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Full-Wave Analysis of Microwave Scattering From
Short Vegetation: An Investigation on the Effect of

Multiple Scattering

Yisok Oh, Young-Mi Jang, and Kamal Sarabandi

Abstract—A full-wave solution for polarimetric scattering from a cluster
of randomly oriented three-dimensional lossy dielectric structures above an
impedance surface is presented to investigate the importance of multiple
scattering. The problem is formulated using an integral equation in con-
junction with the exact image representation of dyadic Green’s function
for the half-space problem. Then, the integral equation is solved for the in-
duced equivalent polarization currents using the method of moments. The
accuracy of the numerical code is verified using other existing numerical re-
sults and experimental observations. The model is then used to examine the
effect of multiple scattering among a cluster of relatively short stems and
is shown that multiple scattering significantly affects the cross-polarized
backscatter whereas it has a moderate effect on the copolarized backscat-
tering depending on the stem density.

Index Terms—Impedance surface, method of moments (MoM), multiple
scattering, three-dimensional lossy dielectric structures.

I. INTRODUCTION

Remote sensing of crops and grassland is encountered in a number
of practical applications including the study of climate, hydrology, land
use, agriculture, etc. Because of their capabilities to penetrate through
vegetation and all-day operation, radar and radiometer sensors oper-
ating at microwave frequencies are often used in remote sensing of veg-
etation and soil moisture. Because of these applications, the radar and
radiometer phenomenology of terrain including rough surface, vege-
tation-covered surfaces, and forested environments has received sig-
nificant attention over the past two decades. The literature concerning
electromagnetic wave interaction with vegetation is rather extensive,
and a comprehensive review of all existing approaches is beyond the
scope of this paper [1]–[5].

In general, these approaches can be categorized into two general
methods, namely, incoherent and coherent techniques. The basis for
the formulation for incoherent techniques is radiative transfer (RT).
The RT formulation is heuristic and constructed based upon the law
of conservation of energy. The effect of vegetation particle size, ge-
ometry, number density, and dielectric properties is accounted for in
two fundamental quantities of the RT formulation known as the phase
and extinction matrices. On the other hand, coherent approaches are
constructed from the wave equation and are capable of accounting for
coherence effects resulting from the vegetation structures [6]–[9]. Most
the coherent models are developed assuming single-scattering theory,
i.e., the effect of multiple scattering is ignored. The first-order scat-
tering approximation seems to be valid for copolarized backscatter and
for conditions where the dominant scatterers in the medium are sparse.
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To predict cross-polarized backscatter correctly, higher order interpar-
ticles scattering must be taken into account. A numerical solution of RT
formulation (referred to as the discrete ordinate eigenanalysis) can, in
principle, account for all multiple scattering in a random medium [10].
However, there are two problems with this approach when applied to
vegetation. One problem is that the RT formulation is no longer valid
when the size of the constituent particles are large compared to the field
correlation distance in the medium or comparable to the extent of the
random medium itself. This is the case for both forested environments
as well as grasslands. The second problem is that the phase matrix is
constructed based on single scattering, and all near-field effects are in-
herently ignored.

To our knowledge, the model presented in [11] is the only approach
that takes near-field second-order scattering into account. Although
significant improvement in accuracy is achieved using this method, it
region of validity is not known and is expected to fail for dense vege-
tation clusters such as a grassland or a rice field. In this paper, we con-
sider a full-wave analysis to calculate scattering from an entire grass
plant above a ground surface that obviously includes all scattering in-
teractions of the grass blades within a given plant. Characterizing the
scattering from individual plants and macromodeling the statistical be-
havior of its radar backscatter as a function of plant type, its moisture
content, and growth stage as a building block would allow the construc-
tion of a simple and yet very accurate scattering model for grasslands.

In wetland rice cultivation, for example, a water layer over a flooded
soil, or a very wet smooth soil layer in some cases, remains in fields
for the growing period up to harvest season. The numerical formulation
considered here in order to calculate the electromagnetic wave scat-
tering from arbitrary-shaped vegetation elements above a flat and lossy
surface is based on a volumetric integral equation whose kernel is the
Green’s function for a half-space impedance surface. In general, the
fields of an infinitesimal dipole above a lossy half-space include calcu-
lation of Sommerfeld-type integrals, which are highly oscillatory and
computationally inefficient. In the present study, a wet soil or water sur-
face is modeled by an impedance surface, which is an accepted approx-
imation at microwave frequencies [12], [13]. Employing an appropriate
integral transform, the dyadic Green’s function can be represented in
terms of rapidly converging integrals [13], [14]. Then, using this for-
mulation, the scattering from clusters of short vegetation is calculated
numerically using the method of moments (MoM).

II. FORMULATION

The geometry of the scattering problem is shown in Fig. 1. In this
problem, the interest is in the calculation of the scattered field from
a collection of small plants (short vegetation) above a flat and lossy
ground surface illuminated by a plane wave at microwave frequencies.
As mentioned earlier, the MoM applied to a volumetric integral equa-
tion is considered for the calculation of the scattered fields. Volumetric
integral equations for the polarization currents as opposed to surface
integral equations for the fictitious surface currents are preferred be-
cause the scatterers are very thin compared to the wavelength. Using
the volume equivalence theorem, a three-dimensional (3-D) dielectric
object can be replaced by an equivalent volumetric current distribution
given by

J(r) = �ik0Y0 ("r(r)� 1)E
t

(r) (1)

whereJ(r) is the equivalent volumetric (polarization) current;"r(r)
represents the relative dielectric constant of the object;Y0 is the free-
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Fig. 1. Geometry for a backscatter simulation.

space admittance; andE
t
(r) is the total field inside the scatter. This

total field is composed of the incident(E
i
(r)), the reflected(E

r
(r)),

and the scattered(E
s
(r)) fields, i.e.,

E
t
(r) = E

i
(r) +E

r
(r) + E

s
(r)

where

E
i
(r) = Ei

hĥi + Ei
v v̂i eik k̂ �r (2a)

E
r
(r) = �hE

i
hĥr + �vE

i
v v̂r eik k̂ �r (2b)

E
s
(r) = ik0Z0

v

G(r; r 0) � J(r 0) dv0: (2c)

Hereĥ andv̂ denote the unit vectors of the electric fields forh-polar-
ized andv-polarized waves, respectively. Also,�h and�v represent
the Fresnel reflection coefficients for horizontal and vertical polariza-
tions, respectively;Z0 is the free-space wave impedance, andG(r; r 0)
is the dyadic Green’s function.

The dyadic Green’s function for a lossy half-space medium does
not have a closed form and is usually expressed in terms of Sommer-
feld-type integrals, which are highly oscillatory and difficult to eval-
uate numerically. Here, the Green’s function of an impedance surface
is derived in terms of rapidly converging integrals using appropriate
integral transforms. For an infinitesimal vertical electric dipole over
an impedance surface, the electromagnetic field in air(z > 0) can
be derived from az-directed Hertz vector(�z) [15]. For an infini-
tesimal horizontal electric dipole along thex direction, anx-compo-
nent of the Hertz vector alone cannot describe the electric field every-
where. One acceptable resolution for thex-directed dipole source is
(�x; 0; �z), which are consistent with the boundary conditions onE
andH [16], [17]. The Hertz vector in air for aq-oriented infinitesimal
current source andp-polarized scattered electric field can be written as
�pq(r) = i=!"0 (G0(r; r

0) + ~G r
pq (r; r

0)). The free-space Green’s
functionG0(r; r

0) can be expressed in a well-known spectral domain
representation in terms of a continuous spectrum of plane waves. The
Green’s function due to the impedance surface~Gr

pq(r; r
0) can be ex-

pressed in terms of a continuous spectrum of plane waves containing
integrals like

~Gr
pq(r; r

0) =
i

8�2
�1

+1

Rpq(kx; ky)

�e
ik (x�x )+ik (y�y )+ik (z+z )

kz
dkx dky (3)

where kz = (k20 � k2x � k2y)
1=2, and Rpq(kx; ky) represents

the coefficient of the reflected wave for aq-oriented infinites-
imal current source andp-polarized scattered electric field. The
coefficient of each reflected plane wave(Rpq(kx; ky)) can be
obtained using the boundary conditions at the air/impedance
surface interface [17]. For example,Rxx(kx; ky) = Rh(
),
Rzx(kx; ky) = 2kxkz=k

2
0 � (kz � k0

p
"r)=("rkz + k0

p
"r), and

Rzz(kx; ky) = Rv(
), whereRh(
) = (� cos 
 � 1)=(� cos 
 + 1)
andRv(
) = (cos 
 � �)=(cos
 + �) are the horizontal and vertical
reflection coefficients, respectively [12], [13]. In these equations,
 is a
complex incidence angle of each plane wave
 = arccos(kz=k0), and
� is the normalized impedance of the impedance surface(� = Z=Z0)
[12], [13].

We can rewriteRh(
) andRv(
) asRh(
) = 1 � 2�=(� + kz)
andRv(
) = 1 � 2�=(� + kz), respectively, where� = k0=� and
� = k0�. Then, the reflection coefficients for an impedance surface
can be transformed in a similar manner employed in derivation of the
exact image theory [14], using the inverse Laplace transform of an ex-
ponential function, i.e.,

Rh = 1� 2�
1

0

e���e�k � d�; Re(�) > 0 (4a)

and

Rv = 1� 2�
1

0

e���e�k � d�; Re(�) > 0: (4b)

Substituting the partial derivatives with respect tox andz by ikx and
ikz , respectively, a term likeRzx(kx; ky) can be replaced by

Rzx =� 2

k20"r

@2

@x @z
1� (1 + "r)�

� + kz

=� 2

k20"r

@2

@x @z
1� (1 + "r)�

1

0

e���e�k � d� :

By interchanging the order of integration and evaluating the spectral
domain integration analytically overkx andky , we can obtain the Hertz
vectors for three principal directions for the orientation of the infinites-
imal dipoles. Consequently, the elements of the dyadic Green’s func-
tion are found to be

Gpp = gpp + @2gpp=k
2
0@p

2 + @4gzp=k
4
0@p

2@z2 (5a)

Gpq = @2gpp=k
2
0@p@q + @4gzp=k

4
0@p@q@z

2; p 6= q (5b)

Gzp = @2gpp=k
2
0@p@z + gzp + @4gzp=k

4
0@p@z

3 (5c)

Gpz = @2gzz=k
2
0@p@z (5d)

Gzz = gzz + @2gzz=k
2
0@z

2 (5e)

where

gpp(r; r
0) =G0(r0) +G1(r1)� 2�

1

0

e���G2(r2)d� (6a)

gzp(r; r
0) =� 2

"2
G1(r1) +

1 + "r
"r

2�
1

0

e���G2(r2)d� (6b)

gzz(r; r
0) =G0(r0) +G1(r1)� 2�

1

0

e���G2(r2)d�: (6c)

In (6)

Gi(ri) =
exp[ik0ri]

4�ri
; i = 0; 1; 2 (7)

where

p; q =x; y r0 = (x� x0)2 + (y � y0)2 + (z � z0)2

r1 = (x� x0)2 + (y � y0)2 + (z + z0)2
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and

r2 = (x � x0)2 + (y � y0)2 + (z + z0 + i�)2:

This formulation is exact for an impedance surface independent of
source or observation point positions. The last term of (6) includes an
integral over0 < � <1whose integrand can be interpreted as a linear
distributed image source in the complexz plane along the imaginary
axis at the mirror image point(�z0 � i1 < z < �z0). It should be
noted that the integrals converge rapidly due to exponential decays of
the integrands [13].

III. M OM SOLUTION

The integral equation given by (2) can be solved numerically using
the MoM. Among many other bases functions, we chose the volumetric
brick as the basis function in the limit of electrically small subdomains
[18] for simplicity. Using the point-matching technique, the integral
equation can be cast into the following matrix equation:

[Zxx
mn] [Zxy

mn] [Zxz
mn]

[Zyx
mn] [Zyy

mn] [Zyz
mn]

[Zzx
mn] [Zzy

mn] [Zzz
mn]

[Ixn]

[Iyn]

[Izn]

=

[V x
m]

[V y
m]

[V z
m]

(8)

whereIpn is an unknown constant of thenth basis function for the
p-component of the volume currents (p = x, y, z)

V p
m = �ik0Y0 ["r(rm)� 1]

� êie
ik k̂ �r + �eêre

ik k̂ �r � p̂; e = h; v; p = x; y; z

(9)

Zpq
mn = �pq�mn � k20 ["r(rm)� 1]

�
�V

Gpq(rm; rn)dvn; p; q = x; y; z: (10)

In (10),�pq and�mn are the Kronecker delta functions, andrm andrn
represent themth matching position (observation point) and thenth
integration position, respectively. Explicit form of differentiations of
the Green’s functions in (5)–(7) are given by

@2Gi=@p
2 =Gi(ri) p2mnf1=r

4

i � (1� ik0ri)=r
2

i (11a)

@2Gi=@z
2 =Gi(ri) z2imnf1=r

4

i � (1� ik0ri)=r
2

i (11b)

@2Gi=@p@q =Gi(ri)pmnqmnf1=r
4

i ; p 6= q (11c)

@2Gi=@p@z =Gi(ri)pmnzimnf1=r
4

i (11d)

@4Gi=@p
2@z2 =Gi(ri) f1=r

4

i + (p2mn + z2imn)

� f2= r
6

i + p2mnz
2

imnf3=r
8

i (11e)

@4Gi=@x@y@z
2 =Gi(ri)xmnymn f2=r

6

i + z2imnf3=r
8

i (11f)

@4Gi=@p@z
3 =Gi(ri)pmnzimn 3f2=r

6

i + z2imnf3=r
8

i (11g)

where

p; q =x; y i = 0; 1; 2 pmn � pm � pn

qmn � qm � qn z1mn � zm � zn z2mn � zm + zn

z3mn � zm + zn + i� f1 = 3� i3k0ri � k20r
2

i

f2 =�15 + i15k0ri + 6k20r
2

i � ik30r
3

i

f3 =105� i105k0ri � 45k20r
2

i + i10k30r
3

i + k40r
4

i :

Gi andri are given in (7).
Whenn = m, i.e., for the case of self-cell integration, the second

derivatives of the free-space Green’s functionG0(r0)produce the well-
known singularity that is not integrable. It should be noted that this is an
artifact of interchanging the order of differentiations and integrations
going from the vector potentials to the dyadic Green’s function. There

Fig. 2. RCS of a dielectric cube(a = �=5, " = 9) in free space.

are well-known techniques to remove this singularity and express the
integrals in terms of their principal values [19]. This procedure is

�V

@2

@p@q
G0 dv =

�V �V

@2

@p@q
G0 dv

+
V

@2

@p@q
(G0 � g0) dv +

V

@2

@p@q
g0 dv (12)

whereV" is a small finite volume surrounding the observation point,
andg0 � 1=4�r0. We can evaluate the second and the third integrals
in (12) explicitly for a small sphere centered at the observation point
with radiusa, which leads to�pqf1�(1�ika)eikag=3and�pq(�1=3),
respectively. The integral of the free-space Green’s function can also
be explicitly evaluated over the small sphere and becomesf�1+(1�
ika)eikag=k20 . Therefore, the dyadic Green’s function involving the
free-space scalar Green’s function can be represented by

�V

LppG0 dvn =
�V �V

LppG0 dvn

+ �1 + 2(1� ika)eika=3 =k20 (13)

wherep = x; y; z;Lpp is the differential operator of(1+@2=k20@p
2),

and the first integral can be evaluated numerically.
Once the elements of the impedance matrix and the excitation vector

are calculated, the unknown equivalent volume current inside the di-
electric body can be found by inverting (8). Consequently, the scattered
field can be obtained from

Es
pq =

eikr

r

ik0Z0
4�

N

n=1

Jqn(rn) � p̂se
�ik k̂ �r

+ �p(�r)Jqn(rn) � p̂sre
�ik k̂ �r �vn (14)

wherep; q = h; v.

IV. NUMERICAL RESULTS

In this section, we present several examples to demonstrate the ac-
curacy and capability of the full-wave solution. The first two exam-
ples pertain to verification of the numerical code by comparing the re-
sults with those obtained from other codes and measurements. First,
we considered scattering from a dielectric in free space and compare
the bistatic scattering radar cross section (RCS) with those reported in
[20]. The dielectric cube has an edge length ofa = �=5 and a relative
dielectric constant of"r = 9. Fig. 2 shows the comparison of theE
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Fig. 3. RCS of a lossy dielectric box (2:25��1:8��0:45�," = 55:4+i35)
above a conducting surface.

andH planes bistatic RCS patterns (those obtained from our codes and
the results obtained from [20]) of the cube for an incident wave normal
to one of the cube faces. As can be seen in Fig. 2, the bistatic RCS pat-
terns are in excellent agreement.

To further examining the accuracy of the code, comparison of
simulated results are made with the backscatter measurements of
a lossy dielectric body above a conducting plane(� ! 0). The
measurements were conducted using a scatterometer, which consists
of a vector network analyzer, a Ku-band antenna set, an automatic
antenna positioner, and a target positioner. The scatterometer is
calibrated employing the single-target calibration technique using a
conducting sphere [21]. Measurements were conducted at a center
frequency of 13.5 GHz. The target was a thin plastic rectangular box
(2:25� � 1:8� � 0:45�) filled with distilled water ("r = 55:4 + i35
at 13.5 GHz [22]). The plastic box had wall thickness of0:02� and a
dielectric constant of"r = 2:2. The target was placed on an aluminum
plate of54�� 54�, which was large enough to include the antenna’s
footprint. The backscatter measurements of the target above the
aluminum plate were collected at an incidence angle of� = 30� for an
azimuth angular range of� = 0� � 180� in steps of 4�. Considering
the target and the antenna positioning errors, Fig. 3 shows good
agreement between the measurement and the numerical simulation.

Then, we use this full-wave method to compute the backscattering
coefficient of a collection of randomly oriented grass stems above a
water surface, similar to what is shown in Fig. 1. A stem end position
(r; ') is assumed to be uniformly distributed inside a circle with di-
ameterd = 2� on the surface. The stem orientation was also assumed
to be uniformly distributed in an angular range0 � � � �max; 0 �
� � 2�. In this simulation we chose�max = 30�. The mean value
of the stem length is set to2� and its standard deviation to0:3�. All
stems were given a fixed diameter of0:113� and a dielectric constant
of "r = 22:1 + i10:1 corresponding to a gravimetric moisture con-
tent of 0.7 g/cm3. This dielectric constant was computed according
to formulas provided in [23] for vegetation material. The backscat-
tering coefficient (the second moment of the backscatter RCS per unit
area) fields were computed using a Monte Carlo simulation by gen-
erating 30 independent samples of the stem cluster. Fig. 4 shows a
comparison between the full-wave method and the single-scattering
method for the co- and cross-polarized backscattering coefficients. The
single-scattering method ignores the effect of multiple scattering. For
the single-scattering computation, the volume current distribution of

Fig. 4. Backscattering coefficients for a simple vegetation canopy, ten stems
(2�) in a2�-diameter circle above a water surface.

Fig. 5. Cross-polarized backscattering coefficients at 10, compared with
those of the single-scattering method.

each stem was computed assuming that a single stem exists above the
water surface, and then the scattered fields were computed from the all
ten stems in the cluster coherently. As can be seen in Fig. 4, the effect
of multiple scattering for copolarized terms is negligible for this rela-
tively sparse cluster, whereas for the cross-polarized term the effect is
significant. For example, the difference between the single-scattering
solution and full-wave solution for�0vh at 10� is as high as 9 dB.

In Fig. 5, we compare the cross-polarized backscattering coefficients
obtained from the full-wave method with those calculated using the
single scattering method as a function of stem number density. In these
simulations, the incidence angle is chosen to be 10� and the number
of the stems in the2�-circle varying from 1–20. The cross-polarized
backscattering coefficients are identical for a single stem as expected,
but as shown the discrepancy between the single scattering results and
full-wave results increases as the number of stems are increased. The
discrepancy ranges from 3.5 dB for two stems to about 13 dB for 20
stems, as shown in Fig. 5.

V. CONCLUSION

The issue of multiple scattering effect in radar backscatter from short
vegetation is examined. An efficient numerical method is developed
to compute the scattering behavior of 3-D inhomogeneous dielectric
structures above impedance surfaces using an appropriate integral
transformation. The accuracy of this full-wave method is verified with
other numerical solutions and an experimental observation. Then,
this method is applied to compute the backscattering coefficients of
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a cluster of short stems. It is shown that the effect of multiple scat-
tering on the copolarized backscattering coefficients is negligible for
relatively sparse conditions, whereas the cross-polarized backscatter
is significantly influenced by the multiple-scattering effect.
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