHz, as a function of incidence angle.

for the average of the performance measure as the algorithm
converges.

Next we considered a radar classification problem for four
distributed targets. In this example a practical application is
in mind. Basically, we are seeking the optimal design of
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(a)

(b)

Fig. 4. The convergence performance of the GA in characterizing the
optimum polarization for classification of the four distributed targets.

an affordable millimeter-wave radar sensor for automotive
applications that can assess traction of road surfaces. For this
purpose, a relatively smooth asphalt surface with rms height
of about 0.34 mm was chosen. The same asphalt surface for
four different conditions were considered. These include: 1)
dry asphalt; 2) a wet surface condition with water content
0.8 kg m ; 3) the asphalt surface covered by an ice layer
with thickness 1.4 mm; and 4) the asphalt surface covered
by a snow layer with thickness 6.4 mm and density 68
kg m . The University of Michigan’s fully polarimetric 94-
GHz scatterometer was used to characterize the polarimetric
responses of the asphalt surfaces. This system operates at
93.5 GHz with a bandwidth of 0.5 GHz. The backscatter
measurements were conducted over the incidence angular
range 70–88 . To characterize the statistics of the backscatter
responses, more than 80 independent spatial samples for each
target were collected. Systematic measurement errors such as
channel imbalances, antenna cross talks, polarization switches
distortions, and radiometric calibration constant are accounted
for by using an external calibration procedure [26]. The
backscattering coefficients of the four asphalt surfaces as a
function of incidence angle are shown in Fig. 3(a) ,
(b) , and (c) . After the calibration procedure, the

covariance matrices of the asphalt surfaces at 74were fed
to the GA and the results are reported in Table III for three
different initial population sets. For each case, the approximate
computer time to arrive at an optimal solution using this
algorithm (GA) is less than 1 min on a SPARC 20 workstation.
In this table, the subscripts, , , and denote dry, wet, ice,
and snow, respectively. Similar performances are obtained in
all three cases, although three different solutions are obtained.
A minimum difference of 6 dB among different surface
road conditions is obtained that allows for a reliable target
classification. Fig. 4(a) and (b) shows the convergence behav-
ior of the algorithm in this case. As expected, the average
of performance measure for each generation improves as the
algorithm approaches the convergence point.

V. CONCLUSIONS

Determination of polarization states of the transmitter and
receiver antennas of a nonpolarimetric radar for optimal target
classification was considered in this paper. Assuming that
the polarimetric responses of the targets under consideration
are knowna priori, the optimization problem was formulated
to search for a pair of polarization configurations so that at
these polarizations the minimum separation of the backscatter
power between any two targets among all possible targets
is maximized. To achieve this goal a global search routine
based on a GA was used. The success of the GA was
demonstrated by applying the algorithm to two cases of point
and distributed targets. The issues regarding the user defined
parameters of the algorithm such as the population size and
probability of mutation as well as the convergence property of
the algorithm were discussed. Optimal polarization synthesis
for a nonpolarimetric millimeter-wave radar system considered
for assessing traction of road surfaces was carried on based
on a set of polarimetric backscatter measurements of asphalt
surfaces under different physical conditions at 94 GHz.
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