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Analysis and Applications of Backscattered
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Abstract—In this paper, the application of the radar backscat-
ter frequency correlation for classification and inversion of physi-
cal parameters of terrestrial targets is investigated. Traditionally,
in radar remote sensing, the backscattering coefficients and the
backscatter phase difference statistics of a distributed target are
considered for estimating the biophysical parameters of interest.
Because of the complex nature of random media scattering
problems, however, target classification and parameter inversion
algorithms are very convoluted. One obvious way of enhancing
the success and accuracy of an inversion algorithm is to expand
the dimension of the input vector space. Depending on the radar
parameters, such as footprint (pixel) size, incidence angle, and
the target attributes (physical parameters), the backscatter signal
decorrelates as function of frequency. In this paper, analytical
and experimental procedures are developed to establish a re-
lationship between the complex frequency correlation function
(FCF) of the backscatter and the radar and target attributes.
Specifically, two classes of distributed targets are considered: 1)
rough surfaces and 2) random media. Analytical expressions for
the frequency correlation function are derived and it is shown
that the effect of radar parameters can be expressed explicitly
and thus removed from the measured correlation functions.
The University of Michigan wideband polarimetric scatterometer
systems are used to verify the theoretical models and inversion
algorithms developed in this study.

Index Terms—Frequency correlation function, radar backscat-
ter, random media.

I. INTRODUCTION

W ITH the rapid industrial and human population growth
since the turn of the century, the demand for accu-

rate remote-sensing instruments for monitoring environmental
changes and management of natural resources is increasing.
Due to their all-weather operation capability, radar systems
operating at microwave frequencies have long been proposed
and implemented as powerful remote-sensing tools in retriev-
ing the physical parameters of interest. With the advances
in technology, the initial incoherent scatterometer systems
evolved into high-resolution synthetic aperture radars (SAR’s),
fully polarimetric SAR’s, and, most recently, interferometric
SAR’s (INSAR’s). During the past three decades, considerable
efforts have been devoted toward the development of scattering
models and inverse scattering techniques for interpreting the
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backscatter measurements of different terrestrial targets, such
as rough surfaces and vegetation.

The electromagnetic wave interactions with scatterers in a
random medium, say, a forest canopy, is a complex process
that depends on the target attributes, such as size, shape,
and orientation distributions, and dielectric properties of the
constituent particles as well as the particle arrangement and
medium architecture. For most remote-sensing applications,
the gross parameters of the target, such as vertical extent,
density, and total biomass, are often the parameters of interest.
The electromagnetic observations, however, are often sensitive
to a much larger number of target parameters. In order to
obtain the parameters of interest, all of the fine features of the
forest canopy must be extracted, for which accurate scattering
models and reliable inversion techniques as well as a large
number of radar observations are needed. Polarization and
frequency diversity are often used to increase the number of
independent radar observations [1]–[3]. Interferometric SAR’s
provide two additional independent measurements sensitive to
target parameters that are also being considered for retrieval
algorithms [4]. It should be noted, however, that implemen-
tation of simultaneous multifrequency, multipolarization, and
interferometric SAR systems is prohibitively expensive.

In the search for an alternative and more effective approach,
the application of the complex frequency correlation function
(FCF) of the radar backscatter response for retrieving the
physical parameters of terrestrial targets is investigated in
this paper. As will be shown, in the microwave region, the
decorrelation behavior of the backscatter response from a
random medium is mostly dependent on the structure and
distribution of the medium, with almost no dependence on
the specific parameters that describe elements constituting the
random medium. This is due to the fact that the scattering
from a given element changes only slightly with frequency
over the region where the entire target decorrelates. In other
words, frequency decorrelation is due to changes in the relative
positions between the scatterers (hence, changes in the relative
phase angles between them) and not on the scatterers them-
selves. Thus, whereas correlation with respect to polarization
is dependent on both the scatterers of a random medium
as well as the structure of the medium, correlation with
respect to frequency is dependent on target structure only,
facilitating the easy extraction of the desired parameters. The
literature concerning the use of frequency correlation of the
radar backscatter response dates back to the original work
of Ransone and Write [5], in which a two-frequency radar
( -radar) was used to obtain additional information about
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long ocean waves through their effects on shorter waves.
Perhaps independently, Weissman [6], [7] demonstrated the
application of two-frequency radars for the measurement of
ocean waves heights using the Kirchhoff approximation of
rough surface scattering. Another reported application of fre-
quency correlation behavior of radar backscatter pertains to
the characterization of backscatter statistics of distributed
targets [8]. Using wideband radars and the backscatter at
frequency steps wider than the decorrelation bandwidth of
the target, the required independent samples are generated
[9]. The independent samples obtained from the frequency
response reduce the number of independent measurements
needed to construct the statistics of the backscatter. Correlation
of the scattered fields along different scattering directions
have also been studied [10], with particular emphasis on its
application to the reduction of radar clutter. The relationship
between the angular and frequency correlation functions of a
target has been established [11]. This study is of particular
interest because the outcome of this investigation can directly
be applied in characterizing the response of a target to an
interferometric SAR.

In what follows, the complex FCF’s of random media and
rough surfaces are studied for the purpose of establishing a
relationship between the physical parameters of the target and
the measured correlation functions. Analytical expressions for
the FCF are derived and compared to experimental results
for different terrestrial targets. It is shown that the effect of
radar parameters can be expressed explicitly and thus removed
from the measured correlation function. In Section II, the FCF
of the backscattered field is defined. In Section III, analytical
expressions for the FCF’s of the backscattered fields from both
a random rough surface and a statistically homogeneous layer
of random scatterers above a dielectric half-space are derived.
Then, numerical simulations, demonstrating the dependence of
FCF on the physical and electrical properties of random media,
and controlled experiments, demonstrating the validity of the
derived theoretical models, are reported in Section IV.

II. THE FCF

Advanced radars and scatterometers use a wideband signal
as a means for measuring the range or enhancing the range
resolution. The standard technique is to transmit a linear FM
or stepped-frequency modulation (chirped signal) and pass the
received signal through a matched filter to compress the signal
to achieve the desired range resolution. In this process, the
frequency response of the target is measured coherently, which
can be used to calculate the complex FCF of the backscatter.
Obviously, much more can be inferred from the complex
FCF than the traditional -radars, which can provide only
the magnitude of the correlation function at a single point
corresponding to a specific frequency shift.

Consider a radar system with bandwidthilluminating a
distributed target. Suppose a sequence of independent mea-
sured backscattered fields from the distributed target is avail-
able at many discrete frequency points within the radar band-
width. If the bandwidth of the radar is a small fraction of
the center frequency , it is expected that the backscat-

tering coefficient be independent of frequency over the radar
bandwidth, i.e.,

Under this assumption, the backscatter random process
becomes, approximately, a stationary process. Therefore, the
covariance function of the process is only a function of
frequency shift

The complex FCF of this process is defined as the normalized
covariance function whose magnitude and phase are given by

(1)

It is obvious that, when , the FCF takes its maximum
value of unity and, as increases, approaches zero.
In practice, the FCF is characterized approximately from
independent sample measurements andfrequency points.
Let us denote the electric field of theth spatial sample and
th frequency point by . Then

where .

III. T HEORETICAL ANALYSIS

In this section, analytical expressions for the backscatter
FCF of rough random surfaces and a statistically homogeneous
layer of random scatterers above a dielectric half-space are
obtained. The expressions are explicitly expressed in terms of
radar and target parameters.

A. FCF for Rough Surfaces

An analytical expression for the backscatter FCF of rough
surfaces was obtained by Weissman [6], [7] using the Kirch-
hoff approximation for a Gaussian beam radar system. In
what follows, his results are extended to a more general class
of rough surfaces and for polarimetric radars with arbitrary
radiation characteristics.

Consider a narrow-beam polarimetric radar system of band-
width located at an altitude on the -axis of a coordinate
system, illuminating a random rough surface at an incidence
angle , as shown in Fig. 1. Let us assume that the rough
surface is characterized by the height random process ,
which is measured with respect to the plane. A Gaussian
probability density function (p.d.f.) is chosen for , as
the height p.d.f. of most natural surfaces are found to be
Gaussian [12]. The standard deviation of the height function,
denoted by , will be referred to as the rms height of the
surface. The backscattering coefficients of a random surface
are usually complex functions of the rms height, the surface
correlation function, and its dielectric constant. However, in
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Fig. 1. Geometry of a radar system illuminating a homogeneous distributed
target.

Fig. 2. Dependence of the distancer on the rough surface heightz(x; y).

this analysis, the mathematical complexity associated with the
calculation of the scattered field is circumvented by using some
statistical and physical properties of the scattered field. To
accomplish this, certain assumptions regarding the statistical
properties of the surface must be made. Here we assume that
the surface has a gentle slope as far as the large-scale surface
roughness is concerned. In this case, the surface rms height
is dominated by the large-scale surface roughness. Under this
assumption, the scattering process becomes localized over the
surface. The geometry of a typical surface sample considered
in this paper is shown in Fig. 2. This class of rough surfaces
include Kirchhoff surfaces considered in [6] and [7].

To derive an expression for the FCF, let us first subdivide
the illuminated area (antenna footprint) into small pixels whose
dimensions and are slightly larger than the scattered
field correlation distance. Under this assumption, the scattering
matrix associated with each pixel is a random variable that is
statistically independent of the scattering matrices of the other
pixels [13]. The measured scattered field associated with
a pixel centered around can be obtained from

(2)

where is the free space wavenumber ( , is the
wavelength), is the differential scattering matrix of the
pixel, is the incident field, and is the distance from the
pixel center to the radar, which is given by

where . Equation (2) is valid for
a distortionless radar with a uniform illumination; however,
in practice, polarimetric radar measurements are corrupted
by imperfections (distortion parameters) in the radar system
known as systematic errors that can be removed from the
measured quantities. In this case, the measured scattered field
can be expressed as

(3)

where and are the radar distortion matrices
of the receiver and transmitter, respectively, and functions of
the antenna radiation patterns and imbalances associated with
the radar channels [13]. The total scattered field measured by
the radar is the coherent addition of the scattered fields from
the individual pixels, that is

(4)

For simplicity, let us assume that the cross-talk factors of the
antenna are small, which simplifies and into diagonal
matrices [13]. In this case

(5)

where and denote, respectively, the transmit and receive
polarizations. Without loss of generality, the amplitude of the
incident field is assumed to be unity in (5). The product

is proportional to the variations
in the transmit and receive antennas over the illuminated
area, and henceforth will be denoted by . This
product can be obtained by calibrating the radar over its entire
mainlobe, as demonstrated by Sarabandiet al. [13].

The covariance function of the measured scattered field can
be computed using (5) and is given by

(6)

If the radar system is in the far-field region of each pixel, the
distance function can be approximated by
for the denominator term in (6) and by
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for the phase term. In this case, the covariance function can
be expressed as

(7)

The expression in (7) can be simplified further if the following
observations are taken into consideration.

1) Since the rms slope of the large-scale roughness is
considered to be small, it is reasonable to assume that
the exponential function and the scattering amplitudes
are mutually uncorrelated.

2) The shift in frequency is relatively small compared to the
center frequency, therefore, the backscattering amplitude
does not vary significantly over , that is

Here is the radar backscattering coefficient of the
random rough surface.

3) Pixel size is chosen to be larger than the scattered
field correlation distance; hence, is
independent of when and

.

Under these conditions, the ensemble average term in (7) can
be expressed as follows:

and
and

(8)

where is the covariance function of the rough
surface independent of the radar system and is given by

(9)
Upon substituting (8) into (7) and replacing the summations
with integrals, we arrive at the following expression for the
measured covariance function

(10)

where and is the speed of light.

Fig. 3. System correlation functionRvv

sys
(�f) of a C-band radar (5�

beamwidth and 400 MHz bandwidth) computed for different incidence angles
and antenna heights.

Using (10), the following expression for the magnitude of
FCF is obtained:

(11)

where

(12)

It is noted from (11) that the measured FCF of a rough
surface is composed of two terms, the first is , which
characterizes the system influence on the measured FCF, and
the second term is , which is the FCF of the rough
surface independent of the radar system used. This factorial
decomposition is only valid for a homogeneous rough surface.
Characterization of the radar-dependent term allows for the
extraction of the surface-dependent term from the measured
FCF, which in turn can be used to retrieve the physical
parameters of the surface. The system FCF of a C-
band scatterometer of 5beamwidth and 400-MHz bandwidth
is plotted in Fig. 3 for different incidence angles and antenna
heights. The antenna patterns of the system, which will be used
later on, were measured according to the procedure outlined
by Sarabandiet al. [13]. It is noted (see Fig. 3) that for a
given radar with fixed beamwidth and bandwidth, an increase
in the effective antenna spot size along the range, due to an
increase in either the incidence angle or antenna height, causes

to decrease at a higher rate. This behavior would
mask the effect of the target component of FCF [ ]
on the measured FCF [ ].

The first term in (9) is simply the characteristic function of
random variable evaluated at . As
mentioned before, experimental data indicate that the surface
height for most natural surfaces has a Gaussian p.d.f.,
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thus

where and are the mean and variance of , respec-
tively. The covariance function given by (9) can be written
as

(13)

Note that in this derivation it is assumed that the antenna
beamwidth is narrow enough so that . It
is interesting to note that FCF is only a function of the rms
height of the rough surface and is independent of the effective
permittivity of the lower half-space. Accurate measurements
of FCF provide a means of retrieving surface roughness, as
will be demonstrated in Section IV.

Monakov et al. [8] derived the FCF of a homogeneous
rough surface using Kirchhoff approximation to arrive at an
improved understanding of the fading characteristics of radar
backscatter from rough surfaces. In their formulation, the
surface correlation function was included in the analysis and
the radar spot on the ground was treated as a single pixel. The
analytical FCF expression reported in [8] is similar to (13) and
is included here for convenience

sinc

where is across-track dimension of the radar spot on the
ground. The first and second terms correspond to and

, respectively. It is observed that the normalized FCF
is independent of the surface correlation function despite its
inclusion in the derivation.

B. A Layer of Random Scatterers Above a Ground Plane

Now let us consider a layer of thicknessconsisting of a
collection of scatterers randomly embedded in a homogeneous
medium, as shown in Fig. 4. Suppose that a narrow beam
radar, situated at a height above the layer, illuminates the
random medium. The scattering volume, which can be either
sparse or dense, is situated above a homogeneous ground plane
with either smooth or slightly rough interface. For a dense
random medium composed of discrete particles, such as sand,
or coagulated/connected matrix of particles, such as snow, a
cluster of particles can be considered as the scatterers whose
dimensions can be characterized from the field decorrelation
distance in the medium. The position, size, and orientation of
the scatterers within the cluster are random variables; hence,
the scattering matrix of the cluster is also a random variable.
In this paper, the word cluster will be used in reference
to a scattering center that could be either a collection of
particles (dense random medium) or an individual particle
(sparse random medium).

Fig. 4. Dominant scattering mechanisms contributing to the total backscatter
response of a layer of random scatterers above a ground plane.

Assume that a plane wave is illuminating the random
medium at an incidence angle , as shown in Fig. 4. In
addition, let the effective dielectric constant of the medium be

, where (low-loss medium). The incident
wave at the interface between air and the random medium
refracts according to Fresnel’s law, in which the direction of
propagation is changed from to and the magnitude of the
transmitted wave is given by . Here or
and is the Fresnel transmission coefficient at the interface
between air and the equivalent medium. Inside the layer, a
cluster is illuminated by the transmitted mean-field (a plane
wave) propagating in the layer with an effective propagation
constant ( ) and a spherical scattered wave is
generated. The scattered field is proportional to the scattering
amplitude of the cluster in a background of . In this case,
the -component of the propagation constant of a plane wave

propagating in medium 2 is , where

and . Noting that

can be approximated as , it
can be shown that reduces to ,
where . Therefore, the transmitted field at point

in medium 2 is approximated by

where and .
As mentioned before, the scattered wave is a spherical wave

whose amplitude and phase variations must be accounted for.
Noting that the direction of propagation of the scattered wave
in the backscatter direction is given by

and using the origin as the reference phase center,
the phase of the scattered field can be determined. Referring
to Fig. 4, it can easily be shown that the phase shift due to
the path length OB is equal to the phase shift due to the
path length AC. Therefore, the extra phase shift is due to
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the path length SC only, which is given by
. In addition, as the ray propagates from

S to A, it also experiences attenuation that is proportional
to . Hence, the scattered field from a scatterer
located at , referenced to the origin, has the phase and
magnitude coefficients , which is exactly the
same coefficient as for the incident wave. It should be noted
that for sparse medium, the interface between air and the
random medium is diffuse and the incident wave will not be
diffracted. The transmission coefficient in this case can be set
equal to unity.

To the first order of scattering approximation, ignoring
the effect of multiple scattering between the clusters, the
backscatter from a cluster along the-axis is composed of
four components, as illustrated in Fig. 4. These components
are as follows.

1) Direct backscatter from the cluster transmitted through
the interface between air and the random medium. This
term is denoted by and is given by

(14)

where is the scattering matrix of the cluster in
backscatter.

2) Cluster-ground scattering term that represents the
bistatic scattering contribution from the cluster reflected
from the ground plane and transmitted through the
interface. This term is denoted by and is given by

(15)

Here is the reflectivity of the ground plane and the
exponential functions account for the spherical propaga-
tion of the scattered field from the cluster to the ground
plane and from the ground plane to the interface. The
reflectivity term or is simply the Fresnel
reflection coefficient for smooth surfaces and for rough
surfaces is the coherent reflectivity of the surface [14].
Also, represents the element of the differential
scattering matrix in the bistatic direction, as shown in
Fig. 4.

3) Ground-cluster scattering term is the reciprocal of the
cluster-ground term. The transmitted wave travels to the
ground plane and then is reflected from the surface. The
reflected wave illuminates the cluster and the bistatic
scattered field travels to the interface. This term is
denoted by and is given by

(16)

4) Ground-cluster-ground scattering term is generated from
the backscatter of the cluster illuminated by the reflected
wave, as shown in Fig. 4. This term is denoted by
and is given by

(17)

where as before is the element of the differen-
tial scattering matrix of the cluster in backscatter when
illuminated by the reflected wave.

The total backscattered field from the cluster, located at
point in the random medium, is the coherent sum of
the individual components, that is

(18)

It should be emphasized that the phase reference point for the
expression given by (18) is a point on the interface between
air and the random medium. The scattered field from a small
pixel centered at over the interface of the random
medium and air (the plane) is the coherent sum of the
scattered fields from all clusters along the transmitted ray and
is given by

where denotes the height of theth cluster. Changing the
reference phase point to be at the radar antenna and adding
the contribution of all small pixels within the illuminated area,
the measured scattered field can be obtained from

(19)

In this case, the covariance function of the measured field can
be expressed as

(20)

If we assume that the cluster size is smaller than the field
correlation distance, the ensemble average in (20) can be
expressed as

(21)

where is the scattered field per unit volume.
Upon substituting (21) into (20) and replacing the summa-

tions with integrals, we arrive at the following expression for
the measured covariance function:

(22)

where is the covariance function for the volume
scattering layer independent of the radar system

(23)
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By normalizing the measured covariance function to its max-
imum value at and taking the absolute value, the
magnitude of the FCF of the random medium can be expressed
by

which is similar to the expression found for the rough surface
case.

The expression for the covariance function can be simpli-
fied further by invoking a few heuristic/intuitive scattering
properties of random media. For a random collection of
scatterers, it is expected that the ensemble average of the
scattered amplitudes in both backscatter and bistatic directions
be mutually uncorrelated, that is

Here, represents scattering per unit volume
. Similarly, it is also assumed that the

backscattering amplitudes and are uncorrelated,
thus

Furthermore, it is assumed that the random medium is az-
imuthally symmetric,

These assumptions have been demonstrated numerically, using
single scattering theories, for a collection of randomly oriented
flat leaves. It should be noted, however, that these assumptions
may not be valid in an ordered medium where the particle size
and orientation distribution functions are narrow.

Substituting (14)–(18) into (23) and taking the above as-
sumptions into consideration, it can be shown, after some
algebraic manipulations, that

Re (24)

where and Im
is the extinction coefficient in Neper per meter. Here,

is an element of the medium phase matrix in the
backscatter direction. Similarly

represent elements of the phase matrix in the bistatic di-
rection. In this derivation, the reciprocity theorem was en-
forced in relation to the bistatic scattering amplitudes, namely,

.

The covariance function as expressed in (24) further sim-
plifies for the copolarized response (i.e., )

(25)

In this case, the covariance function is a function
of the extinction coefficient and the copolarized elements of
the direct and bistatic scattering phase matrices. Since the
FCF is a normalized function with a maximum of unity at

, the absolute values of the bistatic and backscatter
terms in (25) are dropped and only their ratio remains in the
FCF expression. Normalizing (25) by , the
normalized copolarized covariance function can be expressed
as

(26)
where is the ratio between the bistatic and backscatter
phase matrix copolarized elements ( ). As ob-
served from (26), the copolarized covariance is a function of
only two statistical parameters describing wave propagation
and scattering in the random medium, namely,and .

As a special case, let us consider a semi-infinite medium
or equivalently a medium for which . In this
case, the bistatic term in (24), which characterizes the bistatic
scattering contribution of the clusters as it reflects off of the
layer’s lower interface, no longer contributes to the covariance
function. Hence, the expression for the covariance function
reduces to

(27)

and the magnitude and phase of the FCF of the semi-infinite
medium are given by

Re

(28)

It is noted that the FCF of a semi-infinite medium is only
a function of the real part of the layer’s effective index of
refraction (i.e., Re ) and the extinction coefficient of
the medium. In this case, can be used to directly
estimate the extinction coefficient.

If a slightly rough surface is present underneath the scat-
tering volume, the effect of the backscatter from the ground
plane can be added noting that the surface scattering process is
independent of the volume scattering process. In this case, the
total covariance function of the distributed target is given by

(29)

where is the covariance function of the rough
surface, as given in (13).
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IV. NUMERICAL SIMULATION AND

EXPERIMENTAL VERIFICATIONS

Through numerical simulations, a sensitivity analysis is
performed to demonstrate the dependence of the FCF on
the physical and electrical properties of random media and
rough surfaces. Also, the validity of the theoretical models
is demonstrated by conducting controlled experiments using
wideband scatterometers.

A. Sensitivity Analysis

In the previous section, expressions for the FCF of ran-
dom surfaces and volumes were derived. Specifically, it was
shown that FCF can be expressed in terms of the extinction
coefficient, elements of the medium phase matrix, depth, and
the reflectivity of the lower half-space, as well as the radar
parameters, such as polarization, incidence angle, and radiation
pattern. The objective of this section is to study the behavior of
the FCF to demonstrate the potential of the FCF as a parameter
for inversion algorithms. Consider a tenuous random medium
composed of discrete scatterers with a fractional volume less
than 0.01. The medium extinction matrix can be evaluated
using the optical theorem. In this case, both the extinction
and the phase matrix of the medium can be computed easily.
Assuming azimuthal symmetry for the orientation distribution,
it can be shown that, in the forward scattering direction
( ) , when
[15], and therefore, the extinction matrix reduces to a diagonal
matrix. Hence, the extinction coefficient for the-polarized
field is given by

Im (30)

where is the number density of scatterers per unit volume
and angles and denote the elevation and azimuth angles
defining the direction of propagation. The expected value
of the scattering matrix elements in the forward scattering
direction is characterized by computing

(31)

where is the joint distribution function of size ()
and orientation angles of the scatterers. The phase matrix
elements are proportional to the incoherent scattered power
per unit volume and are computed from

(32)

where subscripts and denote the scattered and incident
directions, respectively.

As an example, we considered a uniform layer of leaves
above a smooth ground plane. Flat square leaves with surface
area 15 cm, thickness 1.33 mm, and permittivity

were considered for this simulation. The leaf

Fig. 5. Relative contribution of the direct, indirect, and bistatic terms of
Rvv

vol
of a tenuous random medium (d = 1 m, no = 1000/m3; �o = 20

o).

Fig. 6. Numerical simulation of the FCF of theV V - andHH-polarized
backscatter response of a tenuous random medium (d = 1 m,no = 1000/m3;
�o = 20

o).

is modeled as a resistive sheet, and its scattering matrix
computed following the procedure reported by Senioret al.
[16]. The simulations were performed at 9.5 GHz, and a
uniform probability distribution function was used for the
orientation angles of the leaves. In addition, the permittivity
of the lower half-space was assumed to be ,
corresponding to a soil moisture of .

To demonstrate the influence of the three major scattering
mechanisms (discussed in Section III-B) on the FCF, the con-
tribution of each scattering mechanism in (24) was computed
for a random medium with m and /m at

incidence angle. The FCF and the direct backscatter,
indirect backscatter, and bistatic contribution to the overall
FCF for the -polarized case are plotted in Fig. 5. It is
shown that FCF is a strong function of the first two terms,
namely, the direct backscatter and the bistatic terms but not
the indirect backscatter term. This is due to the fact that
the indirect backscatter term is reduced by the square of the
surface reflectivity ( ). In Fig. 6, the FCF’s for
both the - and -polarized backscatter responses are
shown, which clearly demonstrate the dependence of FCF on
polarization. The higher value of for -polarization
when compared to -polarization at MHz is due
to the fact that the bistatic scattering phase function () for

-polarization is twice as high as that for -polarization.
The dependence of the -polarized FCF on the number
density of scatterers for this medium with m and
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Fig. 7. Dependence of FCF of a tenuous random medium on number density
no (d = 1 m, �o = 20

o, V V -polarization).

Fig. 8. Dependence of FCF of a tenuous random medium on layer thickness
d (no = 500/m3, �o = 20

o; V V -polarization).

is shown in Fig. 7. It is shown that the backscatter
of the medium decorrelates at a slower rate with the shift in
frequency as the number density of particles () increases.
This behavior can be explained by noting that the extinction
rate in a tenuous medium is directly proportional toand the
fact that, as is increased, the bistatic contribution experiences
attenuation at a much higher rate than the direct backscatter
contribution. That is, the FCF of the medium approaches the
FCF of a half-space medium.

The FCF was computed once again, however, this time with
being fixed at 500/mwhile varying the layer thickness

between 0.5 m and . Fig. 8 demonstrates the dependence
of FCF on layer thickness. It is observed that, as the layer
thickness is increased, the backscatter decorrelates with the
frequency shift at a higher rate (lower correlation bandwidth).
Also, more side lobes are generated but with lower amplitudes.
This can be attributed to the fact that an increase in the layer
thickness results in a decrease in the bistatic term contribution
due to an increase in total attenuation ( ).

Fig. 9 demonstrates the sensitivity of the -polarized FCF
to variations in the incidence angle. In this figure, the layer
thickness and number density were kept at 1 m and 500/m,
respectively. It is observed that the correlation bandwidth
increases with the increase in the incidence angle. This can
be attributed to two facts: 1) the reflectivity of the lower

Fig. 9. Dependence of FCF of a tenuous random medium on incidence angle
�o (d = 1 m, no = 500/m3; V V -polarization).

interface is reduced for -polarization as the incidence
angle is increased, which lowers the contribution from the
bistatic term and 2) the overall transmissivity through the layer
decreases as the incidence angle increases. The effect of the
probability distribution function of the scatterers’ orientation
angle in elevation on the FCF is demonstrated in Fig. 10(a)
for three different p.d.f.’s, namely, uniform, erectophile, and
planophile. The three p.d.f.’s are shown in Fig. 10(b). It
is observed that the orientation distribution function has a
considerable effect on the medium’s FCF, especially on the
side lobes amplitudes. For example, for an erectophile type
medium, where the scatterers are more vertically oriented, the
bistatic scattering covariance function is higher than that of
either planophile or uniform distributions. In this case, the
amplitude of the FCF side lobes is expected to be higher than
those of the planophile and uniform distributions.

B. Experimental Observations

In this section, experimental results are presented that
demonstrate the applicability of the FCF for radar inversion
of the targets’ physical and electrical parameters. Wideband
polarimetric backscatter radar responses of rough bare soil sur-
faces, tenuous random media, and dense random media were
measured using the University of Michigan scatterometers
operating at C-, X-, and W-band, respectively. In conducting
these experiments, the radars were mounted atop of a boom
truck to maintain the far-field distance between the radars
and the targets. To characterize the system contribution to
the measured FCF, the two-dimensional antenna patterns were
measured for each radar in an anechoic chamber following the
procedure outlined by Sarabandiet al. [13]. The scatterome-
ters are vector network analyzer-based radars operating in a
stepped-frequency mode that permit the measurement of the
magnitude and phase of the backscattered fields over a discrete
number of frequency points within the radar’s prespecified
bandwidth. Details on the principle of operation of these
scatterometers can be found in [17] and [18].

To compute the FCF of the distributed targets ,
first the FCF of the measured backscattered fields
was computed, then the system FCF was computed
using (12), and finally was calculated by dividing

by [see (11)]. To estimate the physical
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(a)

(b)

Fig. 10. (a) Dependence of FCF of a tenuous random medium on the angular
distribution function of the particle’s orientation angle and (b) different angular
distribution functions.

parameters of the distributed target from the measured FCF,
a constrained optimization technique [19] was used to min-
imize the square of the difference between and

, i.e.,

(33)

with the quantities of interest acting as free parameters. In
addition, the optimization routine can be used to minimize the
square of the difference between and ,
i.e.,

(34)

The functions and in (33) and (34) refer to the
theoretical model that characterizes the magnitude and phase
of the targets’ complex FCF, respectively.

1) Estimation of rms Height of Rough Surfaces:The radar
backscatter response of a rough bare soil surface of 4.0-cm
rms height and 0.14 volumetric moisture content was measured
at an incidence angle of 30using our C-band scatterometer.
The scatterometer, which was mounted 10.35 m above the soil
surface, is a single antenna system with 5.0beamwidth (one
way), operating over 400-MHz bandwidth, centered around
5.3 GHz. To achieve a reasonable estimate of FCF of the
surface, the polarimetric backscatter responses of more than
100 independent spatial samples were collected. The FCF’s

Fig. 11. Comparison betweenRvv

msr(�f), R
vv

sys(�f), R
vv

trgt(�f ), and
Rvv

model(�f) of a random rough surface measured at 30� incidence angle.

, , and were computed for the
-polarization configuration and are shown in Fig. 11. It

is shown that the measured and the computed
are very similar, implying that the rough surface

FCF has a much lower decorrelation rate than the system. To
estimate the rms heightof the rough surface, the constrained
optimization routine was used to minimize the square of the
difference between the measured and
computed using (13) with acting as a free parameter. An
rms height of cm was obtained, which produces an
excellent fit between the measured surface response
and the model. The estimated value is in agreement with the
measured rms height of the surface.

It should be noted that the total FCF , shown in Fig. 11
is much more sensitive to the system-dependent termthan
the surface-dependent term . Hence, when this system-
dependent term is removed, the FCF shows little sensitivity
to the surface parameters. To improve the sensitivity, a larger
bandwidth and a much gentler are needed. To reduce the
decorrelation rate of the system-dependent term, a radar with a
narrow elevation beamwidth operating at near-nadir incidence
may be used.

2) Tenuous Random Medium:An X-band scatterometer,
mounted 11.3 m above a grass field, was used to measure
the polarimetric backscatter response of more than 100
independent spatial samples of the target at an incidence angle
of 20 . The scatterometer operated at a center frequency of 9.5
GHz with a 500-MHz bandwidth and 6antenna beamwidth.
The mean grass height and stalk density were measured to be

m and 80 stalks/ft, respectively. The grass biomass
and the soil volumetric moisture content were also measured to
be 763 g/ft and 0.14, respectively. The FCF’s , , and

and their corresponding phase angles , , and
[defined in (2)] were computed for the -polarization

configuration and are plotted in Fig. 12(a) and (b). In this
case, the optimization routine was used to estimateand

, and from the measured magnitude of the complex FCF.
As can be seen from Fig. 12(a), an excellent fit was achieved
between the measured target response and the
model. The estimated values for , , and were found
to be 1.04 Np/m, 0.728, and 1.09 m, respectively. Fig. 12(a)
shows the comparison between the model (using the estimated
parameters) and the measured ( ) FCF’s. It is noted
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(a)

(b)

Fig. 12. Comparison between (a) absolute value and (b) phase angle of the
normalized covariance functionsCvv

msr(�f), C
vv

sys(�f), C
vv

trgt(�f ), and
Cvv

model(�f) of a grass field measured at 20� incidence angle.

here that the estimated depth agreed well with the measured
one. As an independent validation tool, the phase angle of

, which was not used in the minimization process,
was computed using, , and and compared to .
The result is shown in Fig. 12(b), which demonstrates an
excellent agreement between and .
This excellent agreement demonstrates that the estimated
parameters were in fact the correct values. Similarly, a good
fit was achieved between and , for the

-polarization configuration (see Fig. 13). The estimated
values for , , and in this case were 0.34 Np/m, 6.13,
1.05 m, respectively.

3) Estimation of Extinction Rate in Snow:The backscatter
response of a thick layer of dry metamorphic snow with
fractional volume of 0.34 and mean crystal diameter of 0.5
mm was measured at 40incidence angle using our W-
band polarimetric scatterometer. The scatterometer, which
was mounted 7.7 m above the upper snow surface, is a
dual antenna system with 1.4effective beamwidth operating
over 1.0-GHz bandwidth centered around 93.5 GHz. During
the measurements, the backscatter responses of more than
100 independent spatial samples were collected. The FCF’s

, , and , plotted in Fig. 14, were
computed for the -polarization configuration. To estimate
the extinction parameter of the thick layer of snow, the
optimization routine was used to estimateusing the semi-
infinite FCF expression given by (28). An excellent agreement

Fig. 13. Comparison between the magnitudes of the measured and mod-
eled FCF’s of a grass field measured at 20� incidence angle using the
HH-polarization configuration.

Fig. 14. Comparison betweenRvv

msr(�f ), R
vv

sys(�f), R
vv

trgt(�f ), and
Rvv

model(�f ) of a dry snow field measured at 40� incidence angle.

between the measured target response and the
model is shown in Fig. 14. The estimated value (5.0
Np/m) falls within the acceptable range of(1.9 Np/m
30.7 Np/m) for dry snow at W-band frequencies, as reported
by Kugaet al. [20]. Furthermore, to verify that the estimated
value is correct, the quasicrystalline approximation
with coherent potential technique (QCA-CP) [21] was used
to compute the extinction. QCA-CP predicts an extinction rate
of Np/m (assuming )
that agrees well with estimated Np/m using FCF
measurements.

V. CONCLUSIONS

The potential of backscatter FCF as a useful remote-sensing
tool was demonstrated in this paper. Analytical expressions
for the complex FCF of simple random media and a specific
class of rough surfaces were derived. The results were obtained
for polarimetric radars with arbitrary radiation patterns. It was
shown that the FCF of statistically homogeneous distributed
targets are functions of both the target and radar attributes and
that the expressions for the FCF can be written in terms of
the product of two expressions, one only a function of the
system parameters and the other only a function of the target
parameters. A sensitivity study was carried out to demonstrate
the sensitivity of FCF on the electrical and physical parameters
of the target. It was found that the behavior of FCF, such as the
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decorrelation bandwidth and the number of side-lobes and their
level, are strong functions of target attributes. Experiments
were conducted using wideband scatterometers at C-, X-, and
W-band on tenuous and nontenuous random media and rough
surfaces to demonstrate the feasibility of target parameter
retrieval. For the inversion process, a standard optimization
algorithm in conjunction with the theoretical FCF models were
used. The success of the inversion procedure was demonstrated
by comparing the estimated parameters with the ground truth
data and/or other independent methods.
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