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Abstract—In this paper, a preliminary study is carried out to
demonstrate the application of wavelets for improving the com-
putation time and reducing computational memory required for
evaluating the statistics of the scattered field from rough surfaces
using the method of moments (MoM) in conjunction with a Monte
Carlo simulation. In specific, Haar and the first order B-spline
wavelet basis functions are applied to the MoM formulation of
one-dimensional rough surfaces in order to compare the computa-
tion time and sparsity for wavelets in the same family but of higher
order. Since the scattering coefficient (the second moment of the
backscatter field per unit area) is a gentle function of the surface
parameters and the radar attributes, it is demonstrated that a rela-
tively high thresholding level can be applied to the impedance ma-
trix, which leads to a sparser impedance matrix and faster com-
putation time. It is also shown that applying a high threshold level
the coefficients of the high-order wavelets would increase out of
proportion, however, the effect of these current components aver-
ages out when computing the scattering coefficients. The resulting
sparse impedance matrices are solved efficiently using fast search
routines such as the conjugate gradient method. A systematic study
is carried out to investigate the effect of different threshold levels
on the accuracy versus computing speed criterion. The computed
scattering coefficients are compared to previous results computed
using a conventional pulse basis function as well as the existing the-
oretical solutions for rough surfaces. It is shown that wavelet basis
functions provide substantial reductions in both memory require-
ments and computation time.

Index Terms—Electromagnetic scattering by rough surfaces,
wavelet transforms.

I. INTRODUCTION

T HE problem of electromagnetic scattering from rough
surfaces has been the subject of intensive investigation

over the past several decades for its application in a number of
important remote sensing problems. Radar remote sensing of
the oceans, soil moisture, and mine detection using wide-band
radars are such examples. For these problems, where the
rough surface is either the primary target or the clutter, the
understanding of interaction of electromagnetic waves with
the rough surface is essential for developing inversion or
detection algorithms. An exact analytical solution for random
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rough surfaces does not exist. However, approximate analytical
solutions exists for rough surfaces with specific types of surface
roughness conditions. For surfaces with small root mean square
(rms) height and slope, the small perturbation method (SPM)
is the most commonly used formulation. Formulations based
on SPM exist for perfectly conducting [10], homogeneous di-
electric [6], and inhomogeneous dielectric [19] rough surfaces.
Another classical solution that is valid for surfaces with large
radii of curvature is based on the tangent plane approximation
[2]. The region of validity of these classical approaches are
rather limited. In recent years, much effort has been devoted to
extend the region of validity of these models [1], [12], however,
the improved techniques still have the basic limitations of the
original models.

An alternative approach for evaluation of the scattered field
and its statistics for rough surfaces is Monte Carlo simulation. In
this approach, many sample surfaces with the desired roughness
statistics are generated and then the scattering solution for each
sample surface is obtained using a numerical method. Monte
Carlo simulation have primarily been considered for evaluating
performance of and characterizing the region of validity of ap-
proximate analytical models [1], [12], [22], [23]. In general, the
limitations of Monte Carlo simulation of scattering from rough
surfaces are the computation time and the required memory
as the typical size of the scatterers (sample surfaces) must be
chosen to be much larger than the wavelength. Another issue is
that the rough surfaces are the targets of infinite extent that must
be truncated appropriately before the numerical scattering solu-
tion can be obtained. This can be done either using a tapered
illumination [1] or padding the sample surfaces with a tapered
resistive sheet [7]. It has been shown that with the tapered illu-
mination, larger sample surfaces must be used as a considerable
portion of the induced currents on the surface do not contribute
significantly to the total scattered field. Application of the ta-
pered resistive sheet is advantageous in that a relatively small
portion of the sample surfaces is actually used to suppress the
edge currents. This improves the computation time and reduces
the required memory.

In order to use Monte Carlo simulation for evaluating the
scattering statistics of rough surfaces more routinely, compu-
tationally more efficient scattering codes must be developed.
In this paper, the application of wavelets as a basis function
for the expansion of induced surface currents is considered.
Traditional method of moment (MoM) in conjunction with
Galerkin’s method would require matrix fill computation time
of the order of and matrix inversion computation time
of the order of (using Gaussian elimination). It is well
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Fig. 1. A typical discretized sample surface with tapered resistive sheets
placed at each end (1� for each end) and normalized resistivity profile.

known that the solution of linear system of equations can be
obtained far more efficiently using search routines such as the
conjugate gradient method if the matrix of the coefficients is a
sparse matrix. In MoM, the application of conventional pulse
or rooftop basis and testing functions would usually produce
full impedance matrices. Although the diagonal elements
are usually larger than the rest of the elements, the smaller
elements cannot be arbitrarily thresholded without drastically
altering the resulting scattering pattern. The success of wavelet
expansion function in generating sparse matrices have been
demonstrated for many circuits and antenna problems [13],
[14], [16], [21]. In the Monte Carlo simulation of scattering
from rough surfaces, the quantities of interest are the statistical
parameters such as the mean and variance of the scattered field
and, therefore, it is expected that the overall accuracy be less
sensitive to the threshold level.

An investigation is conducted on the use of two different
types of wavelets with compact support, Haar and B-spline
wavelets with edge wavelets, and the effect of different
threshold level with regard to the overall accuracy and the
computation time. The method is applied to one-dimensional
perfectly conducting random rough surfaces to demonstrate the
improvements achieved. In the Monte Carlo analysis presented
here, the tapered resistive sheet approach is used to suppress the
edge current for plane wave illumination. The numerical results
are also compared with the approximate analytical solutions.

II. I NTEGRAL FORMULATION OF SCATTERING PROBLEM

In order to characterize both the backscattering coeffi-
cient and the bistatic scattering coefficient using the MoM
and a Monte Carlo simulation, a large number of random
surfaces with known statistical parameters ( ) must
be generated. It is then desired to find the surface current
density induced by a plane wave from which the scat-
tered field can be computed. The expression for the plane
wave propagating along is given by

.

As discussed in the literature, because of the singular be-
havior of the current near the edges of the surface when ex-
cited by a horizontally polarized incidence wave, tapered resis-
tive sheets must be added at the edges of the sample surface in
order to suppress the edge currents. An optimum tapered func-
tion for resistivity is given by [7]. Fig. 1 shows a normalized
resistivity profile of the tapered resistive sheets and the place-
ment of the resistive sheets on a surface described by a Gaussian
hump.

The induced surface current on a resistive sheet is propor-
tional to the tangential electric field or, mathematically,

, where is the surface resistivity (for a perfect con-
ductor ). Another boundary condition for resistive sheets
mandates continuity of the tangential electric field across the re-
sistive sheet; that is, .

Therefore, the electric field integral equation for the surface
current is given by

(1)

where
wave number;
intrinsic impedance of free-space;
zeroth-order Hankel function of the first kind;

and position vectors of observation and source points,
respectively.

The sample surface is discretized into sufficiently small cells,
as shown in Fig. 1 and the current is expanded in terms of
the basis functions . Applying Galerkin’s
method to (1) we have

(2)

where is the testing function and is the basis func-
tion. Equation (2) can be solved using numerical integration, and
cast into a matrix equation given by . This matrix
equation can easily be solved to find the surface current.

The restriction on the expansion and testing functions is that
they have to be in the domain of the integral equation operation.
To expand the induced current in terms of a multiresolution ex-
pansion, first the current must be projected onto the-axis or the
surface must be arc length parameterized. For natural rough sur-
faces with moderate rms slope it is more convenient to project
the current on the-axis since the domain will be identical for
all sample surfaces. Applying a multiresolution expansion to the
projected current distribution ( ) on the -axis we have

(3)
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Fig. 2. (a) Pulse basis function and the corresponding Haar wavelet and (b) linear basis function and its corresponding wavelet.

which consists of the scaling functions at the lowest resolution,
plus wavelets at the lowest resolution and subsequent higher res-
olutions. This expansion is equivalent to one consisting of only
scaling functions at the highest resolution ( ). Note that
the scaling functions resolution level and the wavelets at res-
olution levels are orthogonal to each other
[15].

By definition, wavelets have a zero average. Higher order
wavelets also have vanishing higher moments, that is

(4)

where depends on the order of the B-spline wavelet. Fig. 2(a)
and (b) shows the Haar and linear B-spline scaling functions and
wavelets. The wavelets’ vanishing moments give rise to their
cancellation effect, which makes wavelet basis functions poor
radiators. In the moment matrix, this effect leads to very small
matrix elements for cells that are relatively far from one another,
where the Green’s function kernel is fairly regular. For self cells
and adjacent cells, the integration of the rapidly varying kernel
produces element values that are significant. Thus, due to the
cancellation effect, a wavelet-dominated moment matrix tends
to be highly sparse. For more insight into wavelet basis functions
and matrix sparseness, the reader is referred to [17].

Another important feature of wavelets that arises from their
vanishing moment property is their ability to characterize dis-
continuities and rapid variations. In other words, in a multires-
olution expansion, the wavelet coefficients are significant in
magnitude only at discontinuities and regions with rapid vari-
ations. When the expansion involves multiple resolution levels,
the wavelets will capture the information of details at different
scales, while the scaling functions will carry average informa-
tion on the lowest resolution [3]. When the physical problem at
hand involves many different scales including large smooth re-
gions and localized sharp variations, a multiresolution expan-
sion will prove the most efficient approximation because the
basis functions will carry the maximum localized information
without considerable interaction with one another.

Using the fast wavelet transform (FWT), one can compute an
equivalent impedance matrix for the multiresolution expansion

(5) from a knowledge of the impedance matrix at the highest
resolution [15]. This reduces computation time drastically and
avoids performing the numerical integration for all the wavelets
at various resolution levels. Once the wavelet-dominated matrix
is generated, a threshold level, usually of the order of 0.01 to 1%,
is imposed on the matrix and only the significant elements of the
matrix will be preserved. Having a sparse impedance matrix, a
fast sparse-based solver such as conjugate gradient method can
be used to find the solution of the linear system. With the com-
bination of sparse storage schemes and sparse linear solvers, the
computation time for linear system inversion is reduced drasti-
cally.

III. M ONTE CARLO SIMULATIONS OF RANDOM ROUGH

SURFACES

Encouraged by previous results, as in [21] where a simple
structure has been studied (a double slot aperture) and the cur-
rent distributions calculated from sparse matrices are compared
to the actual (magnetic) current distribution and found to agree
quite well, we now apply the multiresolution expansion method
to random rough surfaces of known statistical parameters. Near
normal incidence, sample surfaces for numerical analysis must
be at least 40 correlation lengths () long in order to accurately
characterize the bistatic pattern. This requirement becomes
more stringent for near grazing incidence.

Since the Monte Carlo simulation of the scattering problem
requires the numerical solution of the problem many times, the
computation speed achieved by thresholding the moment ma-
trix of a multiresolution expansion in conjunction with a search
routine linear system solver becomes very significant with re-
gard to the overall computation time necessary for evaluating
the statistics of the scattered field.

A. Random Surface Generation

Monte Carlo simulations require a large number of sample
surfaces of a random process with prescribed surface height sta-
tistics. To generate the sample surfaces, the procedure in [2],
[10], is used. First, a long string of numbers is generated using
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Fig. 3. (a) Generated random surface with mean surface height shown. (b)
Theoretical and Monte Carlo probability density function of the surface height
distributionks. (c) Theoretical and Monte Carlo correlation function.

a random number generator having the same pdf as the height
distribution of the surface [for example, a zero-mean Gaussian
probability density function (pdf)]. Next, a subset of the num-
bers of the string are correlated with a weight vector related
to the Fourier transform of the desired autocorrelation function
[1]. For the simulations presented in this paper, surfaces with
Gaussian correlation function and Gaussian height distribution
are considered. Hence, the surface statistics are uniquely speci-
fied by the surface height standard deviation (rms height), and
by the surface correlation length. Fig. 3 shows a sample surface
of a Gaussian process with , and the corre-
sponding histogram of height and calculated correlation func-
tion generated from 60 independent sample surfaces. The cal-
culated correlation function gives and the calculated
standard deviation of height distribution gives .
These agree closely with the desired surface roughness param-
eters.

B. Validation and Results

Numerical simulation of rough surface scattering is per-
formed for three different surfaces denoted by, , and

. The roughness parameters (, ) for each of these
surfaces are, respectively, , ; ,

; and , . The first two surfaces
fall within the region of validity of small perturbation and
physical optics (PO) models, respectively, and, hence, the two
numerical results can be compared with the analytical models.
Comparisons are also made on the threshold level imposed
on the moment matrix for both Haar and B-spline wavelet
basis functions and on the matrix solving times using a fast
conjugate gradient solver for sparse matrices. Another test that
was run was the effect of the MoM and wavelet technique on
backscattering enhancement. Finally, the effect of the number
of resolution levels on the scattering pattern is investigated.

SPM is known to be valid when , and
, where is the rms slope and is given by

for a surface with a Gaussian correlation function. The analyt-
ical bistatic pattern for the SPM is derived in [24] for a three-di-
mensional (3-D) surface with a Gaussian correlation function.

Fig. 4. Comparison of SPM with Monte Carlo simulation. Generated surface
parameters are:ks = 0:3, k` = 3:0,N = 40, length= 32�, resistive tapered
ends length= 1�,�x = 0:1�, and� = 30:0

�.

For a two-dimensional (2-D) surface, the bistatic scattering co-
efficient ( ) is related to the 3-D bistatic scattering coefficient
( ) via . Then, is given by

(5)

where is the power spectral density. For a Gaussian sur-
face correlation, is given by

(6)

Furthermore, for a perfect electrical conductor (PEC), =
equals one for a 2-D problem.

The incoherent bistatic scattering coefficient for
using the Monte Carlo simulation with 40 independent samples
and threshold applied is compared to the analytical bistatic SPM
from (5) in Fig. 4 and a good agreement is observed.

The PO method using the tangent-plane technique for approx-
imating the fields on a surfaceis investigated next. Under the
tangent-plane technique, the fields present at any pointon
are approximated by the fields that would be present on a plane
tangent to . This is a valid approximation if every point on
has a large radius of curvature. The 3-D bistatic scattering co-
efficient is derived in [4] for the PO approximation. Using this
formulation is calculated and is given by

(7)

where

(8)

where . For surface , which falls
into the PO region of validity, a comparison is made in Fig. 5 be-
tween the PO model in (7) and results obtained using the wavelet
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Fig. 5. Comparison of the PO model to a Monte Carlo simulation. For the
simulation the random surfaces were characterized byks = 0:5, k` = 6:13,
N = 50, length= 100�, resistive tapered ends length= 1�,�x = 0:2�, and
� = 30:0

�.

Fig. 6. Bistatic scattering from a single random surface withks = 0:3, k` =
3:0, N = 1, length= 32�, resistive tapered ends length= 1�, �x = 0:1�,
and� = 30:0

�. The various threshold levels imposed on the moment matrix
and its corresponding sparsity level are given in the figure.

based moment method. The bistatic scattering results from
agree well with the theoretical PO solution.

A comparison of different threshold levels imposed on the
moment matrix for surface using B-spline basis functions
is shown in Fig. 6. The parameters for the simulation on
are , length , resistive tapered ends length

and . For this simulation, only a single surface
( ) is used for comparison. As is shown in Fig. 6, the
scattering pattern varies very slightly and only at angles near
grazing observation. This figure indicates that a sparsity of more
than 90% can be achieved without substantial compromise in the
accuracy of the bistatic pattern using B-spline wavelets.

The bistatic scattering coefficient obtained using the Haar and
B-spline wavelet of surface are shown in Fig. 7. For this
simulation, , , number of independent sur-

Fig. 7. Comparison of threshold levels on scattering pattern for a random
surface withks = 2:0, k` = 2:5, N = 40, length= 32�, resistive tapered
ends length= 1�,�x = 0:04�, and� = 30:0 , and five levels of resolution.

Fig. 8. Comparison of exact current distributions with the current distribution
from an impedance matrix that is about 97% sparse (using B-spline wavelets
and a threshold of 0.5%). A portion of a random surface withks = 2:0, k` =
2:5, length= 32�, resistive tapered ends length= 1�, �x = 0:04�, and
� = 30:0 , and five levels of resolution is plotted.

faces , sample length , resistive tapered ends
length , , and . Since this sur-
face does not fall into the region of validity for any analyt-
ical models, no comparison may be made. This figure shows
again that by thresholding the moment matrix, a high sparsity
can be achieved without compromising the accuracy. It is also
shown that a higher sparsity is achieved using the linear B-spline
wavelet. An average sparsity of 97.3% is achieved by the linear
B-spline wavelet, whereas using Haar wavelets, only 82.2% av-
erage sparsity is obtained for a threshold level of 0.15%. Fig. 8
shows a comparison of the exact current distribution and one
where the impedance matrix has a sparsity of about 97%. A por-
tion of a surface with characteristics given above ( ,

, etc.) was used and the sparse matrix has a threshold
of 0.5%. Even though this sample surface (which is indicative
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TABLE I
NUMBER OF MULTIPLICATIONS NEEDED TO

SOLVE THE MATRIX AND SPARSITY VERSUSIMPOSEDTHRESHOLDLEVEL FOR

A RANDOM SURFACE WITH ks = 2:0, k` = 2:5, N = 40, LENGTH= 32�,
RESISTIVE TAPEREDENDS LENGTH= 1�,�x = 0:04�, � = 30:0 , AND

FIVE LEVELS OFRESOLUTION

of the current distribution for every sample surface) has a cur-
rent distribution that varies significantly from the exact solution,
because the far-field scattering pattern is an averaging process
the bistatic scattering pattern does not vary significantly from
Fig. 7. As stated in Section II, the wavelets capture the informa-
tion of details with respect to the problem scale. Since the sur-
face is discretized by a maximum of , and usually no more
than , the wavelets capture most of the current informa-
tion in lower resolution wavelets. Thus, most of the higher fre-
quency wavelets may be discarded without significantly altering
the bistatic scattering pattern, and this leads to higher sparsity
for matrices that use higher resolution wavelets.

The threshold level imposed on the moment matrix and the
number of multiplications needed to solve the matrix using a
fast conjugate gradient solver routine is studied next. As stated
previously, by imposing a threshold level the scattering pat-
tern remains relatively unchanged, yet the moment matrix could
be made quite sparse. It was also found that linear B-spline
wavelets would produce a sparser matrix for a given threshold
level before the scattering pattern were to deviate significantly
from the exact solution. This is due to the fact that the linear
B-spline wavelet has a vanishing first moment. Table I pro-
vides the average number of multiplications necessary to solve
for the surface current of for both Haar and linear B-spline
wavelets and for different values of threshold levels. It is found
that the number of multiplications or, equivalently, the compu-
tation time, decreases significantly with the first order B-spline
scaling function and its corresponding wavelets. For the Haar
wavelet-based MoM, a slight improvement was observed (ap-
proximately 20%), yet for the linear B-spline wavelet-based
MoM, a factor of about 20 improvement was observed.

The question arises if the solution produced using a wavelet
based MoM technique show the effect of backscattering en-
hancement. The backscattering enhancement is produces pri-
marily due to multipath and surface-wave effects on a rough sur-
face. A surface was chosen that has physical parameters where
backscattering enhancement is known to occur and these param-
eters are , . Fig. 9 was produced using
the aforementioned physical parameters as well as number of
independent surfaces , sample length , resis-

Fig. 9. Test for backscatter enhancement effect. The surfaces under test have
ks = 10:636, k` = 19:472, N = 400, length= 30�, resistive tapered ends
length= 1�, �x = 0:0625�, and� = 10:0 . As can be seen, a significant
backscatter enhancement is shown at� = �10 .

Fig. 10. Comparison of resolution levels used on scattering pattern for a
random surface withks = 2:0, k` = 2:5, N = 40, length= 32�, resistive
tapered ends length= 1�,�x = 0:04�, and� = 30:0 .

tive tapered ends length , , and .
Also, five levels of resolution were used, and the matrices had an
average sparsity of 97.5%. It can be seen that around
there is an enhanced backscattering effect. This figure is in linear
scale to display the enhanced backscattering effect and agrees
very well with [5, fig. 5]. It is also wise to point out that even
though Figs. 7 and 10 show an increased bistatic scattering at
about 20, this is not an enhanced backscattering effect.

The effect of the number of resolution levels on the scattering
pattern is next investigated using surface. Since it has al-
ready been determined that both Haar and B-spline wavelet-
based MoM produce similar results, the effect of the number
of resolution levels is demonstrated with Haar wavelets only.
Monte Carlo simulations are run on random rough surfaces for
five, four, and two levels of resolution for threshold levels of 0.1
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TABLE II
SPARSITY VERSUSTHRESHOLD FOR ANUMBER OF DIFFERENTRESOLUTION

LEVELS USED FOR ARANDOM SURFACE WITH ks = 2:0, k` = 2:5,
N = 40, LENGTH= 32�, RESISTIVE TAPEREDENDS LENGTH= 1�,

�x = 0:04� AND � = 30:0

and 0.3%, except for the Haar with five levels of resolution in
which 0.1 and 0.15% threshold level is used. This is because
0.3% threshold level is too high for five levels of resolution
and the conjugate gradient solver does not converge. The results
based on the full matrix is also included at five levels of resolu-
tion for comparison. As is shown in Fig. 10 the scattering pattern
starts deviating from the exact pattern for five levels of resolu-
tion and 0.1% threshold level imposed on the moment matrix.
The average sparsity, obtained from 40 independent samples, for
each case in Fig. 10 is summarized in Table II. The scattering
pattern agrees quite well with the exact solution for almost all
levels of resolutions shown with only slight deviation at near
grazing observations. One notable exception is for four levels
of resolution and an imposed tolerance level of 0.3%, which de-
viates noticeably from the exact bistatic pattern at certain angles
of observation. As shown in Table II, the matrix is less sparse
for fewer levels of resolution at a single stated threshold level.
Therefore, by increasing the number of resolution levels, while
holding a constant threshold level, the sparsity of the matrix will
increase, as is shown in Table II.

IV. CONCLUSION

It has been found that using wavelet basis functions with
MoM and Galerkin’s method along with a fast solver routine
such as conjugate gradient can drastically reduce both the
memory requirements of a system and the time necessary
to solve the MoM matrix. This leads to solutions for rough
surface scattering that are quite accurate when compared to
other basis functions, yet take significantly less memory and
time to solve. Matrices can be made over 97% sparse yet still
produce accurate bistatic scattering coefficients in scattering
problems. Thus, it becomes possible to generate statistics
for the scattering from surfaces of different roughness in a
relatively short period of time.

The number of resolution levels were shown to play a signifi-
cant role in determining the sparsity of the matrix and the accu-
racy of the solution. It was shown that the higher the number of
resolutions, the more sparse the matrix could be made without
compromising the bistatic scattering pattern. Also, the higher
order the B-spline was made, the higher the sparsity achieved
in the matrix and, thus, the faster the computation time to solve
the matrix.
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