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Diffraction of Radio Waves from Arbitrary
One-Dimensional Surface Impedance Discontinuities
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Abstract—Characterization of a propagation channel is es-
sential in developing an optimum wireless system. Accurate
prediction of field parameters, both stochastic and deterministic
can greatly reduce the time and effort required to design and
develop a progression of prototypes necessary to achieve the
final system requirements. To accomplish this, a physics-based
methodology must be considered. In this methodology, a series
of scattering and diffraction models must be developed and inte-
grated which accurately represent the effects of various terrain
features on electromagnetic wave propagation. In this paper,
diffraction of electromagnetic waves from a surface impedance
discontinuity, which can represent a river or trough is considered.
In order to more accurately represent the transmitter antenna,
dipole excitation is used as the wave source. The river or trough
is modeled as a variable impedance insert in an infinite plane
with one-dimensional (1-D) variation. An integral equation for
an impedance surface is formulated in the Fourier domain,
which is solved iteratively using a perturbation technique. An
analytical solution is provided to any desired order in terms of
multifold convolution integrals of the Fourier transform of the
impedance function. The far-field integral is then evaluated using
the stationary phase technique. Next, the formulation is extended
to a short dipole with arbitrary orientation by expanding the
dipole field in terms of a continuous spectrum of plane waves.
Results are then shown for both plane wave and dipole excitation.
Scattering results for an impedance insert are generated up to
second order. These results are then compared to geometrical
theory of diffraction (GTD) results. The effect of varying both
the width and perturbation parameter of the insert are described.
Results from plane wave incidence at various oblique angles are
shown. Effects of varying the impedance transition shape are
shown and compared. Scattering results for dipole excitation
show E-field components in a planar grid at a given height above
the scattering plane. It is shown that the ẑ component of the
diffracted field is maximized for either a vertical or horizontal
dipole orientation. Effects generated by varying the receiver
height are also discussed.

Index Terms—Diffraction, impedance discontinuity, surface
impedance.

I. INTRODUCTION

DUE to the rapid growth of wireless technology, the
accurate prediction of both deterministic and stochas-

tic processes involved in the propagation of electromagnetic
waves in a communications channel has attained prominence
in recent years [1]–[4]. Simplistic statistical-based channel
models, while providing some insight, are not based on the
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physics of the problem and, therefore, do not work well
in a dynamic environment with both significant terrain and
environmental changes. Because of this, improved scattering
and diffraction models for terrestrial and man-made targets
must be developed to accurately predict the performance of a
wireless system. In an environment where line-of-sight propa-
gation is not dominant, multipath signals caused by scattering
and diffraction establish the communications link between
receiver and transmitter. Dispersion and fading are important
features of such communication channels, which influence
the performance of advanced spread spectrum modulation
schemes. With this in mind, a physics-based methodology is
being considered to develop and integrate advanced scattering
models for various terrain and environmental features, such
as mountains and hills, buildings, rough surfaces, surface
discontinuities, vegetation (trees), atmospheric propagation
effects, etc.

The problem of plane wave diffraction from shorelines in
planar land–sea boundaries using the Wiener–Hopf technique,
was addressed by Bazeret al. [5]. For this problem, the sea
and land surfaces were modeled by a perfectly conducting
and impedance surface, respectively, and the diffraction is
evaluated using the Wiener–Hopf method. Wait and others
addressed the diffraction effects caused by an inhomogeneous
surface using an integral equation technique to solve for an
attenuation factor [6]–[8]. The solution is formulated in terms
of complex integrals that must be solved numerically. In
this paper, an analytical formulation is developed to predict
the diffraction from a surface impedance discontinuity of an
arbitrary profile such as rivers, shorelines, or troughs when
excited by a small dipole of arbitrary orientation. Basically,
the river is modeled as an impedance change in an infinite
impedance plane, representing the ground plane, which is an
acceptable approximation over a frequency range including
high-frequency (HF) to lower microwave frequencies. An
integral equation is developed and then solved analytically
using a perturbation technique, assuming a one-dimensional
(1-D) impedance variation. For noncanonical problems, it is
usually difficult to obtain exact solutions for Maxwell’s equa-
tions and, thus, approximate solutions are sought. Geometrical
theory of diffraction (GTD) methods, while accurate at high
frequencies, have only been applied to problems where abrupt
variations in a surface are present. A solution is sought for
problems with a more general variation across the diffraction
surface with arbitrary dimensions compared to the wavelength.
When the actual solution of a problem varies only slightly (is
perturbed) from a known exact solution perturbation theory
is a viable approach to solve these general problems. An
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integral equation, which assumes a phase variation only in
the dimension where the impedance is constant, is formulated
in the Fourier domain for plane wave excitation. In [9], it
was shown that an integral formulation for a resistive sheet
with resistivity could be extended to an impedance sheet
by simply replacing with , where describes
the impedance variation of the surface. From this, recursive
expressions for the induced current of any order, for arbitrary
impedance variations, are derived. Far-field expressions for
plane wave excitation are derived by applying stationary phase
to evaluate the radiation integral. Due to the nature of the
far-field expression the induced current is left in the Fourier
domain, thus eliminating the need for additional integration.
The derivation is then extended to the small dipole excitation.
Scattered field expressions are formulated by applying the
spectral-domain representation of the dipole fields. For source
and observation many wavelengths distant stationary phase
is used to evaluate the field expression integrals. Results are
then shown for both plane wave and dipole illuminations.
Results up to second order are generated for plane wave
excitation across a step insert and compared to a third order
GTD solution [10]. An error bound for the perturbation
parameter is established and defined in terms of incident
wave polarization and angle. The effects of varying both the
perturbation parameter and insert width are discussed. Results
are then given for plane wave excitation at various oblique
angles. Results from both an impedance step insert and a more
gradual impedance transition, better representing a riverbed,
are compared. Results from dipole excitation show a two-
dimensional (2-D) grid of receiver field strengths for both
vertical and horizontal dipole orientation. Results show that
the component of the diffracted field is maximized for either
a vertically or horizontally oriented dipole.

II. I NTEGRAL EQUATION FORMULATION

FOR VARIABLE IMPEDANCE SURFACES

The geometry of the problem is as shown in Fig. 1 with
and as defined in standard spherical coordinates. Note that
the geometry is not a function of and, thus, the induced
current along and the scattered field are of the form or
are in phase with the incident field. We start by defining the
impedance boundary condition on the scattering surface as

(1)

Applying the field equivalence principle [11] to (1), the
magnetic field is replace by an equivalent electric current
and a magnetic wall placed behind the current, doubling it.
The following implied integral equation, which describes the
tangential surface electric fields, is generated:

(2)

The scattered field on the impedance surface is defined by

(3)

where the factor of 2 in (3) is from image theory and
is the spectral domain representation of the 2-D

Fig. 1. Scattering geometry for variable impedance surface.

Dyadic Green’s function for , derived from the spectral
domain representation of the free-space Dyadic Green’s func-
tion. To obtain (3), we start with the spectral domain form of
the free-space dyadic Green’s function for given by [12]

(4)

where . Since the dependence of the
induced currents and fields on is known the 2-D
Green’s function can be evaluated from (4) by integrating out
the dimension. Noting that

and integrating out the dimension gives the
following form of the 2-D Dyadic Green’s function for :

(5)

In (5), and

with defined by
. The unit vectors and in (5) are defined by

and (6)

Noting that , simplified expressions
for and are given by

and (7)

In (3), and a dependency on
of the form is assumed and suppressed. Substituting (5)
into (3) it can be shown that

(8)

The incident field is now defined as and from
this the tangential incident and reflected fields on the surface
are

(9)
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where again the factor of two on the right side of (9) is from
image theory. The explicit integral equation can now be written
as

(10)

Fourier transforming the integral equation and invoking the
convolution theorem of Fourier transforms [13] eliminates
the integration with respect to in scattered field term
of (10). The Fourier transform of the scattered field term
creates a term allowing the final integration with
respect to to be evaluated algebraically, modifying

to . Performing these operations on
(10) generates the following integral equation in the Fourier
domain:

(11)

Now using the definitions for and given in (7) and after
some algebraic manipulations, the following integral equations
for each current component in the Fourier domain are obtained:

(12)

(13)

III. I TERATIVE SOLUTION

In this section, a recursive relation will be shown relating
any order current to the previous order current. The zeroth
order current components and , which produce the
reflected field, will first be derived and then the recursive rela-
tionship will be shown. Definitions for the surface impedance
and induced current expansions must first be given. The
surface impedance is defined as

(14)

where is the perturbation parameter. In the Fourier domain
(14) becomes

(15)

For sufficiently small values of the surface currents in
the Fourier domain may be expanded as

(16)

For the zeroth order current components, cor-
responding to . Performing the
convolution on the left sides of (12) and (13) gives the
following two integral equations for the and components
of the surface fields:

(17)

(18)

Collecting terms in (17) and (18) and solving for
gives (19) and (20), shown at the bottom of the page, for
the zeroth order currents. The recursive relationship for higher
order currents is derived by applying the perturbed impedance
of (15) and the current expansion of (16) to (12) giving the
following integral equation relating to the higher order

(19)

(20)
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current components:

(21)

Rearranging the terms gives

(22)

Observing that (17) is embedded in (22) all terms containing
zero order current components vanish. Noting that the equal-
ity remaining must hold for all orders of , the following
recursive current relationship is established for thecurrent
component:

(23)

Similarly, the integral equation relating to the higher
order currents is

(24)

Collecting terms and solving (23) and (24) for the higher order
current components gives the recursive relationship between
each current order and the previous order shown in (25) and
(26) at the bottom of the page, where

and

(27)

IV. FAR-FIELD EVALUATION

Once the induced currents are obtained, the scattered field
expression can be derived analytically for any order current
provided the observation point is many wavelengths from the
scatterer. Recalling that the induced current is of the form

, the scattered field can be obtained
from

(28)

where in (28) is the spectral-domain representation
of the free-space dyadic Green’s function for given in
(4). Upon substitution of (4) into (28) and integrating first with
respect to and then gives

(29)

The unit vectors in (29) are given by

(30)

and (31), shown at the bottom of the next page. Noting
that is simply the Fourier transform of

with the final form of the scattered field in

(25)

(26)
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the far zone is

(32)

In the far field for , stationary phase
can be used to evaluate the integral in (32) [14]. Evaluating
the exponential function at it’s extrema
gives the following stationary phase point:

(33)

Here, and are the radial scattering distance and scattering
angle from the axis respectively in the plane with

, simply the propagation vector projected
into the plane or . Applying stationary phase
for a 1-D integral [14] to (32) gives the following far-zone
scattered-field expression for plane wave excitation:

(34)

V. EVALUATION OF SCATTERED FIELD

FOR SHORT DIPOLE EXCITATION

In this section, the scattering formulation for an impedance
insert excited at oblique incidence will be extended to include
dipole excitation. Consider a short dipole of lengthcarrying
a sinusoidal current of amplitude and located at

. The field emitted from this dipole at some
observation point for can be
represented by a continuous spectrum of plane waves. The
form of this field is expressed by

(35)

where , and is
the unit vector along the short dipole. The integrand of (35)
can be restated as , where

(36)

Recognizing that the integrand describes a plane wave prop-
agating along and using the linearity property of
electromagnetic waves, the scattered field can be expressed by
a superposition of scattering from individual plane waves or

(37)

where

(38)

and in (37) is the scattered far field from
each individual plane wave as described by (34). Again,
considering a situation where distance between source and
observation are large compared to wavelength, stationary
phase is used to evaluate the 2-D integral of (37) [15]. Noting
that the exponential function is given by

(39)

the stationary phase points are found to be

(40)

where and .
Evaluating (37) at the stationary phase points gives the final
form of the scattered electric field for the small dipole or

(41)

where is evaluated at the stationary phase point given
by (40) and where

(42)

The second derivatives at the stationary phase point are given
by

(43)

(44)

(45)

(31)
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Substituting the expression for from (38) into (41)
and noting that at the stationary phase point

gives the following analytical expression for
the scattered field:

(46)

In (46), the unit vectors and are those given by
(30) and (31) evaluated at the stationary phase point. The
following expression must be used for the plane wave incident
field amplitude which is implicit in :

(47)

where
. Simplified expressions for , where
can be derived by evaluating (25) and (26)

at the stationary phase points and making the substitutions
and

giving (48) and (49), shown at the bottom of
the page.

Evaluating (19) and (20) at the stationary phase point gives
the following explicit expressions for the zeroth order currents:

(50)

and (51), shown at the bottom of the page, where and
are derived from (47) and are given as

(52)

(53)

with and as defined previously. Now,
defining the zeroth order currents as

(54)

and substituting into (48) and (49), (55) and (56), shown
at the bottom of the next page, are obtained as the explicit
expressions for the first order currents, which can be used in
(46) to find the first order diffracted fields.

VI. RESULTS

In this section, the analytical results based on the pertur-
bation solution are validated in the limiting cases and are
compared with those obtained from independent techniques
where possible. As discussed previously, diffraction due to
plane wave excitation will first be examined. Then, a numerical
example is considered, to demonstrate the diffracted field
distribution caused by a river for a dipole excitation. For both
plane wave and dipole excitations the reference impedance
value is chosen to be , where is
the value of the unperturbed impedance. As the impedance
transition is designed to model a river, the value ofis se-
lected to simulate the impedance of moist soil surrounding the
river bed. The value is arrived at by assuming the impedance
of the river is modeled by slightly saline water at 25C.
Assuming the saline content of the water is approximately
4 pp/1000, where pp/1000 is defined as parts per 1000 on

(48)

(49)

(51)
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a weight basis, the river impedance, at 30 MHz is found to
be , derived from the equations for
complex permittivity given by Ulabyet al., for saline water
[16]. The soil impedance value is then assumed to be 1.5
times that of the river or , corresponding
to a perturbation parameter of 0.5. This value corresponds
closely to the value of , derived from the values
of permittivity and conductivity given by Hipp [17] for San
Antonio Gray Loam with a 5% gravimetric moisture content
and a density of 1.6 g/cm.

Note that Fig. 1, shown previously, describes the scattering
coordinates for both types of excitation.

A. Plane Wave Excitation

In this section, results will be shown and discussed for
plane wave excitation of the impedance surface. Initially, the
impedance transition will be modeled as a step discontinuity.
The step insert will be used to validate and characterize the
method by comparing with a GTD solution, normal incidence

. Results will then be shown for various oblique
incidence angles. A more gradual impedance transition func-
tion, which better represents an actual riverbed, will then
be described and results compared with that of the step
insert. Note that all plane wave results show the normalized
scattering width around the specular scattering cone
with as . The specular cone
is the cone generated by the requirement that the scattered
field propagation vector along the uniform axis of the insert
matches that of the incident field along the insert [see (32)]. In
the plotted results, varying from 90 to 90 is equivalent
to in (33) varying from 180 to 0.

An important feature of the perturbation solution is its
convergence properties. It is important to know for what values
of the perturbation expansion of (16) converges to the
exact solution. To characterize the limits of the perturbation
method an error bound must be established on the maximum

allowable, at a given incidence angle and for a particular
impedance profile. Mathematically, this can be shown by
finding the radius of convergence of the expanded current
series, in terms of the perturbation parameter. Even for
a value of the series will converge if the current
coefficients are decreasing for higher orders. Let us first
consider a limiting case for which an exact solution exists. This
corresponds to a constant perturbation function ( )
whose Fourier transform is afunction. Applying this to (19)

and (20) and assuming gives the following forms for
the horizontally and vertically polarized currents:

(57)

(58)

After some algebra the previous equations can be put in the
form

(59)

where are constants and

for

for
(60)

The Taylor Series expansion of (59) will converge uniformly
for all , which indicates that the radius of convergence
for low-impedance surfaces can be very high. Using the value
for moist soil given previously or ,
the limiting cases are for and For horizontal
polarization this gives the maximum values forof 14.62, for

and , for , and for vertical polarization 14.62
and 1, respectively. Note that for all plane wave results that
follow indicating that and for
horizontal and vertical polarization, respectively, is acceptable
for our study.

Having established a sense of the radius of convergence of
the perturbation solution, it is also desirable to know at what
a first-order solution will give desirable accuracy. With this in
mind, results were generated for both first- and second-order
diffraction using the perturbation method and compared to a
third-order GTD solution for the step-impedance function. The
order of the GTD solution describes to what degree diffracted
fields are accounted for. First order are the diffracted fields
generated by the incident wave, second order are the diffracted
fields generated by these initial diffracted fields interacting
with the diffracting edges, etc. TM results are shown for
varying from 1.0 to 5.0, in Fig. 3. Note that TM and TE are

(55)

(56)
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Fig. 2. Dipole position over variable impedance plane.

defined as transverse to the plane of incidence. All results
shown are for a step insert 5wide at normal incidence

. As can be seen, for a of up to 2.5 the first-
order perturbation solution tracks the GTD very nicely for the
TM case except at near grazing. The perturbation results begin
to degrade for the TM case for a of 5.0. The TM results
shown are a worst case with first- and second-order TE results
showing excellent agreement for a as high as 5.0.

The convergence property of the perturbation solution as
a function of the width of the insert step function was also
observed. The insert width was varied from 1 to 20. was
fixed at 2.5, where the first-order TM solution was shown
previously to degrade for an insert width of 5. Both the
TM and TE results were basically insensitive to insert width
variations.

Having characterized the perturbation method, both in terms
of an error bound and insert width, results will now be shown
for a step insert 5 wide with and

excited at oblique incidence angles. As described
previously these parameters best characterize those of an actual
river surrounded by soil. The insert width was chosen to
correspond to a river 50 m wide at 30 MHz.

Both copolarization and cross-polarization results are shown
in Fig. 4. Fig. 4(a) shows the copolarization scattering width,
normalized to wavelength , for TM case of a step insert
excited by a plane wave at a constant angle with
rotated at the oblique angles, 0, 45, and 90. Referring to
Fig. 4(a), the peak scattering for is shown to be at
approximately the specular angle of . At
the incident wave is along the step insert and the scattering
pattern is symmetric in the- plane as expected.

Theoretically no cross-polarization results can exist for an
incidence angle of . As is rotated toward 90
cross-polarization levels become more significant. Fig. 4(b)
shows cross-polarization results, again in terms of normalized
scattering width for plane wave excitation with
and . Note that as the incident field is rotated to a
position along the step insert , the cross-polarization
levels rise, and, in fact, the cross-polarization for
with is the highest level for all results including
copolarization curves. This indicates that receiver polarization
(measuring the diffracted field) need be adjusted for optimum
polarization matching as the incident field propagation vector
moves about the step insert.

(a)

(b)

(c)

Fig. 3. Normalized bistatic echo width(�s=�) of an impedance step insert
5� wide with �o = 20:9015 � i17:4433, at �i = 45�, �i = 0�, first
(- � - � - �) and second-order (- - - - -) perturbation technique compared with
GTD (——) for varying� TM case. (a)� = 1:0. (b)� = 2:5. (c)� = 5:0.

In order to more accurately represent an actual riverbed
an impedance function with a more gradual transition than
the step function was generated and results compared to those
generated by the step insert at normal incidence. The transition
is made over a distance of and and the width of the
gradual impedance function set at 5, the same as the step
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(a)

(b)

Fig. 4. Normalized bistatic echo width(�s=�) of an impedance step insert
of width 5� with �o = 20:9015�i17:4433;� = 0:5 at�i = 45�, first-order
perturbation technique. (a) The effects of obliquity for�i = 0 ( ), 45
(����), and90� (����) TM case with (b) cross polarization for� = 90�,
TETM ( ) and TMTE (� � ��).

insert. The width of the gradual impedance function is defined
as the distance between points where the function is 3 dB
below maximum. Also and were as set previously for
simulated river, or 0.5 and , respectively.
The results for the step insert, shown previously with ,
are overlayed with those of the gradual impedance transition
and are shown in Fig. 5 for TM polarization. As can be seen in
Fig. 5, the gradual impedance transition tends to lower and pull
the sidelobe levels toward the specular scattering direction of

. This is as expected since a more gradual transition
effects the currents less and in the limit should reduce to
case of specular scattering only. TE polarization results were
similar.

B. Dipole Excitation

The intent of simulation with dipole excitation is to evaluate
field strengths as would be expected in a mobile communi-
cations channel. With this in mind, a dipole is placed
at a position 1 km away from the impedance step insert
along the axis and 100 m above the impedance

Fig. 5. Normalized bistatic echo width,(�s=�), of an impedance step insert
of width 5� (—) compared with gradual transition insert of bandwidth 5�
(- - - - -), �o = 20:9015� i17:4433;� = 0:5 at �i = 45�; �i = 0 for both
cases, first-order perturbation technique, TM case.

plane or at the approximate height of a hill or microwave
cellular link. Fig. 2 shows the dipole positioning above the
river with Fig. 1 again showing the appropriate axis and
angles. Simulations were run for both vertical directed)
and horizontal directed) dipoles. The E-field strengths are
evaluated at a height of 1.8288 m (6 ft) above the impedance
plane or approximately the height of a human being. The
result of the simulations, for first order diffraction are shown
in Fig. 6(a)–(f) with Fig. 6(a)–(c) showing diffracted fields
levels in decibels when the impedance plane is excited by
a vertically oriented dipole and Fig. 6(d)–(f) showing those
excited by a horizontal dipole orientation. The simulations
were run for both polarizations with an insert width of
of 0.5 and as defined previously for
an actual river. Results were generated in a grid.
The incident field components were normalized to

, where are the dipole current amplitude and length
as described previously. Due to the far-field criteria that the
observation point be at least from the scatterer in the
finite dimension, where is the width of the insert, only
results for distances at least 50away from the insert are
shown. All results within 50 of the center of the insert are
not included and are indicated by the boxed area between 0
and 50 in the dimension of Fig. 6(a)–(f). For all plots,
the dipole is located at a position 100 wavelengths in the
direction along the axis, ten wavelengths above the
impedance plane . The thing to note in Fig. 6(a)–(f)
is that the component of the electric field is dominant for
either dipole orientation. For the vertically directed dipole
the component is two orders of magnitude greater than
the component while for a horizontally oriented dipole the

component is an order of magnitude greater then the
component. Note that a null occurs along the axis where
the dipole is positioned for the field component in the case
of the vertical dipole and the and field component for the
horizontally oriented dipole, as expected. It is also observed
that field levels in the half plane where the dipole is located

are significantly lower than those on the opposite side.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. First-order diffracted E-fields (decibels), vertical, and horizontal dipole excitation for an impedance step insert 5� wide
�0 = 20:9015 � i17:4433;� = 0:5. (a) jExj, (b) jEy j, (c) jEz j for a vertically oriented dipole with (d)jExj, (e) jEy j, (f) jEz j
for a horizontally oriented dipole.

Note that the effects of changing receiver heights on dif-
fracted field strength was also investigated. The field levels
along the axis at were observed for varying
receiver heights. In general, received field levels increased for
increasing receiver height. This trend was observed for both
vertically and horizontally oriented dipole excitations and all
receiver field polarizations with one exception. The-field

component generated by a vertically oriented dipole showed a
decrease in field levels for increasing receiver heights.

VII. CONCLUSIONS

The intent of this study was to accurately predict and
observe diffraction from terrain features that can be modeled
by variable impedance surfaces such as rivers, flat shorelines,
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and shallow troughs. Using the field equivalence principle,
the diffraction problem is formulated in terms of an integral
equation for a fictitious electric current induced on the variable
impedance surface. The river was modeled as an impedance
transition in an infinite plane. A perturbation technique was
used to derive a recursive solution for any order diffraction cur-
rent in terms of the previous order. Stationary phase techniques
were used to evaluate far-field expressions for both plane
wave and short dipole excitations. Initial results were shown
for plane wave excitation to characterize and validate the
perturbation technique. Error bounds were established to show
that the technique could evaluate perturbations equivalent to
those of an actual river. Using impedances comparable to
those of an actual river, scattering results, at various oblique
incidence angles, were shown when the impedance transition
was a step function. It was observed that the cross-polarization
levels for a TM polarized field incident along the river
dominated the scattering levels. Effects of a more realistic
gradual impedance transition were also shown. Results were
then generated for short dipole excitation. It was observed
that the component of the received electric fields dominated
for either a vertically or horizontally oriented dipole and
increasing receiver height produced higher field levels for most
cases.
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