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Full-Wave Analysis of Microwave Scattering From To predict cross-polarized backscatter correctly, higher order interpar-
Short Vegetation: An Investigation on the Effect of ticles scattering must be taken into account. A numerical solution of RT
Multiple Scattering formulation (referred to as the discrete ordinate eigenanalysis) can, in

principle, account for all multiple scattering in a random medium [10].
Yisok Oh, Young-Mi Jang, and Kamal Sarabandi However, there are two problems with this approach when applied to

vegetation. One problem is that the RT formulation is no longer valid
when the size of the constituent particles are large compared to the field
Abstract—A full-wave solution for polarimetric scattering froma cluster  grrelation distance in the medium or comparable to the extent of the

of randomly oriented three-dimensional lossy dielectric structures above an . . . .
impedance surface is presented to investigate the importance of multiple random medium itself. This is the case for boj[h forested enVIronmerltsf
scattering. The problem is formulated using an integral equation in con- aS Well as grasslands. The second problem is that the phase matrix is
junction with the exact image representation of dyadic Green’s function constructed based on single scattering, and all near-field effects are in-
for the half-space problem. Then, the integral equation is solved for the in-  herently ignored.

duced equivalent polarization currents using the method of moments. The ¢, o\ knowledge, the model presented in [11] is the only approach
accuracy of the numerical code is verified using other existing numerical re- O L
sults and experimental observations. The model is then used to examine the that takes near-field second-order scattering into account. Although
effect of multiple scattering among a cluster of relatively short stems and  significant improvement in accuracy is achieved using this method, it
is shown that multiple scattering significantly affects the cross-polarized region of validity is not known and is expected to fail for dense vege-
backscatter whereas it has a moderate effect on the copolarized backscat-tation clusters such as a grassland or a rice field. In this paper, we con-
tering depending on the stem density. . . . .
sider a full-wave analysis to calculate scattering from an entire grass

Index Terms—mpedance surface, method of moments (MoM), multiple  plant above a ground surface that obviously includes all scattering in-
scattering, three-dimensional lossy dielectric structures. teractions of the grass blades within a given plant. Characterizing the
scattering from individual plants and macromodeling the statistical be-
havior of its radar backscatter as a function of plant type, its moisture
content, and growth stage as a building block would allow the construc-

Remote sensing of crops and grassland is encountered in a NUMRR of a simple and yet very accurate scattering model for grasslands.
of practical applications including the study of climate, hydrology, land | wetland rice cultivation, for example, a water layer over a flooded
use, agriculture, etc. Because of their capabilities to penetrate through) or a very wet smooth soil layer in some cases, remains in fields
vegetation and all-day operation, radar and radiometer sensors Op§fthe growing period up to harvest season. The numerical formulation
ating at microwave frequencies are often used in remote sensing of Vggnsidered here in order to calculate the electromagnetic wave scat-
etation and soil moisture. Because of these applications, the radar gfithg from arbitrary-shaped vegetation elements above a flat and lossy
radiometer phenomenology of terrain including rough surface, veggrrface is based on a volumetric integral equation whose kernel is the
tation-covered surfaces, and forested environments has received gjgsen’s function for a half-space impedance surface. In general, the
nificant attention over the past two decades. The literature concernfids of an infinitesimal dipole above a lossy half-space include calcu-
electromagnetic wave interaction with vegetation is rather extensiygion of Sommerfeld-type integrals, which are highly oscillatory and
and a comprehensive review of all existing approaches is beyond fgnputationally inefficient. In the present study, a wet soil or water sur-
scope of this paper [1]-{5]. face is modeled by an impedance surface, which is an accepted approx-

In general, these approaches can be categorized into two gengfattion at microwave frequencies [12], [13]. Employing an appropriate
methods, namely, incoherent and coherent techniques. The basisdf¥gral transform, the dyadic Green's function can be represented in
the formulation for incoherent techniques is radiative transfer (RTgbrms of rapidly converging integrals [13], [14]. Then, using this for-
The RT formulation is heuristic and constructed based upon the I@yjation, the scattering from clusters of short vegetation is calculated
of conservation of energy. The effect of vegetation particle size, ggamerically using the method of moments (MoM).
ometry, number density, and dielectric properties is accounted for in
two fundamental quantities of the RT formulation known as the phase
and extinction matrices. On the other hand, coherent approaches are
constructed from the wave equation and are capable of accounting for
coherence effects resulting from the vegetat?on st'ructures [6]—.[9]. Mostrpe geometry of the scattering problem is shown in Fig. 1. In this
the coherent models are developed assuming single-scattering thegfyhiem the interest is in the calculation of the scattered field from
i.e., the effect of multiple scattering is ignored. The first-order scaf; ¢q|ection of small plants (short vegetation) above a flat and lossy
tering approximation seems to be valid for copolarized backscatter agﬂ%und surface illuminated by a plane wave at microwave frequencies.
for conditions where the dominant scatterers in the medium are spaige mentioned earlier, the MoM applied to a volumetric integral equa-

tion is considered for the calculation of the scattered fields. Volumetric
integral equations for the polarization currents as opposed to surface
integral equations for the fictitious surface currents are preferred be-
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where k. = (ki — k2 — k22, and Rpy(k., k,) represents
the coefficient of the reflected wave for @-oriented infinites-
imal current source ang-polarized scattered electric field. The
coefficient of each reflected plane wawvg?,,(k-, k,)) can be
obtained using the boundary conditions at the air/impedance
surface interface [17]. For examplé®..(k., k,) = Ru(v),
R.o(key ky) = 2kok. kg - (ke — ko/Er)/(svk: + koo/Zr), and

R (ka. ky) = Ru(v), whereRy(v) = (ncosy —1)/(ncosy + 1)
andR,(v) = (cosy — i) /(cosv + ) are the horizontal and vertical
reflection coefficients, respectively [12], [13]. In these equatigris,a
complex incidence angle of each plane wave arccos(k. /ko), and

n is the normalized impedance of the impedance surface Z/Z,)

‘ : [12], [13].

Impedance Surface We can rewrit&,(v) and R, (y) asRn(v) = 1 — 2a/(a + k-)
andR,(vy) = 1 - 23/(8 + k.), respectively, wheree = ko /5 and

B = kon. Then, the reflection coefficients for an impedance surface
Fig. 1. Geometry for a backscatter simulation. can be transformed in a similar manner employed in derivation of the
exact image theory [14], using the inverse Laplace transform of an ex-
ponential function, i.e.,

space admittance; arﬁt(?) is the total field inside the scatter. This
total field is composed of the incideE ' (7)), the reflected E " (7)),

okl . . — 1 _ 9~ - —ap —kop ’
and the scattere® ° (7)) fields, i.e., Rn=1 2”/0 e ™em Ny, Re(a) >0 (4a)

E'®=E'@+E ®+EF and
where R,=1- 2/,’3/ e PHeTh= du, Re(3) > 0. (4b)
0
E'(F) = (Eh hi + Eva) ethokiT (2a) Substituting the partial derivatives with respecttandz by ik, and
. L v - ik, respectively, a term lik&. . (k.. k,) can be replaced by
E'(F) = (r,,,E,;h,. T FEU) gtkokr (2b)
_ - _ Ro—_ 2 9’ L A+ens
E°(F) =ikoZo / GFE F-JFHd'. (2¢) T k2, 0w dz | B4k
B — 2 0 g [~ —Bu,—k=p
Hereh and# denote the unit vectors of the electric fields fopolar- T k2e, 0202 {1 (1+er)8 /0 c e du] -

ized andv-polarized waves, respectively. Alsb, andT', represent
the Fresnel reflection coefficients for horizontal and vertical polariz

tions, respectivelyZ, is the free-space wave impedance, &fd, 7' . . . . . .
P Vo P P e ) vectors for three principal directions for the orientation of the infinites-

is the dyadic Green’s function. imal dinoles. C tiv. the el ts of the dvadic G s f
The dyadic Green'’s function for a lossy half-space medium dolB2! dipoles. Lonsequently, the elements of Ine dyadic treen's func-
fion are found to be

not have a closed form and is usually expressed in terms of Somm
feld-type integrals, which are highly oscillatory and difficult to eval- _ 2 249 2 4 4n 2n 2

uate numerically. Here, the Green’s function of an impedance surface Cow = Joe +0 ()gpp./ko(’)p 4+ ? gjp/lfo (?p 204 (52)
is derived in terms of rapidly converging integrals using appropriate Crs =9 oo/ koOpOq + 8" g2y ko OpIqd=", p#q (5h)
integral transforms. For an infinitesimal vertical electric dipole over G-, =8”gyp/kg0pdz + g=p + 0" 9.,/ kg Ipd 2> (5¢)
an impedance surface, the electromagnetic field inaic> 0) can Gp- =0%g.. /k20pd= (5d)
be derived from a-directed Hertz vectofIl.) [15]. For an infini- _ 2 24 2

tesimal horizontal electric dipole along thedirection, anz-compo- e =92+ 07922 [ho0x (5e)
nent of the Hertz vector alone cannot describe the electric field eve(ypare

where. One acceptable resolution for thalirected dipole source is -

(I, 0, TI..), which are consistent with the boundary conditionsfon Gpp(F, F') = Go(ro) + Gi (1) — QQ/ e M Galra) dpt (63)
and H [16], [17]. The Hertz vector in air for a-oriented infinitesimal ' ‘ 0

current source angt-polarized scattered electric field can be written as, (7,7 =-— 2 Gi(r) +
I, () = i/wzo (Go(F, 7') + G}, (7, 7')). The free-space Green's =~ """ 9
functionGo (7, ¥') can be expressed in a well-known spectral domain _ _, an [
representation in)terms of a continuous spectrum of plane waves. Tfig (7, 77) =Go(ro) + G () — 2’3/0
Green’s function due to the impedance surfagg (7, 7') can be ex-

pressed in terms of a continuous spectrum of plane waves contain'iﬂée)

By interchanging the order of integration and evaluating the spectral
domain integration analytically ovét. andk,, we can obtain the Hertz

14 =,

er

23 / =P Gy (ra) . (6b)
0

aaen (r2)dp.  (6C)

integrals like ol s
Gi(ry = SRlRord @)
too 4mr;
A — i
qu(y', 7,’) = s / qu(kx, ]iy) where
‘ eikx(a:—,r’)-‘riky(7/—1/’)+ik‘l(2+z/) pP.qgq=x,Y ro = \/(]‘ — .’I,’/)Z =+ (y — y/)Z =+ (Z — Z’)Q

o dks dky, (3) o= \/(r St (Y -y )2+ (2 + )2
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and 5 - T
re=/(x —a) 2+ (y—y)2+ (z+ 2 +ip). o¢ =3
\\
This formulation is exact for an impedance surface independento -5 *\\ POt -
source or observation point positions. The last term of (6) includes ai N e
integral oven < u < oo whose integrand can be interpreted as alinear ™' 2t el
distributed image source in the complexplane along the imaginary & N .
. . . . ’ . ’ m -15 4
axis at the mirror image poirft-2" — ico < z < —2').Itshouldbe T \ K
noted that the integrals converge rapidly due to exponential decays (& 20 Vo
. !
the integrands [13]. Q : This Code (H-plane) | 1
25 _: This Code (E-plane) vy
IIl. M oM SOLUTION : Sarkar, et al.[8] (H-plane) t 1
20 + . Sarkar, et al.[8] (E-plane) “0”
The integral equation given by (2) can be solved numerically using v
the MoM. Among many other bases functions, we chose the volumetri -

brick as the basis function in the limit of electrically small subdomains 0 20 40 60 80
[18] for simplicity. Using the point-matching technique, the integral

equation can be cast into the following matrix equation:

[Zrnn] [ernyn [Zrl;z/n] [I:;] [‘ m
(Zinnl  [Z3n] (28] | | 2] | = | [V
(Zmn] 1Zeh] [Zaa] ] LG [Vin]

where I is an unknown constant of theth basis function for the

p-component of the volume currents € z, vy, z)

VE = —ikoYs [e,(Fum) — 1]

©)

. (éieikoki-T,n + Fcéreikokr-Tm) - P, e=h,v;p=ux,vy, 2
©)

Z{:zqn = (Spq(sm,n - L[Z) [57"(1_'171,) - 1]
Cpq(’ s Tn) dVn, P, qg=x,9, z. (10)

AVy

In (10),6,, andé,,.,, are the Kronecker delta functions, ahgd andr,,
represent thernth matching position (observation point) and thih

integration position, respectively. Explicit form of differentiations o

the Green'’s functions in (5)—(7) are given by

0*Gifop® = Gi(ri) {pimn f1/7i = (1 = ikori) /7] }
9°Gi)02" = Gi(ri) {zlmn i1l = (1= ikori) /1] }
0*Gi)0pdq = Gi(ri)pmndmn i/}, P#q
ter [/0pdz =G, (rl)p,n,/“,mfl/r
9'Gi)op 0% = Gy(r ){f1/7 + (Prn + Zin)
- fof 1S +pnm/‘imnf3/7i}
8'Gi/020y02" = Gi(r)tmnYmn {2 /70 + Zian f3/78}
84Gi/8p(3:3 =Gi(ri)pmn Zimn {3]03/7,6 + Z;;Zmnf:s/”'?}
where
pog=x,y 1=0,1,2 pmn=pm —Pn
Gmn =¢m — n  Zlmn = Zm — Zn Z2mn = Zm Tt Zn
Z3mn =2Zm + 2n +ip f1 =3 — i3kor; — kir?

fo =—=15+ il15kor; + 6kir? — ikir?
fa =105 — i105kors — 45kar? + i10kir; + kgry.

G, andr; are given in (7).
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Fig. 2. RCS of a dielectric cube = A/5, ¢, = 9) in free space.

140 160 180

are well-known techniques to remove this singularity and express the
integrals in terms of their principal values [19]. This procedure is

/ = Godv = /
Jav, AV, —V.

)2
. apdq (Go — go)dv + / 3994 godv  (12)

02
Go dv
ap@q To

whereV. is a small finite volume surrounding the observation point,
andgo = 1/47re. We can evaluate the second and the third integrals
in (12) explicitly for a small sphere centered at the observation point
with radiuse, which leads té,,, {1— (1—ika)e* } /3 andé,, (—1/3),
respectively. The integral of the free-space Green’s function can also
be explicitly evaluated over the small sphere and becdméds+ (1 —
ika)e'**} /k2. Therefore, the dyadic Green’s function involving the
free-space scalar Green’s function can be represented by

f

/ L,,Go dv, = / L,,Go dv,
AV, AV, —Ve

+ {1420 —ira)e* 3} kg (13)

wherep = z, y, z; L,, is the differential operator dfl + 6% / k3 dp*),
and the first integral can be evaluated numerically.

Once the elements of the impedance matrix and the excitation vector
are calculated, the unknown equivalent volume current inside the di-
electric body can be found by inverting (8). Consequently, the scattered
field can be obtained from

N o =
Z {an(?n) ']38(3—7"‘,01“,5-1‘,1

n=1

+ r])(er)jqn (T‘n) : ﬁsreiikolzw.?n} AUn (14)

e ko Zo

o=
r 4T

rq

wherep, ¢ = h, v.

IV. NUMERICAL RESULTS

In this section, we present several examples to demonstrate the ac-
curacy and capability of the full-wave solution. The first two exam-
ples pertain to verification of the numerical code by comparing the re-

Whenn = m, i.e., for the case of self-cell integration, the secondults with those obtained from other codes and measurements. First,
derivatives of the free-space Green'’s funcii@rn(»o ) produce the well- we considered scattering from a dielectric in free space and compare
known singularity that is not integrable. It should be noted that this is #me bistatic scattering radar cross section (RCS) with those reported in
artifact of interchanging the order of differentiations and integratiorf20]. The dielectric cube has an edge lengtlk et A/5 and a relative
going from the vector potentials to the dyadic Green’s function. Thedéelectric constant of,. = 9. Fig. 2 shows the comparison of tie
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Fig. 4. Backscattering coefficients for a simple vegetation canopy, ten stems

30 : (2X) in a2X-diameter circle above a water surface.
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Angle (degrees)

Fig.3. RCSofalossy dielectricboX.@5Ax1.8Ax0.45A,¢,. = 55.441235)
above a conducting surface. 51

-10p
andH planes bistatic RCS patterns (those obtained from our codes and
the results obtained from [20]) of the cube for an incident wave normal
to one of the cube faces. As can be seen in Fig. 2, the bistatic RCS pat-
terns are in excellent agreement.

To further examining the accuracy of the code, comparison of

Backscatt. Coeff., VH-pol. (dB)
)
o

simulated results are made with the backscatter measurements of / —o— : Multiple Scattering

a lossy dielectric body above a conducting plame — 0). The -30f - —— — : Single Scattering 1
measurements were conducted using a scatterometer, which consists

of a vector network analyzer, a Ku-band antenna set, an automatic =~ % 5 10 15 2
antenna positioner, and a target positioner. The scatterometer is Number of Stems

calibrated employing the single-target calibration technique using a

conducting sphere [21]. Measurements were conducted at a ceffi@r 5. Cross-polarized backscattering coefficients &, ifbmpared with
frequency of 13.5 GHz. The target was a thin plastic rectangular piipse of the single-scattering method.

(2.25) x 1.8X x 0.45)) filled with distilled water €, = 55.4 4+ i35

at 13.5 GHz [22]). The plastic box had wall thicknes)df2A and &  gach stem was computed assuming that a single stem exists above the
dielectric constant of . = 2.2. The target was placed on an aluminumyater surface, and then the scattered fields were computed from the all
plate of54A x 54, which was large enough to include the antennag, stems in the cluster coherently. As can be seen in Fig. 4, the effect
footprint. The backscatter measurements of the target above Hignyitiple scattering for copolarized terms is negligible for this rela-
aluminum plate were collected at an incidence angte-ef30° foran  yely sparse cluster, whereas for the cross-polarized term the effect is
azimuth angular range of = 0° ~ 180" in steps of 4. Considering  gjgnificant. For example, the difference between the single-scattering
the target and the antenna positioning errors, Fig. 3 shows gagslution and full-wave solution for, at 10 is as high as 9 dB.
agreement between the measurement and the numerical simulation. | Fig. 5, we compare the cross-polarized backscattering coefficients
Then, we use this full-wave method to compute the backscatteriggiained from the full-wave method with those calculated using the
coefficient of a collection of randomly oriented grass stems abovesgyge scattering method as a function of stem number density. In these
water surface, similar to what is shown in Fig. 1. A stem end positifimations, the incidence angle is chosen to b dfd the number
(r, ) is assumed to be uniformly distributed inside a circle with digf ihe stems in the@ \-circle varying from 1-20. The cross-polarized
ameter = 2 on the surface. The stem orientation was also assumggcyscattering coefficients are identical for a single stem as expected,
to be uniformly distributed in an angular range< ¢ < fmax, 0 < pyt as shown the discrepancy between the single scattering results and
¢ < 2. In this simulation we chosé.... = 30°. The mean value ). wave results increases as the number of stems are increased. The

of the stem length is set t\ and its standard deviation @3X. Allgjscrepancy ranges from 3.5 dB for two stems to about 13 dB for 20
stems were given a fixed diameter(bi 13\ and a dielectric constant ¢tems. as shown in Fig. 5.

of e, = 22.1 4+ 410.1 corresponding to a gravimetric moisture con-
tent of 0.7 g/cri\. This dielectric constant was computed according
to formulas provided in [23] for vegetation material. The backscat-
tering coefficient (the second moment of the backscatter RCS per uniThe issue of multiple scattering effect in radar backscatter from short
area) fields were computed using a Monte Carlo simulation by gevegetation is examined. An efficient numerical method is developed
erating 30 independent samples of the stem cluster. Fig. 4 shows aompute the scattering behavior of 3-D inhomogeneous dielectric
comparison between the full-wave method and the single-scatterstguctures above impedance surfaces using an appropriate integral
method for the co- and cross-polarized backscattering coefficients. Tthensformation. The accuracy of this full-wave method is verified with
single-scattering method ignores the effect of multiple scattering. Father numerical solutions and an experimental observation. Then,
the single-scattering computation, the volume current distribution tifis method is applied to compute the backscattering coefficients of

V. CONCLUSION
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a cluster of short stems. It is shown that the effect of multiple scat-[9] Y. C. Lin and K. Sarabandi, “A Monte Carlo coherent scattering model
tering on the copolarized backscattering coefficients is negligible for

relatively sparse conditions, whereas the cross-polarized backscat

is significantly influenced by the multiple-scattering effect.
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