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Acoustic and Electromagnetic Wave Interaction:
Estimation of Doppler Spectrum From an
Acoustically Vibrated Metallic Circular Cylinder

Kamal SarabandiFellow, IEEE,and Daniel E. LawrencéMember, IEEE

Abstract—The idea of using acoustically induced Doppler T‘?M_ , Rg‘é'.m
spectra as a means for target detection and identification is ransmit
introduced. An analytical solution for the calculation of the
bistatic scattered Doppler spectrum from an acoustically excited,
vibrating metallic circular cylinder is presented. First the elec- Rough Surface
tromagnetic scattering solution of a slightly deformed circular
cylinder is obtained using a perturbation method. Then, assuming
the vibration frequency is much smaller than the frequency
of the incident electromagnetic wave, a closed form expression
for the time-frequency response of the bistatic scattered field is
obtained which can be used directly for estimating the Doppler
spectrum. The acoustic scattering solution for an incident acoustic
plane wave upon a solid elastic cylinder is applied to give the
displacement of the cylinder surface as a function of time. Results
indicate that the scattered Doppler frequencies correspond to the Fig. 1. Example scenario for acousto-electromagnetic object detection.
mechanical vibration frequencies of the cylinder, and the sidelobe
Doppler spectrum level is, to the first order, linearly proportional
to the degree of deformation and is a function of bistatic angle. development of a reliable system that can perform satisfactorily

Moreover, the deformation in the cylinder, and thus the Doppler eyen with the most lax false alarm rate requirements.
sidelobe level, only becomes sizeable near frequencies of normal Toi th bability of detecti ithout i inath
modes of free vibration in the cylinder. Utilizing the information in o increase the probabiiity of detection withoutincreasing the
the scattered Doppler spectrum could provide an effective means false alarm rate, measurable quantities which are characteristic

of buried object identification, where acoustic waves are used to of the objects of interest should be exploited. One such quan-

Short Vegetation

excite the mechanical resonances of a buried object. tity is the electromagnetic Doppler spectrum that is scattered
Index Terms_Acousticsl Cy]inder, Dopp|er Spectrum’ electro- from a buried ObjeCt being mechanica”y Vibrated by an inCident
magnetic scattering. acoustic wave. If the buried objects have unique and identifiable

Doppler spectra, corresponding to unique mechanical modes of
the objects, then improvement in detection and identification of
the objects is possible. Combining electromagnetic scattering
ROUND penetrating radars have been proposed for detedith acoustic excitation to detect buried objects has been ad-
tion and identification of buried objects [1]. For civiliandressed previously [2], [3]. Recently, this idea has been exam-
applications such radars are needed to locate underground pijrees] to some extent in [4] where a radar is used to measure dis-
conduits, and cables, while military applications include minglacements of the earth’s surface caused by a traveling acoustic
detection and clearing abandoned military practice ranges of wvave. In this approach, object detection is based on the small
exploded ordinance (UXO). Over the past three decades m@tanges in ground displacement when a buried object is intro-
effort has been devoted to the development of hardware affi¢red. To aid in clutter rejection, distinguishing characteristics
advanced detection algorithms to improve the performance @fthe buried objects of interest, such as the normal modes of
ground penetrating radars in so far as the probabmty of deté&bration, should be inCOfporated into the detection scheme. In
tion and the false alarm rate are concerned. The detectability!3}6 Paper, the application of the size and material dependent
a buried object is severely limited by the high attenuation ralgé.statm Doppler spectrum in target identification is examined.

of microwaves propagating in most soil media as well as the r&i9- 1 shows the concept for the proposed mine detection and

atively large impedance mismatch at the interface between tfgntification scheme. _ _ _
air and ground. Hence, the initial optimism has not yet led to the B€f0re an acousto-electromagnetic technique can be effective
in this way, the relationship between the mechanical vibration

modes of an object and the scattered electromagnetic Doppler
Manuscript received April 13, 1999; revised April 19, 2002. ~spectrum must be understood. Perhaps the simplest scattering
The authors are with the Radiation Laboratory, Department of Electrlcgbometry for which an analytical solution exists is an infinitely

I. INTRODUCTION

Engineering and Computer Science, University of Michigan, Ann Arbor, . . o . .
48309_2122 USA. P Y 9 Mlong, glrcular cylinder. As a feasﬂmhty study, we WI.|| examine,
Digital Object Identifier 10.1109/TAP.2003.813606 analytically, the Doppler scattering from a vibrating metallic
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circular cylinder in a homogeneous surrounding medium. vt
Admittedly, the solid metallic cylinder considered here is not
the most realistic model for a landmine. Furthermore, as will - Eem’;tberg %Vg“f,e&
be shown, the solid cylinder requires an enormous amount < perureq Lyinder
of acoustic power to see the effect of vibrations in the EM A
Doppler spectrum. The model was chosen, not for its direct Jﬁi
applicability, but rather for its mathematical tractability. The
cylinder is useful for illustrating that the mechanical resonance
behavior of objects can be seen in the scattered EM Doppler
spectrum.

A cylinder under mechanical vibration can be thought of as
a deformed cylinder whose shape is varied with time. Hence
an analytical solution for the scattered field of an arbitrary de-
formed cylinder is needed. Since the deformations are small,
an analytical perturbation technique is chosen to calculate ffig 2. Geometry for electromagnetic scattering from a perturbed cylinder.
scattered fields. Perturbation techniques can provide analytical

solutions to problems when the surface irregularity is small a@grying with time, the scattered field will be time-varying which

exact splutlons eX|_st for the unperturbed problems. Pert_urbat| Wes rise to the scattered Doppler spectrum. The perimeter of
theory is an established analytical approach for scattering s

) X X He cylinder's surface can be expressed in polar coordinates as
tions and was applied by Rayleigh [5] and Maxwell [6] to cer-

tain scalar field problems. These methods have found applica- r_ bE(d
o . : ph=a+bf(¢',1) 1)
tion in electromagnetic scattering from rough surfaces [7], [8],

cylinders [9]-[11] and spheres [12], [13]. The perturbation s@z e, is the unperturbed cylinder radiug(¢', t) is a peri-

lution developed here is based on the eigenfunction expansifi. and smooth function af’, andb is a perturbation constant

of vector fields in cylindrical coordinates. Yeh [10] presents asqme to be much smaller than the wavelength. The standard
methodology for this approach and derives coefficients for thgaih o for the computation of the scattered field from a circular
specific case of an elliptic cylinder with small eccentricity. FOLylinder is the eigen-function expansion of the total field. Fol-

the present work, however, the time-varying perturbation Cogfing the development in [15], the incident plane wave prop-
f|C|ents_ for an _arbnrarlly_ deformed cylinder are needed and Wﬂgating along the x-direction with a polarization parallel to the
be derived using a similar approach. Once the electromagnelifi,qer's axis can be expressed as

scattering from a time-varying deformed cylinder is obtained,

~

Fourier transform can be used to extract the Doppler spectrum. , ' oo '
The time-varying cylinder deformation is obtained from the an- EL = ¢ Ikreost = Z (=3)" Tu(kp)e’™® (2)
alytical solution for the acoustic scattering from a solid elastic n=-—0o0

cylinder. As will be shown, the bistatic Doppler spectrum may

be used as a tool for noninvasive measuring of different m

chanical vibration modes. A number of examples are presenf

to illustrate the relationship between the mechanical modes of .

the cylinder and the Doppler spectrum. ES = Z (_z)nM
As a point of note, the authors have extended the present ne oo Hﬁ,Z)(ka)

work to consider Doppler scattering from a vibrating dielectric

cylinder. Results of this derived work have already been puli-a small perturbation is introduced on the boundary, the scat-

lished in [14], and the interested reader is referred there.  tered field may be expanded in terms of a perturbation series in

kb. To the first order inkb, we may write

herek is the wavenumber. When there is no perturbation on
§ surface (i.eh = 0), the scattered field is given by

HP (kp)e’™. ()

Il. ELECTROMAGNETIC SCATTERING FROM A PERTURBED o
CIRCULAR CYLINDER ES = Z (_,-)n%(l 4 Onk-b)H,?)(k—p)ej"d’ (4)
In this section, the bistatic scattered field from a perfectly n=-oo Hy™ (ka)

conducting circular cylinder with arbitrary deformation and il-
luminated by an electromagnetic plane wave is formulated.
e/«¢t time dependence for electromagnetic waves ang @i

here the”,,’s are unknown coefficients to be determined using
the boundary conditio®? + E% = 0 on the surface of the per-
turbed cylinder. This expression is, of course, a permissible so-
"Rition of Maxwell’s equations since it satisfies both the wave
equation and the radiation condition. Using Taylor series expan-
sion, the eigen-functions in (2) and (4) can also be approximated
A. TM Case to the first order inkb, i.e.,

Consider an incident TM plane wave impinging upon a per-
fectly conducting, slightly deformed circular cylinder as showi,,(kp’) = Z,, (k(a + bf(¢',t)) = Z,(ka)+kbf(¢', t)Z, (ka)
in Fig. 2. For a vibrating cylinder whose cross section shape is (5)

sions representing waves and is suppressed.
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whereZ,, represents the Bessel or Hankel functiomtsf order. in which the D,,’s are found from the boundary condition,
Applying the boundary condition at the surface of the cylindeE?,,, + E;,,, = 0. Where E;,,, denotes the tangent electric

tan

field at the cylinder boundary. In the TM case, the z-directed

> an , , ing’ _ > o electric field is always tangent to the cylinder surface despite
_z: (=2)" [n(ka) +RbF (¢, £) T, (Ka)] e - _z: (1) any perturbation in the boundary, and in the TE case for a
"}?Za) i perfect cylinder, the) component of the electric field is always

(1+CLkb) [H§2)(ka)+kbf(¢’7t)HT(fV(ka)} e™?’ () tangent to the cylinder boundary. However, when there is a
perturbation, applying the boundary condition is slightly more

. 5 ) ] ) _complicated because th¢ component of the electric field
Neglecting thekb)* term and using the Wronskian relationshis no jonger tangent to the boundary. To properly apply the

for Bessel functions results in the following expression: boundary condition, the unit vector tangent to the surface must
be defined and the electric field component in this direction has

HP (ka)

i (_j)nOan(ka)ejw’:w]f/’t) i (_j)n#. to be fognd..The unit vector tangent to the perturbed cylinder’s
n=—oo e T H,”(ka) surface is given by
(7)
Now if f(¢’,t) has a Fourier series expansion with respeét to Uy = B, + lg) (13)
oo 2 —1/2
Py jmg’ wherea = [((bf'(¢',1))/(a+bf(¢'.1)"+1] ~, B =
.= 3, A0 ® (. 0)/(a + Vi@ 1), and [(§.1) is the partial

derivative of f(¢’,t) with respect top’. With this expression

and is inserted into (7), the resulting solution for the coefficient®r the tangent unit vector, the tangent electric fields at the
Cp,is cylinder surface are found from

C,(t) = ——~——
(*) wkaJ,(ka =

e € WeE€

H? (ka) (14)
Using (10) and (13) in (14) gives the incident tangent electric

Hence for a given displacement functiof{¢’, t), theC,,’s field evaluated at the surface

calculated from (9) can be used in (4) to yield the bistatic scat- o )

tered field at any anglé. In this derivation it is implicitly as- Ei, = L Z i [ﬂ‘ﬁJn(k’p') — kS (kp) ednd’

sumed that the time rate of variationsfgf)’, t) is much slower Jwe€  —~ 4

than the electromagnetic frequency so that relativistic effects (15)

can be neglected. Under this assumption, a Fourier transfoBimilarly, the scattered tangent electric field evaluated at the

of the time-varying scattered field will provide the scatteredurface is found by using (12) and (13) in (14)

Doppler spectrum.

) oo ; 1 SN s 1 say n
2(5)n+t Z (=) Ap_p(t) ) E;,, = j—(VXH;uZ)-ut andk;,, = j—(VXHZuZ)-ut.
)
P

1~ d(ka) ,
B. TE Case Bian = 7 n;mj T ) (14 kbD,)a
Using the same procedure, a solution for TE incidence is also I 2y g @ ind
possible. The magnetic field of an incident plane wave prop- X [ﬂFHn (kp') — KHR (kp') | €/ (16)
agating in the x-direction with polarization transverse to the
cylinder’s axis can be expressed as We will use Taylor series expansion to approximate the deriva-
tives of the eigenfunctions in (15) and (16). To the first order in
, : > . kb
Hi = e7ikv = Z G T (kp)ei™?. (20)
e Z,(kp') =27, (k(a + bf(¢',1)) ~ Z,,(ka) + kbf (¢, 1) Z,/(ka)

: . . 17)
When there is no perturbation on the surface of the cylinder, th . (
scattered field is given by W‘}aﬁere as beforeZ,, represents either the Bessel or Hankel

function. Using the approximations of (5) and (17) in (15) and
oo J! (ka) _ (16) and applying the boundary condition at the surface of the
H:=- " j—nmﬂg@(m)ew. (11) cylinder leads to

As before, a slight perturbation is introduced on the boundary) | 4" (ka)Dye’™?

and a perturbation series may be written for the scattered fietd:—°

To the first order inkb, the scattered magnetic field may be i R D) W,
: = J . U)oy,
written as = H,(f)’(ka
=, Ji(ka) YT 2n ngr
HS = - g (14 kbD, ) H (kp)e'™ (12) —f (¢ t) e | &I 18
n;oo a2 (ka) Fe )w(ka)3H£2>’(ka) o
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whereW,, = J;L’(ka)Hfl?)/(ka) - J;L(ka)H,(f)”(ka), and the wherexl = w,/c; andks = w,/co are propagation constants
(kb)? and higher terms have been neglected. Expreggipigt) for the compressional wave and shear wave within the scat-
in terms of its Fourier series expansigii(¢’, ) can be written terer, respectively, and, andb,, must be determined from the

as boundary conditions. The velocity of the compressional wave is
f/(¢l,t) — Z ijm(t)ejmrb/ Y E(l _ 0)
m=—o0 mi(1+o)(1 - 20)

which can be inserted in (18) to provide the solution for thgnd the shear wave velocity is
perturbation coefficients

& Aay) [ d2n—p) -
Dalt) = 0= D m[”’p—# : omi (1 + o).

(19) The incident acoustic plane wave propagating in the sur-
Thus for a given displacement functiofi(¢’, ¢), the D}s rounding nonviscous fluid medium is represented by
found from (19) can be used in (12) to give the time-varying

p=—o00

scattered field at any angie As before, the Fourier transform = Poe_j"””’gzr = Poe_j”3pcos¢
of this time-varying field provides the scattered Doppler spec-
trum. =P Z en( Jn(Kk3p) cosng (23)
[ll. A COUSTICVIBRATION OF A SOLID CYLINDER and the scattered acoustic wave is
A. Mathematical Formulation for Displacement
In order to calculate the deformation of a circular cylinder due Z ¢, (Rap) cos ng (24)

to a time-harmonic incident acoustic wave, the acoustic scat-
tering from the cylinder must be evaluated. An interesting agherep represents the pressure variatien, is the propaga-
pect of acoustic scattering from solid objects is that mechanid&n constant for the surrounding fluid medium, afd must
waves within the solid are excited which consist of both tranbe determined from the boundary conditions. The radial com-
verse shear waves and longitudinal compressional waves. Bptiments of displacement associated with the incident and scat-
of these components must be accounted for in the solid to actered waves are

rately describe the deformation. The fluid medium surrounding

the cylinder is assumed to be nonviscous and supports only com- Uip =
pressional waves. A thorough treatment of the acoustic scat-

tering of an incident plane wave from a solid cylinder is giveyherem; is the density of the surrounding medium. Applying
in [16]. Inherent in this formulation is the resulting mechanicahree boundary conditions provides solutionsdgrb,,, andc,,,
vibration of the cylinder caused by the incident acoustic wavyghereupon,, andb,, are used in (21) and (22) to give the radial
which is of interest to us. and angular displacements of the cylinder.

The procedure for evaluating the scattering of an acousticThe following boundary conditions are applied at the surface
plane wave by a solid cylinder includes finding suitable sgf the cylinder:

lutions to the equation of motion of a solid elastic medium,
defining the wave motion outside the scatterer to consist of an
incident acoustic plane wave and an outgoing scattered wave
and applying the proper boundary conditions at the surface of
the cylinder. The equation of motion for a solid elastic medium
can be written [17]

1 Op 1 Jps
Pi and us,p:—p'

(25)

maw? dp msw? dp

i) the pressure in the fluid must equal the normal compo-
nent of stress in the solid;
i) the normal component of displacement in the fluid must
equal the normal displacement of the solid;
iii) the tangential components of shearing stress must vanish
at the surface of the solid.

E(1-o0) E _ 9%u  Explicitly
(T o)1=20) VW54V ¥ (VX =migps
(20) pitps=—[pp] at p=a (26)
wherem; is the density of the scatterar,is the displacement, Uip +Uusp =1, a p=a (27)
andE ando are Young's modulus and Poisson’s ratio, respec- [p¢] = [pz] =0 at p=a (28)
tively. Solutions to this equation for a solid cylinder of infiniteyjth
length are of the form [16] Eo E 8up
el =G Y p)
> [nb, d o)(1 —20) L+o dp
w = 3 [P tr20) = Tt cosno @1 e P [ o
n=0 o PP o010y lpog "o

v Z {n - (51p) — b d_dpJnmp)} sinng (22) Wl:zu—ﬁ) [aaiﬁau]
o z 14
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Upon applying these conditions, solving the resulting syste y
of equations fom,, andb, is tedious but straightforward. The
results are given in the Appendix. It should be noted from th B
solution ofa,, andb,, that a linear relationship exists betweer
the displacements in (21) and (22) and the amplititjeof the
incident pressure wave.

A relevant topic to consider at this point is the normal mode %) S
of free (unforced) vibration in the scattering body. The norme A oF
modes of free vibration occur at frequencies that yield a nol 9.
trivial solution to the homogeneous scattering problem whe
no external forces exist. The boundary conditions for free v i
bration are simply that o

i) the normal component of stress; X
ii) the tangential component of shearing stress must bo
vanish at the surface of the body.
These conditions are identical to the first and third conditions i
the original scattering problem with the incident and scattere
amplitudes setto zero. It can be shown that these conditions h.___.
at frequencies satisfying

Fig. 3. Mapping the displacement from point(A’ = a) to point B (' =
a+bf(9)).
A2B3 + B2A3 =0

Solving for ¢,

where A,, Az, Bo, and Bs are defined in the Appendix. As , .
discussed later, an incident acoustic wave at one of these res- b = ug(#,1) _ us(4',1) (32)
onant frequencies produces a significant displacement for that T a+ u;(¢'7 t) a
mode. Conversely, if the incident acoustic frequency is far from I L i )
a resonance of the cylinder, then negligible displacement GiNceus (¢, ) < a. And substituting (32) into (30) gives
curs. This important property is the basis for the proposed target /
d " L . - P <,_u¢(¢,t) )

etection/identification scheme in a strong clutter environment bf(¢'t) =u, | ¢ — ————,t]). (33)
where the Doppler spectrum of the electromagnetic scattered “
field from an object vibrating at its natural resonances is us@&ewritingu,, andu,, with the time dependence explicitly shown
for discrimination. Also, note from (29) that the mechanical res-
onant frequencies of the object depend only on the mechanical
properties of the object and are independent of the surrounding

u,(¢',t) = Z Upn cos(wat +8,,) cosng’  (34)

medium. The frequencies at which maximum displacement oc- "o:oo
curs may shift, however, if the density contrast between the ob- ug(¢',t) = Z Ug.n cos(wat + 04.,) sin ng’ (35)
ject and background medium is changed. n=0

whereU, ,, andU, ,, are the magnitudes of the coefficients for

] ) ) then*® mode given by the expressions in brackets in (21) and

The displacement of the cylinder is now represented by bc%}z), respectively, and, ,, andd,, . are the respective phases of
RiYe

a radial and angular displacement in (21) and (22). To apRiYese coefficients. Substituting (34)and (35) into (33) yields
the perturbation solution for electromagnetic scattering given in

Section I, the displacement must be expressed by only radial , =
displacement as a function of angle, and ultimately, must be F(¢'54) = Z Upin cos(wat + 6p.n)
written as a Fourier series iff. Recall that the perimeter of =0

B. Mapping to Radial Displacement

the cylinder is expressed from (1) als= a + bf(¢', t) with the coS {n <¢’ _ Lom=0 Upm co8(@at + 0p.m)
radial displacement given byf(¢’,t). The radial and angular . ) a

displacement can be mapped into only radial displacement by sinmg’)] . (36)
setting

In general, this expression should be expanded in a Fourier se-
bE(P 1) = up(¢) — port) (30) ries abouty’. The coefficients4,, (), of the expansion can then

be used in the TM or TE electromagnetic solution to obtain the
whered, is the angular shift corresponding to the angular corfime-varying scattered field. When only one mode has signifi-
ponent of displacement,;,. From basic geometry (see Fig. 3ant displacement, however, (36) for th'é¢ mode simplifies to

and an application of Taylor series abat
PP Y % bf(¢',t) =U, ncos(wat +6,,)

(@ = dot) ue@) w0 [n <¢/ _ Upn cos(@at +0o) nq% (37)
a

a a _(pbo a

bo
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Fig. 5. Backscattered Doppler spectrum of a TM incident plane wave from an
Fig. 4. Peak surface displacement for the first three resonant mechan@abustically vibrated\. radius, copper cylinder. The second mechanical mode
modes of a copper cylinder. The radius of the cylinder ish.. is excited(n = 2).

Takingb = U,,,,, we can expand (', t) in a Fourier series then = 2 mode. This frequency is found by solving (29) an(_j oc-
aboutg’. The coefficientsA,, (), of the expansion are conve-Curs whens;a = 1.174. The Young's Modulusk, for copper is
niently written in terms of Bessel functions as [18], see (38jbout 127 GPa, and Poisson’s ratiojs taken to be 1/3, which
shown at the bottom of the page. This completes the soluti#ults in a resonance At = 864.5/a Hz for then = 2 mode
for a given mode of vibration in the cylinder. The above coeff the solid copper cylinder. Fig. 5 shows the calculated Doppler
ficients should be substituted into (9) or (19) for the TM or TESPectrum of the backscatter with TM incidence for this mode.
case, respectively, to solve for the perturbation coefficients, fdihe spectrum, similar to a frequency modulated signal with
lowed by a substitution into (4) or (12) for the electromagneti low index of modulation, has frequency components at har-
scattering solution. As stated before, the Fourier transform /onics of the incident acoustic frequency of which the firstis by

this solution gives the scattered Doppler spectrum. far the largest. Other acoustic modes produce a similar Doppler
spectrum where the frequency components are at harmonics of
IV. SIMULATIONS the vibration frequency and the first component is still the most

o ] ) significant. These results apply for both TM and TE incidence
When the frequency of the incident acoustic wave is not cloggq suggest that the frequency of vibration of the scatterer can

to a resonant frequency of the cylinder, it behaves as an impegg-determined by the first harmonic of the scattered Doppler
trable rigid cylinder [19]. Consequently, there is negligible disspectrum. Although the first harmonic is the largest, it is still
placement at the surface of the cylinder, and the magnitudegfsiderably lower (60 dB) than the carrier frequency and a sen-

the Doppler spectrum is also negligible. However, when the frgpive measuring system must be used. To illustrate the system
quency of the incident acoustic wave is close to a resonance &y irements, consider a 5 cm radius, copper cylinder with a

the object, the mode corresponding to this resonance is exci{gg mechanical resonance it = 17.29 kHz. The phase noise
and a measurable Doppler spectrum results. at this frequency must be below approximatel§0 dBc/Hz at
fa to measure the first harmonic of Doppler spectrum. Since os-
cillators with phase noise 6f100 dBc/Hz at 10 kHz can easily
As an example, considera (wavelength of electromagneticbe made, accurate measurement of the Doppler spectrum is in-
wave) radius, solid copper cylinder illuminated by an incidemteed feasible.
acoustic plane wave in air with a power density of 1 kw. To illustrate the effect of resonance on the scattered Doppler
The peak displacement for the first three resonances of a samkctrum, the magnitude of the first harmonic of the Doppler
copper cylinder are shown in Fig. 4. Recall that the displacspectrum in the backscatter is calculated as a function of the in-
ment is linearly related to the amplitude of the incident acousti@dent acoustic frequency. Fig. 6 shows that the first harmonic
wave and can be scaled accordingly. Now let the frequencyaffthe scattered Doppler spectrum for the copper cylinder in
the incident acoustic wave correspond to the first resonanceaaf is highly sensitive to resonances in the cylinder. In fact,

A. Excitation at Resonance

1 form=0,n=0
Am(t) = cos(wat + gp) % |:J1+m (TLU(z).n Cos(awat-l-t%;,n)) + Jlf% (nUd)_n cos(awat+04‘,y,,)):| for m/n an integem 7é 0 (38)
0 otherwise
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Fig. 6. Variation of the first Doppler harmonic magnitude with acoustlmcidence.(a = ).

frequency for a copper cylinder in ait; = w, /¢, is the propagation constant
for the compressional wave within the cylinder. For a 5 cm radius cylinder, the
acoustic frequency scan shown here is frim= 14.7 kHz to f, = 29.4 kHz.

the scattered Doppler components are negligible except aroul
narrow resonances corresponding to the resonant frequencies@ -
the cylinder. Note that the = 2 mode is resonant at the lowest &
frequency, followed by the = 1 andn = 3 modes. Hence,
by acoustically vibrating the cylinder over a wide range of fre-
quencies, the Doppler response will have significant Dopple =
components only at the mechanical resonant frequencies of tI§
cylinder. This technique could be used in general to measui’'s
the mechanical resonances of any object. Furthermore, usingt §
Doppler backscatter to measure these resonances could prov =
a means of object discrimination based on the location and dit
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It should be noted that when the density of the backgroun 0 20 40 60 80 100 120 140 160 180
medium is increased (or, equivalently, the density contrast be (deg)

tween the object and background is decreased), the magnitudFe_of8 Variation of scattered first Doppler ) tude wifbr TE
resonant vibration in the object, and consequently the magnitqﬁ@dénce?;'az'o?\ (’)_Sca ered irstoppler harmonic magnitude withr
of the Doppler response, is reduced. Since the displacements of

solid metallic objects are small in an air background, the dis-

placement in a dense medium (such as soil) could be below {10t of the first harmonic component for each mode versus
sensitivity of the measuring instrument. This undesirable res%',gattering angle is given in Fig. 7. One significant observation
is offset by realizing that in a practical scenario the buried 0ks that the location of the nulls, and the angular response in gen-
jects of interest are likely to be metallic or plastic shells whicg5| depends strongly on the excited mode(s) of the object. The
will have significantly larger displacements (and lower resonagt,jis occur at angles where the symmetry of the bistatic scat-
frequencies) than the virtually rigid, solid objects considergdying for a particular mode produces no net Doppler shift. The
here. To fully extend the present analysis to a soil backgroungstatic variation of the first harmonic of the Doppler spectrum
the complex wave structure of mechanical waves in soil SUCh@$ TE incidence is shown in Fig. 8. Note that the angles of the

the compressional, shear, and surface (Rayleigh) waves mustgs are identical to the TM case, and the overall angular re-
considered and is left for future work. sponse follows a similar trend.

B. Bistatic Scattering of Doppler Spectrum

) ) ) V. CONCLUSION
A natural extension to the Doppler backscatter is the vari-

ation of the Doppler scattering as a function of angleThe  In this paper, the analytical Doppler spectrum of an acous-
Doppler scattering (TM incidence) from a copper cylinder exically vibrated circular cylinder is examined and shown to
cited at its first three mechanical resonances correspondingdtovide a measurable quantity which is strongly dependent
then = 2,n = 1, andn = 3 modes, respectively, is simulatedupon the cylinder's mechanical resonances. A perturbation
with ¢ varying from O (forward scatter) to 180(backscatter). method is employed to derive an analytical solution for the
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bistatic scattering from a deformed cylinder. Using the so-[5]
lution for the displacement of a solid cylinder with acoustic
excitation, the Doppler spectrum scattered from the vibrating[6
cylinder is obtained. The Doppler spectrum is shown to consist[7)
of harmonics of the incident acoustic frequency where the
first harmonic is the most significant. Also, the first harmonic
only becomes measurable when the cylinder is excited near
a mechanical resonance. Thus, by sweeping the frequency dfl
acoustic excitation, the resulting Doppler spectrum will be
dominated by frequency components corresponding to thgg
mechanical resonances of the cylinder. The location of these
resonances does not depend strongly upon the backgrou&ch
medium. Furthermore, the scattered Doppler magnitude for a
given mode is shown to be a strong function of scattering angle.
These results indicate that acoustically vibrating an object at it&?]
resonant frequencies and measuring the Doppler scattered re-
sponse monostatically or bistatically could provide an effectiveg13)
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