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Acoustic and Electromagnetic Wave Interaction:
Estimation of Doppler Spectrum From an

Acoustically Vibrated Metallic Circular Cylinder
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Abstract—The idea of using acoustically induced Doppler
spectra as a means for target detection and identification is
introduced. An analytical solution for the calculation of the
bistatic scattered Doppler spectrum from an acoustically excited,
vibrating metallic circular cylinder is presented. First the elec-
tromagnetic scattering solution of a slightly deformed circular
cylinder is obtained using a perturbation method. Then, assuming
the vibration frequency is much smaller than the frequency
of the incident electromagnetic wave, a closed form expression
for the time-frequency response of the bistatic scattered field is
obtained which can be used directly for estimating the Doppler
spectrum. The acoustic scattering solution for an incident acoustic
plane wave upon a solid elastic cylinder is applied to give the
displacement of the cylinder surface as a function of time. Results
indicate that the scattered Doppler frequencies correspond to the
mechanical vibration frequencies of the cylinder, and the sidelobe
Doppler spectrum level is, to the first order, linearly proportional
to the degree of deformation and is a function of bistatic angle.
Moreover, the deformation in the cylinder, and thus the Doppler
sidelobe level, only becomes sizeable near frequencies of normal
modes of free vibration in the cylinder. Utilizing the information in
the scattered Doppler spectrum could provide an effective means
of buried object identification, where acoustic waves are used to
excite the mechanical resonances of a buried object.

Index Terms—Acoustics, cylinder, Doppler spectrum, electro-
magnetic scattering.

I. INTRODUCTION

GROUND penetrating radars have been proposed for detec-
tion and identification of buried objects [1]. For civilian

applications such radars are needed to locate underground pipes,
conduits, and cables, while military applications include mine
detection and clearing abandoned military practice ranges of un-
exploded ordinance (UXO). Over the past three decades much
effort has been devoted to the development of hardware and
advanced detection algorithms to improve the performance of
ground penetrating radars in so far as the probability of detec-
tion and the false alarm rate are concerned. The detectability of
a buried object is severely limited by the high attenuation rate
of microwaves propagating in most soil media as well as the rel-
atively large impedance mismatch at the interface between the
air and ground. Hence, the initial optimism has not yet led to the
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Fig. 1. Example scenario for acousto-electromagnetic object detection.

development of a reliable system that can perform satisfactorily
even with the most lax false alarm rate requirements.

To increase the probability of detection without increasing the
false alarm rate, measurable quantities which are characteristic
of the objects of interest should be exploited. One such quan-
tity is the electromagnetic Doppler spectrum that is scattered
from a buried object being mechanically vibrated by an incident
acoustic wave. If the buried objects have unique and identifiable
Doppler spectra, corresponding to unique mechanical modes of
the objects, then improvement in detection and identification of
the objects is possible. Combining electromagnetic scattering
with acoustic excitation to detect buried objects has been ad-
dressed previously [2], [3]. Recently, this idea has been exam-
ined to some extent in [4] where a radar is used to measure dis-
placements of the earth’s surface caused by a traveling acoustic
wave. In this approach, object detection is based on the small
changes in ground displacement when a buried object is intro-
duced. To aid in clutter rejection, distinguishing characteristics
of the buried objects of interest, such as the normal modes of
vibration, should be incorporated into the detection scheme. In
this paper, the application of the size and material dependent
bistatic Doppler spectrum in target identification is examined.
Fig. 1 shows the concept for the proposed mine detection and
identification scheme.

Before an acousto-electromagnetic technique can be effective
in this way, the relationship between the mechanical vibration
modes of an object and the scattered electromagnetic Doppler
spectrum must be understood. Perhaps the simplest scattering
geometry for which an analytical solution exists is an infinitely
long, circular cylinder. As a feasibility study, we will examine,
analytically, the Doppler scattering from a vibrating metallic
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circular cylinder in a homogeneous surrounding medium.
Admittedly, the solid metallic cylinder considered here is not
the most realistic model for a landmine. Furthermore, as will
be shown, the solid cylinder requires an enormous amount
of acoustic power to see the effect of vibrations in the EM
Doppler spectrum. The model was chosen, not for its direct
applicability, but rather for its mathematical tractability. The
cylinder is useful for illustrating that the mechanical resonance
behavior of objects can be seen in the scattered EM Doppler
spectrum.

A cylinder under mechanical vibration can be thought of as
a deformed cylinder whose shape is varied with time. Hence
an analytical solution for the scattered field of an arbitrary de-
formed cylinder is needed. Since the deformations are small,
an analytical perturbation technique is chosen to calculate the
scattered fields. Perturbation techniques can provide analytical
solutions to problems when the surface irregularity is small and
exact solutions exist for the unperturbed problems. Perturbation
theory is an established analytical approach for scattering solu-
tions and was applied by Rayleigh [5] and Maxwell [6] to cer-
tain scalar field problems. These methods have found applica-
tion in electromagnetic scattering from rough surfaces [7], [8],
cylinders [9]–[11] and spheres [12], [13]. The perturbation so-
lution developed here is based on the eigenfunction expansion
of vector fields in cylindrical coordinates. Yeh [10] presents a
methodology for this approach and derives coefficients for the
specific case of an elliptic cylinder with small eccentricity. For
the present work, however, the time-varying perturbation coef-
ficients for an arbitrarily deformed cylinder are needed and will
be derived using a similar approach. Once the electromagnetic
scattering from a time-varying deformed cylinder is obtained, a
Fourier transform can be used to extract the Doppler spectrum.
The time-varying cylinder deformation is obtained from the an-
alytical solution for the acoustic scattering from a solid elastic
cylinder. As will be shown, the bistatic Doppler spectrum may
be used as a tool for noninvasive measuring of different me-
chanical vibration modes. A number of examples are presented
to illustrate the relationship between the mechanical modes of
the cylinder and the Doppler spectrum.

As a point of note, the authors have extended the present
work to consider Doppler scattering from a vibrating dielectric
cylinder. Results of this derived work have already been pub-
lished in [14], and the interested reader is referred there.

II. ELECTROMAGNETIC SCATTERING FROM A PERTURBED

CIRCULAR CYLINDER

In this section, the bistatic scattered field from a perfectly
conducting circular cylinder with arbitrary deformation and il-
luminated by an electromagnetic plane wave is formulated. An

time dependence for electromagnetic waves and an
time dependence for acoustic waves is understood in all expres-
sions representing waves and is suppressed.

A. TM Case

Consider an incident TM plane wave impinging upon a per-
fectly conducting, slightly deformed circular cylinder as shown
in Fig. 2. For a vibrating cylinder whose cross section shape is

Fig. 2. Geometry for electromagnetic scattering from a perturbed cylinder.

varying with time, the scattered field will be time-varying which
gives rise to the scattered Doppler spectrum. The perimeter of
the cylinder’s surface can be expressed in polar coordinates as

(1)

where is the unperturbed cylinder radius, is a peri-
odic and smooth function of , and is a perturbation constant
assumed to be much smaller than the wavelength. The standard
method for the computation of the scattered field from a circular
cylinder is the eigen-function expansion of the total field. Fol-
lowing the development in [15], the incident plane wave prop-
agating along the x-direction with a polarization parallel to the
cylinder’s axis can be expressed as

(2)

where is the wavenumber. When there is no perturbation on
the surface (i.e., ), the scattered field is given by

(3)

If a small perturbation is introduced on the boundary, the scat-
tered field may be expanded in terms of a perturbation series in

. To the first order in , we may write

(4)

where the ’s are unknown coefficients to be determined using
the boundary condition on the surface of the per-
turbed cylinder. This expression is, of course, a permissible so-
lution of Maxwell’s equations since it satisfies both the wave
equation and the radiation condition. Using Taylor series expan-
sion, the eigen-functions in (2) and (4) can also be approximated
to the first order in , i.e.,

(5)
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where represents the Bessel or Hankel function ofth order.
Applying the boundary condition at the surface of the cylinder

(6)

Neglecting the term and using the Wronskian relationship
for Bessel functions results in the following expression:

(7)
Now if has a Fourier series expansion with respect to

(8)

and is inserted into (7), the resulting solution for the coefficients,
, is

(9)

Hence for a given displacement function, , the ’s
calculated from (9) can be used in (4) to yield the bistatic scat-
tered field at any angle. In this derivation it is implicitly as-
sumed that the time rate of variations of is much slower
than the electromagnetic frequency so that relativistic effects
can be neglected. Under this assumption, a Fourier transform
of the time-varying scattered field will provide the scattered
Doppler spectrum.

B. TE Case

Using the same procedure, a solution for TE incidence is also
possible. The magnetic field of an incident plane wave prop-
agating in the x-direction with polarization transverse to the
cylinder’s axis can be expressed as

(10)

When there is no perturbation on the surface of the cylinder, the
scattered field is given by

(11)

As before, a slight perturbation is introduced on the boundary,
and a perturbation series may be written for the scattered field.
To the first order in , the scattered magnetic field may be
written as

(12)

in which the ’s are found from the boundary condition,
. Where denotes the tangent electric

field at the cylinder boundary. In the TM case, the z-directed
electric field is always tangent to the cylinder surface despite
any perturbation in the boundary, and in the TE case for a
perfect cylinder, the component of the electric field is always
tangent to the cylinder boundary. However, when there is a
perturbation, applying the boundary condition is slightly more
complicated because the component of the electric field
is no longer tangent to the boundary. To properly apply the
boundary condition, the unit vector tangent to the surface must
be defined and the electric field component in this direction has
to be found. The unit vector tangent to the perturbed cylinder’s
surface is given by

(13)

where ,
, and is the partial

derivative of with respect to . With this expression
for the tangent unit vector, the tangent electric fields at the
cylinder surface are found from

and

(14)
Using (10) and (13) in (14) gives the incident tangent electric
field evaluated at the surface

(15)
Similarly, the scattered tangent electric field evaluated at the
surface is found by using (12) and (13) in (14)

(16)

We will use Taylor series expansion to approximate the deriva-
tives of the eigenfunctions in (15) and (16). To the first order in

(17)
where as before represents either the Bessel or Hankel
function. Using the approximations of (5) and (17) in (15) and
(16) and applying the boundary condition at the surface of the
cylinder leads to

(18)
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where , and the
and higher terms have been neglected. Expressing

in terms of its Fourier series expansion, can be written
as

which can be inserted in (18) to provide the solution for the
perturbation coefficients

(19)

Thus for a given displacement function, , the
found from (19) can be used in (12) to give the time-varying
scattered field at any angle. As before, the Fourier transform
of this time-varying field provides the scattered Doppler spec-
trum.

III. A COUSTICVIBRATION OF A SOLID CYLINDER

A. Mathematical Formulation for Displacement

In order to calculate the deformation of a circular cylinder due
to a time-harmonic incident acoustic wave, the acoustic scat-
tering from the cylinder must be evaluated. An interesting as-
pect of acoustic scattering from solid objects is that mechanical
waves within the solid are excited which consist of both trans-
verse shear waves and longitudinal compressional waves. Both
of these components must be accounted for in the solid to accu-
rately describe the deformation. The fluid medium surrounding
the cylinder is assumed to be nonviscous and supports only com-
pressional waves. A thorough treatment of the acoustic scat-
tering of an incident plane wave from a solid cylinder is given
in [16]. Inherent in this formulation is the resulting mechanical
vibration of the cylinder caused by the incident acoustic wave
which is of interest to us.

The procedure for evaluating the scattering of an acoustic
plane wave by a solid cylinder includes finding suitable so-
lutions to the equation of motion of a solid elastic medium,
defining the wave motion outside the scatterer to consist of an
incident acoustic plane wave and an outgoing scattered wave,
and applying the proper boundary conditions at the surface of
the cylinder. The equation of motion for a solid elastic medium
can be written [17]

(20)

where is the density of the scatterer,is the displacement,
and and are Young’s modulus and Poisson’s ratio, respec-
tively. Solutions to this equation for a solid cylinder of infinite
length are of the form [16]

(21)

(22)

where and are propagation constants
for the compressional wave and shear wave within the scat-
terer, respectively, and and must be determined from the
boundary conditions. The velocity of the compressional wave is

and the shear wave velocity is

The incident acoustic plane wave propagating in the sur-
rounding nonviscous fluid medium is represented by

(23)

and the scattered acoustic wave is

(24)

where represents the pressure variation, is the propaga-
tion constant for the surrounding fluid medium, andmust
be determined from the boundary conditions. The radial com-
ponents of displacement associated with the incident and scat-
tered waves are

and (25)

where is the density of the surrounding medium. Applying
three boundary conditions provides solutions for, , and ,
whereupon and are used in (21) and (22) to give the radial
and angular displacements of the cylinder.

The following boundary conditions are applied at the surface
of the cylinder:

i) the pressure in the fluid must equal the normal compo-
nent of stress in the solid;

ii) the normal component of displacement in the fluid must
equal the normal displacement of the solid;

iii) the tangential components of shearing stress must vanish
at the surface of the solid.

Explicitly

at (26)

at (27)

at (28)

with
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Upon applying these conditions, solving the resulting system
of equations for and is tedious but straightforward. The
results are given in the Appendix. It should be noted from the
solution of and that a linear relationship exists between
the displacements in (21) and (22) and the amplitude,, of the
incident pressure wave.

A relevant topic to consider at this point is the normal modes
of free (unforced) vibration in the scattering body. The normal
modes of free vibration occur at frequencies that yield a non-
trivial solution to the homogeneous scattering problem where
no external forces exist. The boundary conditions for free vi-
bration are simply that

i) the normal component of stress;
ii) the tangential component of shearing stress must both

vanish at the surface of the body.
These conditions are identical to the first and third conditions in
the original scattering problem with the incident and scattered
amplitudes set to zero. It can be shown that these conditions hold
at frequencies satisfying

(29)

where , , , and are defined in the Appendix. As
discussed later, an incident acoustic wave at one of these res-
onant frequencies produces a significant displacement for that
mode. Conversely, if the incident acoustic frequency is far from
a resonance of the cylinder, then negligible displacement oc-
curs. This important property is the basis for the proposed target
detection/identification scheme in a strong clutter environment
where the Doppler spectrum of the electromagnetic scattered
field from an object vibrating at its natural resonances is used
for discrimination. Also, note from (29) that the mechanical res-
onant frequencies of the object depend only on the mechanical
properties of the object and are independent of the surrounding
medium. The frequencies at which maximum displacement oc-
curs may shift, however, if the density contrast between the ob-
ject and background medium is changed.

B. Mapping to Radial Displacement

The displacement of the cylinder is now represented by both
a radial and angular displacement in (21) and (22). To apply
the perturbation solution for electromagnetic scattering given in
Section II, the displacement must be expressed by only radial
displacement as a function of angle, and ultimately, must be
written as a Fourier series in . Recall that the perimeter of
the cylinder is expressed from (1) as with the
radial displacement given by . The radial and angular
displacement can be mapped into only radial displacement by
setting

(30)

where is the angular shift corresponding to the angular com-
ponent of displacement, . From basic geometry (see Fig. 3)
and an application of Taylor series about

(31)

Fig. 3. Mapping the displacement from point A(� = a) to point B (� =
a + bf(� )).

Solving for

(32)

since . And substituting (32) into (30) gives

(33)

Rewriting and with the time dependence explicitly shown

(34)

(35)

where and are the magnitudes of the coefficients for
the mode given by the expressions in brackets in (21) and
(22), respectively, and and are the respective phases of
these coefficients. Substituting (34)and (35) into (33) yields

(36)

In general, this expression should be expanded in a Fourier se-
ries about . The coefficients, , of the expansion can then
be used in the TM or TE electromagnetic solution to obtain the
time-varying scattered field. When only one mode has signifi-
cant displacement, however, (36) for the mode simplifies to

(37)
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Fig. 4. Peak surface displacement for the first three resonant mechanical
modes of a copper cylinder. The radius,a, of the cylinder is� .

Taking , we can expand in a Fourier series
about . The coefficients, , of the expansion are conve-
niently written in terms of Bessel functions as [18], see (38),
shown at the bottom of the page. This completes the solution
for a given mode of vibration in the cylinder. The above coef-
ficients should be substituted into (9) or (19) for the TM or TE
case, respectively, to solve for the perturbation coefficients, fol-
lowed by a substitution into (4) or (12) for the electromagnetic
scattering solution. As stated before, the Fourier transform of
this solution gives the scattered Doppler spectrum.

IV. SIMULATIONS

When the frequency of the incident acoustic wave is not close
to a resonant frequency of the cylinder, it behaves as an impene-
trable rigid cylinder [19]. Consequently, there is negligible dis-
placement at the surface of the cylinder, and the magnitude of
the Doppler spectrum is also negligible. However, when the fre-
quency of the incident acoustic wave is close to a resonance of
the object, the mode corresponding to this resonance is excited
and a measurable Doppler spectrum results.

A. Excitation at Resonance

As an example, consider a (wavelength of electromagnetic
wave) radius, solid copper cylinder illuminated by an incident
acoustic plane wave in air with a power density of 1 kWm .
The peak displacement for the first three resonances of a solid
copper cylinder are shown in Fig. 4. Recall that the displace-
ment is linearly related to the amplitude of the incident acoustic
wave and can be scaled accordingly. Now let the frequency of
the incident acoustic wave correspond to the first resonance of

Fig. 5. Backscattered Doppler spectrum of a TM incident plane wave from an
acoustically vibrated,� radius, copper cylinder. The second mechanical mode
is excited(n = 2).

the mode. This frequency is found by solving (29) and oc-
curs when . The Young’s Modulus, , for copper is
about 127 GPa, and Poisson’s ratio,, is taken to be 1/3, which
results in a resonance at Hz for the mode
of the solid copper cylinder. Fig. 5 shows the calculated Doppler
spectrum of the backscatter with TM incidence for this mode.
The spectrum, similar to a frequency modulated signal with
a low index of modulation, has frequency components at har-
monics of the incident acoustic frequency of which the first is by
far the largest. Other acoustic modes produce a similar Doppler
spectrum where the frequency components are at harmonics of
the vibration frequency and the first component is still the most
significant. These results apply for both TM and TE incidence
and suggest that the frequency of vibration of the scatterer can
be determined by the first harmonic of the scattered Doppler
spectrum. Although the first harmonic is the largest, it is still
considerably lower (60 dB) than the carrier frequency and a sen-
sitive measuring system must be used. To illustrate the system
requirements, consider a 5 cm radius, copper cylinder with a
first mechanical resonance at kHz. The phase noise
at this frequency must be below approximately60 dBc/Hz at

to measure the first harmonic of Doppler spectrum. Since os-
cillators with phase noise of100 dBc/Hz at 10 kHz can easily
be made, accurate measurement of the Doppler spectrum is in-
deed feasible.

To illustrate the effect of resonance on the scattered Doppler
spectrum, the magnitude of the first harmonic of the Doppler
spectrum in the backscatter is calculated as a function of the in-
cident acoustic frequency. Fig. 6 shows that the first harmonic
of the scattered Doppler spectrum for the copper cylinder in
air is highly sensitive to resonances in the cylinder. In fact,

for

for an integer

otherwise

(38)
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Fig. 6. Variation of the first Doppler harmonic magnitude with acoustic
frequency for a copper cylinder in air.� = ! =c is the propagation constant
for the compressional wave within the cylinder. For a 5 cm radius cylinder, the
acoustic frequency scan shown here is fromf = 14:7 kHz tof = 29:4 kHz.

the scattered Doppler components are negligible except around
narrow resonances corresponding to the resonant frequencies of
the cylinder. Note that the mode is resonant at the lowest
frequency, followed by the and modes. Hence,
by acoustically vibrating the cylinder over a wide range of fre-
quencies, the Doppler response will have significant Doppler
components only at the mechanical resonant frequencies of the
cylinder. This technique could be used in general to measure
the mechanical resonances of any object. Furthermore, using the
Doppler backscatter to measure these resonances could provide
a means of object discrimination based on the location and dis-
tribution of the resonances in the Doppler response.

It should be noted that when the density of the background
medium is increased (or, equivalently, the density contrast be-
tween the object and background is decreased), the magnitude of
resonant vibration in the object, and consequently the magnitude
of the Doppler response, is reduced. Since the displacements of
solid metallic objects are small in an air background, the dis-
placement in a dense medium (such as soil) could be below the
sensitivity of the measuring instrument. This undesirable result
is offset by realizing that in a practical scenario the buried ob-
jects of interest are likely to be metallic or plastic shells which
will have significantly larger displacements (and lower resonant
frequencies) than the virtually rigid, solid objects considered
here. To fully extend the present analysis to a soil background,
the complex wave structure of mechanical waves in soil such as
the compressional, shear, and surface (Rayleigh) waves must be
considered and is left for future work.

B. Bistatic Scattering of Doppler Spectrum

A natural extension to the Doppler backscatter is the vari-
ation of the Doppler scattering as a function of angle,. The
Doppler scattering (TM incidence) from a copper cylinder ex-
cited at its first three mechanical resonances corresponding to
the , , and modes, respectively, is simulated
with varying from 0 (forward scatter) to 180(backscatter).

Fig. 7. Variation of scattered first Doppler harmonic magnitude with� for TM
incidence.(a = � ).

Fig. 8. Variation of scattered first Doppler harmonic magnitude with� for TE
incidence.(a = � ).

A plot of the first harmonic component for each mode versus
scattering angle is given in Fig. 7. One significant observation
is that the location of the nulls, and the angular response in gen-
eral, depends strongly on the excited mode(s) of the object. The
nulls occur at angles where the symmetry of the bistatic scat-
tering for a particular mode produces no net Doppler shift. The
bistatic variation of the first harmonic of the Doppler spectrum
for TE incidence is shown in Fig. 8. Note that the angles of the
nulls are identical to the TM case, and the overall angular re-
sponse follows a similar trend.

V. CONCLUSION

In this paper, the analytical Doppler spectrum of an acous-
tically vibrated circular cylinder is examined and shown to
provide a measurable quantity which is strongly dependent
upon the cylinder’s mechanical resonances. A perturbation
method is employed to derive an analytical solution for the



1506 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 7, JULY 2003

bistatic scattering from a deformed cylinder. Using the so-
lution for the displacement of a solid cylinder with acoustic
excitation, the Doppler spectrum scattered from the vibrating
cylinder is obtained. The Doppler spectrum is shown to consist
of harmonics of the incident acoustic frequency where the
first harmonic is the most significant. Also, the first harmonic
only becomes measurable when the cylinder is excited near
a mechanical resonance. Thus, by sweeping the frequency of
acoustic excitation, the resulting Doppler spectrum will be
dominated by frequency components corresponding to the
mechanical resonances of the cylinder. The location of these
resonances does not depend strongly upon the background
medium. Furthermore, the scattered Doppler magnitude for a
given mode is shown to be a strong function of scattering angle.
These results indicate that acoustically vibrating an object at its
resonant frequencies and measuring the Doppler scattered re-
sponse monostatically or bistatically could provide an effective
method for detecting and identifying buried objects.

APPENDIX

The coefficients for displacement used in Section III are given
here and can be substituted into (21) and (22) for the radial and
angular displacements, respectively.

where
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